

ePIC

(electron-Proton/Ion Collider)

Detector and Collaboration

Bernd Surrow (<u>surrow@temple.edu</u>)

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

DOE NP contract: DE-SC0013405

Bernd Surrow

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Bernd Surrow

EIC Project Development

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

EIC Project Development

□ Selected EIC Physics Pillars → Low-x Physics

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

EIC Project Development

□ Selected EIC Physics Pillars → Low-x Physics

ePIC Detector Layout

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

EIC Project Development

□ Selected EIC Physics Pillars → Low-x Physics

ePIC Detector Layout

ePIC Collaboration

EIC Project Development

□ Selected EIC Physics Pillars → Low-x Physics

ePIC Detector Layout

ePIC Collaboration

Summary And Next Steps

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

 EIC: Study structure and dynamics of matter at high luminosity, high energy with polarized beams and wide range of nuclei

- EIC: Study
 structure and
 dynamics of matter
 at high luminosity,
 high energy with
 polarized beams and
 wide range of nuclei
- **U** Whitepaper:

- EIC: Study structure and dynamics of matter at high luminosity, high energy with polarized beams and wide range of nuclei
- **U** Whitepaper:

Understanding the glue that binds as all! Parton Distributions in Nuclei

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

- EIC: Study structure and dynamics of matter at high luminosity, high energy with polarized beams and wide range of nuclei
- **U** Whitepaper:

Understanding the glue that binds as all! Parton Distributions in Nuclei QCD at Extreme Parton Densities - Saturation

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

- EIC: Study
 structure and
 dynamics of matter
 at high luminosity,
 high energy with
 polarized beams and
 wide range of nuclei
- **U** Whitepaper:

Understanding the glue that binds as all! Spin and Flavor Structure of the Nucleon and Nuclei

Parton Distributions in Nuclei QCD at Extreme Parton Densities - Saturation

- EIC: Study structure and dynamics of matter at high luminosity, high energy with polarized beams and wide range of nuclei
- Whitepaper:

the glue that binds as all!

Tomography (p/A) **Transverse Momentum Distribution and Spatial** Imaging

Spin and Flavor Structure of the Nucleon and Nuclei

Parton Distributions in Nuclei

QCD at Extreme Parton **Densities - Saturation**

Integrated Luminosity (fb⁻¹/yr)

Requirements

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - \Box Flexible center-of-mass energy $\sqrt{s} = \sqrt{4 E_e E_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density

Bernd Surrow

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - □ Flexible center-of-mass energy $\sqrt{s} = \sqrt{4E_eE_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density
- O Detector:
 - \Box Wide acceptance detector system including particle ID (e/h separation & π , K, p ID flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - □ Flexible center-of-mass energy $\sqrt{s} = \sqrt{4E_eE_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density
- O Detector:
 - \Box Wide acceptance detector system including particle ID (e/h separation & π , K, p ID flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - □ Flexible center-of-mass energy $\sqrt{s} = \sqrt{4E_eE_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density
- O Detector:
 - \Box Wide acceptance detector system including particle ID (e/h separation & π , K, p ID flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

non-perturbative

Requirements

- Machine: 0
 - High luminosity: 1033 cm⁻²s⁻¹ 1034 cm⁻²s⁻¹
 - Flexible center-of-mass energy $\sqrt{s} = \sqrt{4 E_e E_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - Wide range of nuclear beams (d to Pb/U): High gluon density
- 0 Detector:
 - Wide acceptance detector system including particle ID (e/h separation & π , K, p ID - flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - □ Flexible center-of-mass energy $\sqrt{s} = \sqrt{4 E_e E_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density
- O Detector:
 - \Box Wide acceptance detector system including particle ID (e/h separation & π , K, p ID flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

Requirements

- Machine:
 - □ High luminosity: 10³³cm⁻²s⁻¹ 10³⁴cm⁻²s⁻¹
 - \Box Flexible center-of-mass energy $\sqrt{s} = \sqrt{4 E_e E_p}$: Wide kinematic range $Q^2 = s x y$
 - Highly polarized electron (0.8) and proton / light ion (0.7) beams: Spin structure studies
 - □ Wide range of nuclear beams (d to Pb/U): High gluon density
- O Detector:
 - \Box Wide acceptance detector system including particle ID (e/h separation & π , K, p ID flavor tagging)
 - Instrumentation for tagging of protons from elastic reactions and neutrons from nuclear breakup: Target / nuclear fragments in addition to low Q² tagger / polarimetry and luminosity (abs. and rel.) measurement

Leros, Greece, September 4-8, 2023

\Box Luminosity / \sqrt{s} / Kinematic coverage

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

eA

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 ep

- Critical steps over the last couple of years
 - INT Workshop series / Documentation of Physics Case -Whitepaper: "Understanding the glue that binds us all!"
 - □ INT Workshop: 2010
 - □ WP: 2012, updated in 2014 for LRP

arXiv:1212.1701

Understanding the glue that binds as all!

- Critical steps over the last couple of years
 - INT Workshop series / Documentation of Physics Case -Whitepaper: "Understanding the glue that binds us all!"
 - □ INT Workshop: 2010
 - □ WP: 2012, updated in 2014 for LRP
 - O 2015 Long-range plan (LRP):

arXiv:1212.1701

Understanding the glue that binds as all!

- Critical steps over the last couple of years
 - INT Workshop series / Documentation of Physics Case -Whitepaper: "Understanding the glue that binds us all!"
 - □ INT Workshop: 2010
 - WP: 2012, updated in 2014 for LRP
 - O 2015 Long-range plan (LRP):

T. Hallman

• Request to review EIC Science Case by National Academy

of Sciences, Engineering, and Medicine (NAS)

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

arXiv:1212.1701

Understanding the glue that binds as all!

T. Hallman

Next Formal Step on the EIC Science Case is Continuing	
THE NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE Division on Engineering and Physical Science Board on Physics and Astronomy U.SBased Electron Ion Collider Science Assessment	
The National Academies of Sciences, Engineering, and Medicine ("National Academies") will form a committee to carry out a thorough, independent assessment of the scientific justification for a U.S. domestic electron ion collider facility. In preparing its report, the committee will address the role that such a facility would play in the future of nuclear science, considering the field broadly, but placing emphasis on its potential scientific impact on quantum chromodynamics. The need for such an accelerator will be addressed in the context of international efforts in this area. Support for the 18-month project in the amount of \$540,000 is requested from the Department of Energy.	
"U.SBased Electron Ion Collider Science Assessment" is now getting underway. The Chair will be Gordon Baym. The rest of the committee, including a co-chair, will be appointed in the next couple of weeks. The first meeting is being planned for January, 2017	
US DEFAUTURET OF ENERGY Office of Science NSAC Meeting June 2, 2017 1	9

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science

• Webinar on Tuesday, July 24, 2018 - Public

presentation and report release

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science

- Webinar on Tuesday, July 24, 2018 Public presentation and report release
- Gordon Baym (Co-chair): Webinar presentation

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science

- Webinar on Tuesday, July 24, 2018 Public presentation and report release
- Gordon Baym (Co-chair): Webinar presentation

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

• Slides from Webinar: <u>https://www.nap.edu/</u>

resource/25171/eic-public-briefing-slides.pdf

7

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science

• Webinar on Tuesday, July 24, 2018 - Public

presentation and report release

• Gordon Baym (Co-chair): Webinar presentation

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

• Slides from Webinar: <u>https://www.nap.edu/</u>

resource/25171/eic-public-briefing-slides.pdf

• Glowing" report on a US-based EIC facility!

final report!

NAS Webinar and NAS report release: 07/24/2018

https://www.nap.edu/catalog/25171/an-assessment-of-us-basedelectron-ion-collider-science Download pdf-file of

- Webinar on Tuesday, July 24, 2018 Public presentation and report release
- Gordon Baym (Co-chair): Webinar presentation

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

• Slides from Webinar: <u>https://www.nap.edu/</u> resource/25171/eic-public-briefing-slides.pdf

• Glowing" report on a US-based EIC facility!

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

CONSENSUS STUDY REPORT

AN ASSESSMENT OF U.S.-BASED ELECTRON-ION COLLIDER SCIENCE

Bernd Surrow

Site Selection and award of DOE Critical Decisions 0 (CD-0) and 1 (CD-1)

https://www.energy.gov/articles/ us-department-energy-selectsbrookhaven-national-laboratoryhost-major-new-nuclear-physics U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

Department of Energy

JANUARY 9, 2020

WASHINGTON, D.C. – Today, the U.S. Department of Energy (DOE) announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility. The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion, will smash electrons into protons and heavier atomic nuclei in an effort to penetrate the mysteries of the "strong force" that binds the atomic nucleus together.

EIC Project Development

Center of Mass Energies:	20GeV - 140GeV
Luminosity:	10 ³³ - 10 ³⁴ cm ⁻² s ⁻¹ / 10-100fb ⁻¹ / year
Highly Polarized Beams:	70%
Large Ion Species Range:	p to U
Number of Interaction Regions:	Up to 2!

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Bernd Surrow

Yellow Report Activity - Critical EIC Community activity for CD-1

- ~400 authors / ~150 institutions / ~900 pages with strong international contributions!
- Review: Community review within EICUG and external readers (~30) worldwide covering physics and detector expert fields!
- Available on archive: Nucl. Phys. A 1026 (2022) 122447 / https://arxiv.org/abs/2103.05419

Schedule: EIC Project Detector at IP 6 / ePIC

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 11

Reference Schedule for 2nd IR and Detector

Global properties: Spin

Spin and Flavor Structure of the Nucleon

- g1 stat. uncertainty projections for 10fb⁻¹ for range of CME in comparison to DSSV14 predictions incl. uncertainties
- EIC impact on the knowledge of the integral of the quark + gluon spin contribution vs. orbital angular momentum

E. Aschenauer, R. Sassot and M. Stratmann, Phys. Rev. D92 (2015) 094030.

15

Nucleon 3D structure

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Bernd Surrow

Transverse Momentum Distribution and Spatial Imaging

 $\int d^2 b_T \quad \frac{W(x, b_T, k_T)}{\text{Wigner}} \int d^2 k_T \qquad f(x, b_T)$ $f(x,k_T)$ 1+2D Transverse Momentum Distribution (TMD Distribution

1+2D

Impact Parameter Distribution

Transverse Momentum Distribution and Spatial Imaging

arXiv:1212.1701

1+2D

Impact Parameter Distribution

 $f(x, b_T)$

• Spin-dependent 1+2D momentum space (transverse) images from

semi-inclusive scattering


```
Bernd Surrow
```


Low-x physics

19

arXiv:1708.01527

19

QCD dynamics

arXiv:1708.01527

EIC Physics Pillars

Inclusive eA scattering measurements

arXiv:1708.01527

Leros, Greece, September 4-8, 2023

Bernd Surrow

Charm-associated eA scattering measurements

arXiv:1708.01527

Leros, Greece, September 4-8, 2023

Bernd Surrow

Overview of processes and final states

Overview of processes and final states

Inclusive DIS

- Inclusive: Unpolarized $f_i(x,Q^2)$ and helicity distribution $\Delta f_i(x,Q^2)$ functions through unpolarized and polarized structure function measurements (F_2 , F_L , g_1)
- Define kinematics (x, y, Q²) through electron (e-ID and energy+angular measurement critical) / hadron final state or combination of both depending on kinematic x-Q² region

Overview of processes and final states

- Inclusive: Unpolarized $f_i(x,Q^2)$ and helicity distribution $\Delta f_i(x,Q^2)$ functions through unpolarized and polarized structure function measurements (F₂, F_L, g₁)
- Define kinematics (x, y, Q²) through electron (e-ID and energy+angular measurement critical) / hadron final state or combination of both depending on kinematic x-Q² region
- SDIS: Flavor tagging through hadron identification studying FF / TMD's (Transverse momentum, k_T, dependence) requiring azimuthal asymmetry measurement - Full azimuthal acceptance
- Heavy flavor (charm / bottom): Excellent secondary vertex reconstruction

Low-x Workshop 2023

Leros, Greece, September 4-8, 2023

Overview of processes and final states

- Inclusive: Unpolarized $f_i(x,Q^2)$ and helicity distribution $\Delta f_i(x,Q^2)$ functions through unpolarized and polarized structure function measurements (F_2 , F_L , g_1)
- Define kinematics (x, y, Q²) through electron (e-ID and energy+angular measurement critical) / hadron final state or combination of both depending on kinematic x-Q² region
- Heavy flavor (charm / bottom): Excellent secondary vertex reconstruction
- Exclusive: Tagging of final state proton using Roman pot system studying GPD's (Impact parameter, b_T , dependence) using DVCS and VM production
- eA: Impact parameter determination / Neutron tagging using Zero-Degree Calorimeter (ZDC)

Bernd Surrow

Overview of general requirements

arXiv:1212.1701

Overview of general requirements

Overview of general requirements

ePIC Detector Layout

 Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage

- Acceptance: Close to 4π coverage with a η -coverage $(\eta = -\ln(\tan(\theta/2)))$ of approximately $\eta < |3.5|$ combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution $\Delta p/p \sim \text{few } \%$

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution $\Delta p/p \sim few \%$
- Electron ID for e/h separation varies with θ / η at the level of 1:10⁴ / ~2-3%/JE for η <-2 and ~7%/JE

for -2<η<1

3: Nuclear and nucleonic fragments / scattered proton

2: Fragmented particles (e.g. π, K, p) of struck quark

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution $\Delta p/p \sim few \%$
- Electron ID for e/h separation varies with θ / η at the level of 1:10⁴ / ~2-3%/JE for η <-2 and ~7%/JE

for -2<η<1

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Particle ID for π/K/p separation over wide momentum range (Forward η up to ~50GeV/c / Barrel η up to ~4GeV/c / Rear η up to ~6 GeV/c)

Overview of general requirements

3: Nuclear and nucleonic fragments / scattered proton

2: Fragmented particles (e.g. π, K, p) of struck quark

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution Δp/p ~ few %
- Electron ID for e/h separation varies with θ / η at the level of 1:10⁴ / ~2-3%/JE for η <-2 and ~7%/JE

for -2<η<1

- Particle ID for π/K/p separation over wide momentum range
 (Forward η up to ~50GeV/c / Barrel η up to ~4GeV/c / Rear η up to ~6 GeV/c)
- High spatial vertex resolution ~ 10-20µm for vertex reconstruction

Overview of general requirements

3: Nuclear and nucleonic fragments / scattered proton

2: Fragmented particles (e.g. π, K, p) of struck quark

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution $\Delta p/p \sim few \%$
- Electron ID for e/h separation varies with θ / η at the level of 1:10⁴ / ~2-3%/JE for η <-2 and ~7%/JE

for -2<η<1

- Particle ID for π/K/p separation over wide momentum range (Forward η up to ~50GeV/c / Barrel η up to ~4GeV/c / Rear η up to ~6 GeV/c)
- High spatial vertex resolution ~ 10-20µm for vertex reconstruction
- Low-angel taggers:
 - Forward proton / A fragment spectrometer (Roman pots)
 - Low Q² tagger
 - Neutrons on hadron direction

Overview of general requirements

3: Nuclear and nucleonic fragments / scattered proton

2: Fragmented particles (e.g. π, K, p) of struck quark

- Acceptance: Close to 4π coverage with a η-coverage (η = -ln(tan(θ/2)) of approximately η < |3.5| combined calorimetry (EM CAL and hadron CAL at least in forward direction) and tracking coverage
- Low dead material budget in particular in rear direction (~10% X/X₀)
- Good momentum resolution $\Delta p/p \sim few \%$
- Electron ID for e/h separation varies with θ / η at the level of 1:10⁴ / ~2-3%/JE for η <-2 and ~7%/JE

for -2<η<1

- Particle ID for π/K/p separation over wide momentum range (Forward η up to ~50GeV/c / Barrel η up to ~4GeV/c / Rear η up to ~6 GeV/c)
- High spatial vertex resolution ~ 10-20µm for vertex reconstruction
- Low-angel taggers:
 - Forward proton / A fragment spectrometer (Roman pots)
 - Low Q² tagger
 - Neutrons on hadron direction
- Luminosity (Absolute and relative) and local polarization direction measurement

Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

Brookhaven National Laboratory (BNL) and the Thomas Jefferson National Accelerator Facility (JLab) are pleased to announce the Call for Collaboration Proposals for Detectors to be located at the Electron-Ion Collider (EIC). The EIC will have the capacity to host two interaction regions, each with a corresponding detector. It is expected that each of these two detectors would be represented by a Collaboration.

Brookhaven National Laboratory (BNL) and the Thomas Jefferson National Accelerator Facility (JLab) are pleased to announce the Call for Collaboration Proposals for Detectors to be located at the Electron-Ion Collider (EIC). The EIC will have the capacity to host two interaction regions, each with a corresponding detector. It is expected that each of these two detectors would be represented by a Collaboration.

ATHENA: A Totally Hermetic Electron-Nucleus Apparatus Concept: General purpose detector inspired by the YR studies based on a new central magnet of up to 3T WWW-page: https://www.athena-eic.org

Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

Brookhaven National Laboratory (BNL) and the Thomas Jefferson National Accelerator Facility (JLab) are pleased to announce the Call for Collaboration Proposals for Detectors to be located at the Electron-Ion Collider (EIC). The EIC will have the capacity to host two interaction regions, each with a corresponding detector. It is expected that each of these two detectors would be represented by a Collaboration.

ATHENA: A Totally Hermetic Electron-Nucleus Apparatus Concept: General purpose detector inspired by the YR studies based on a new central magnet of up to 3T WWW-page: https://www.athena-eic.org

CORE: COmpact detectoR for the Eic Concept: Nearly hermetic, generalpurpose compact detector, 2T baseline WWW-page: https:// userweb.jlab.org/~hyde/EIC-CORE/

Open Call for Detector Proposals

Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

Brookhaven National Laboratory (BNL) and the Thomas Jefferson National Accelerator Facility (JLab) are pleased to announce the Call for Collaboration Proposals for Detectors to be located at the Electron-Ion Collider (EIC). The EIC will have the capacity to host two interaction regions, each with a corresponding detector. It is expected that each of these two detectors would be represented by a Collaboration.

ATHENA: A Totally Hermetic Electron-Nucleus Apparatus Concept: General purpose detector inspired by the YR studies based on a new central magnet of up to 3T WWW-page: https://www.athena-eic.org

CORE: COmpact detectoR for the Eic Concept: Nearly hermetic, generalpurpose compact detector, 2T baseline WWW-page: https:// userweb.jlab.org/~hyde/EIC-CORE/ ECCE: EIC Comprehensive Chromodynamics Experiment Concept: General purpose detector based on 1.5T BaBar magnet WWW-page: https://www.ecceeic.org

Global ePIC design overview

FarForward detector system

FarForward detector system

• FarForward detector system to

measure very forward neutral and

charged particle production: 4

detector systems

FarForward detector system

• FarForward detector system to

measure very forward neutral and

charged particle production: 4

detector systems

Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology
B0 tracker	5.5–20.0	N/A	Charged particles	MAPS
			Tagged photons	AC-LGAD
Off-Momentum Detector	0.0–5.0	45%–65%	Charged particles	AC-LGAD
Roman Pots	0.0–5.0	60%–95%*	Protons	AC-LGAD
			Light nuclei	
Zero-Degree Calorimeter	0.0-4.0	N/A	Neutrons	W/SciFi (ECal)
			Photons	Pb/Sci (HCal)

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Bernd Surrow

B0 Silicon Tracker and Preshower

Zero-Degree Calorimeter Roman Pots

Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology
B0 tracker	5.5–20.0	N/A	Charged particles	MAPS
			Tagged photons	AC-LGAD
Off-Momentum Detector	0.0–5.0	45%–65%	Charged particles	AC-LGAD
Roman Pots	0.0–5.0	60%-95%*	Protons	AC-LGAD
			Light nuclei	
Zero-Degree Calorimeter	0.0–4.0	N/A	Neutrons	W/SciFi (ECal)
			Photons	Pb/Sci (HCal)

Focusing Quadrupoles

FarForward detector system

- FarForward detector system to measure very forward neutral and charged particle production: 4 detector systems
- BO system: Measures charged particles in the forward direction and tags neutral particles

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 27

Bernd Surrow

Zero-Degree Calorimeter

Off-Momentum Detectors

FarForward detector system

 FarForward detector system to measure very forward neutral and charged particle production: 4

detector systems

- BO system: Measures charged particles in the forward direction and tags neutral particles
- Off-momentum detectors: Measure

charged particles resulting from

decays

Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology
B0 tracker	5.5–20.0	N/A	Charged particles	MAPS
			Tagged photons	AC-LGAD
Off-Momentum Detector	0.0–5.0	45%–65%	Charged particles	AC-LGAD
Roman Pots	0.0–5.0	60%–95%*	Protons	AC-LGAD
			Light nuclei	
Zero-Degree Calorimeter	0.0-4.0	N/A	Neutrons	W/SciFi (ECal)
			Photons	Pb/Sci (HCal)

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Bernd Surrow

27

FarForward detector system

- FarForward detector system to measure very forward neutral and charged particle production: 4 detector systems
 - detector systems
- BO system: Measures charged particles in the forward direction and tags neutral particles
- Off-momentum detectors: Measure charged particles resulting from decays
- Roman pot detectors: Measure

charged particles near the beam

Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology
B0 tracker	5.5–20.0	N/A	Charged particles	MAPS
			Tagged photons	AC-LGAD
Off-Momentum Detector	0.0–5.0	45%–65%	Charged particles	AC-LGAD
Roman Pots	0.0–5.0	60%–95%*	Protons	AC-LGAD
			Light nuclei	
Zero-Degree Calorimeter	0.0-4.0	N/A	Neutrons	W/SciFi (ECal)
			Photons	Pb/Sci (HCal)

Bernd Surrow

FarForward detector system

- FarForward detector system to measure very forward neutral and charged particle production: 4 detector systems
- BO system: Measures charged particles in the forward direction and tags neutral particles
- Off-momentum detectors: Measure charged particles resulting from decays
- Roman pot detectors: Measure charged particles near the beam
- Zero-degree calorimeter: Measures

neutral particles at small angles

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Detector	θ accep. [mrad]	Rigidity accep.	Particles	Technology
B0 tracker	5.5–20.0	N/A	Charged particles	MAPS
			Tagged photons	AC-LGAD
Off-Momentum Detector	0.0–5.0	45%–65%	Charged particles	AC-LGAD
Roman Pots	0.0–5.0	60%–95%*	Protons	AC-LGAD
			Light nuclei	
Zero-Degree Calorimeter	0.0-4.0	N/A	Neutrons	W/SciFi (ECal)
			Photons	Pb/Sci (HCal)

Bernd Surrow

28

- High precision luminosity measurement at 1% level for absolute luminosity and 0.01% for relative luminosity measurement using several methods based on the Bremsstrahlung process:
 - Counting photons converted in thin exit window using dipole field and measuring e⁺e⁻ pairs
 - 2. Energy measurement of unconverted photons
 - 3. Counting of unconverted photons

- High precision luminosity measurement at 1% level for absolute luminosity and 0.01% for relative luminosity measurement using several methods based on the Bremsstrahlung process:
 - Counting photons converted in thin exit window using dipole field and measuring e⁺e⁻ pairs
 - 2. Energy measurement of unconverted photons
 - 3. Counting of unconverted photons
- Low Q2 taggers PHP tagger

ePIC Detector Design

Tracking:

- New 1.7T solenoid
- Si MAPS Tracker
- MPGDs (µRWELL/µMegas)

PID:

ePIC Detector Design

O dRICH

• AC-LGAD (~30ps TOF)

Calorimetry:

- Imaging Barrel EMCal
- PbWO4 EMCal in backward direction
- Finely segmented EMCal
 +HCal

in forward direction

- Outer HCal (sPHENIX reuse)
- Backwards HCal (tailcatcher)

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Bernd Surrow

ePIC Tracking Detectors: Layout

MAPS Barrel + Disks
 MPGD Barrels + Disks
 AC-LGAD based ToF
 Leros, Greece, September 4-8, 2023

• MAPS Tracker:

□ Small pixels (20 µm), low power consumption (<20 mW/cm²) and material budget (0.05% to 0.55% X/X₀)

per layer

- Based on ALICE ITS3 development
- Vertex layers optimized for beam pipe bake-out and ITS-3 sensor size
- Forward and backward disks

• MPGD Layers:

- Provide timing and pattern recognition
- Cylindrical µMEGAs
- □ Planar µRWell's before hpDIRC -

Impact point and direction for ring seeding

- AC-LGAD TOF and AstroPix (BECAL):
 - Additional space point for pattern recognition / redundancy
 - □ Fast hit point / Low p PID

ePIC Tracking Detectors: Performance

Cylindrical MicroMegas detector

Technology:

ITS3 MAPS based Si-detectors:

 \Box O(20 μ m) pitch, X/X₀ ~ 0.05 -

0.55%/ layer

Gaseous tracker:

 $\Box~\sigma$ = 150 $\mu\,m$, X/X $_{0}$ ~ 0.5-1.0%/layer

AstroPix outer tracker layer:

 \Box 500 μ m pixel pitch (σ = 144 μ m)

First "µITS3" assembly at CERN

Simulated performance:

- Meets EICUG
 Yellow Report
 design
 requirements
- Backward momentum resolution complemented by calorimetric resolution

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 Bernd Surrow

ePIC Calorimeter Detectors: Layout

ePIC Calorimeter Detectors: Layout

Backwards EMCal PbW04 crystals, SiPM photosensor

Backwards EMCal PbW04 crystals, SiPM photosensor

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Barrel BECAL

AstroPix v3: Design and Fabrication

Pixel Matrix:

- 500um² Pixel Pitch, 300um² Pixel Size
- 35 x 35 pixels first 3 cols PMOS amplifier others
- NMOS
- Pixel Comparator Outputs Row/ Column OR wired
- Goal:
 Pixel Dynamic Range 20keV -700keV
- Noise Floor 5 keV (2%@662keV)

AstroPtx

Bernd Surrow

Backwards HCal Steel/Sc Sandwich tail catcher

Backwards EMCal PbW04 crystals, SiPM photosensor

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Barrel HCAL (sPHENIX re-use)

Barrel BECAL

AstroPix v3: Design and Fabrication

Pixel Matrix:

- 500um² Pixel Pitch, 300um² Pixel Size
- 35 x 35 pixels
 first 3 cols PMOS amplifier others
- TITST 3 COIS PMOS amplifier (NMOS
- Pixel Comparator Outputs Row/ Column OR wired
- Goal:
 Pixel Dynamic Range 20keV -700keV
- Noise Floor 5 keV (2%@662keV)
- **Ástro**PŤx

Bernd Surrow

Backwards HCal Steel/Sc Sandwich tail catcher

Backwards EMCal PbW04 crystals, SiPM photosensor

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Barrel HCAL (sPHENIX re-use)

Barrel BECAL

High granularity W/SciFi EMCal Longitudinally separated HCAL with high-n insert

AstroPix v3: Design and Fabrication

Pixel Matrix:

- 500um² Pixel Pitch, 300um² Pixel Size
- 35 x 35 pixels
- first 3 cols PMOS amplifier others NMOS
- Pixel Comparator Outputs Row/ Column OR wired
- Goal:
 Pixel Dynamic Range 20keV -
- 700keV • Noise Floor 5 keV (2%@662keV)
- AstroPix

Parad Surrow

ePIC Calorimeter Detectors: Performance

Performance on energy resolution and matching:

- Technologies fulfill YR requirements for energy resolution
- $\hfill\square$ Ongoing simulation studies related to overlaps between different η

regions for calorimetry and reconstruction algorithms

Ongoing work on Monte-Carlo validation:

Validation for high Z absorbers

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

ePIC PID Detectors: Layout

ePIC PID Detectors: Layout

ePIC PID Detectors: Layout

34

ePIC PID Detectors: Layout

Dual-Radiator RICH (dRICH)

ePIC PID Detectors: Layout

ePIC PID Detectors: Performance

Particle IDentification needs:

- \Box Electrons from photons \rightarrow 4π coverage in tracking
- □ Electrons from charged hadrons → mostly provided by calorimetry and tracking
- Charged pions, kaons, and protons from each other on track

level \rightarrow Cherenkov detectors, complemented by ToF

Rapidity	π/K/p and πº/γ	e/h	Min p _T (E)
-3.51.0	7 GeV/c	18 GeV/c	100 MeV/c
-1.0 - 1.0	8-10 GeV/c	8 GeV/c	100 MeV/c
1.0 - 3.5	50 GeV/c	20 GeV/c	100 MeV/c

Critical: Need more than one technology to cover the entire momentum ranges at different

rapidities!

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

ePIC Streaming DAQ system

- No External trigger
- All collision data digitized, but zero suppressed at FEB
- Low / zero dead-time
- Event selection can be based on full data from all detectors (in real-time, or later)
- Collision data flow is independent and unidirectional

 no global
 - latency requirements
- Avoiding hardware triggers avoids complex custom hardware and firmware
- Data volume is reduced as much as possible at each stage

ePIC Collaboration

World Map - Institutions

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Interactive Tableau link

Bernd Surrow

ePIC Collaboration

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Interactive Tableau link

Bernd Surrow

Over two decades, the nuclear physics community has developed the scientific and technical case for the Electron-Ion Collider, to push the frontiers of human understanding of the fundamental structure and dynamics of matter -> Emergent phenomena in QCD!

- Over two decades, the nuclear physics community has developed the scientific and technical case for the Electron-Ion Collider, to push the frontiers of human understanding of the fundamental structure and dynamics of matter -> Emergent phenomena in QCD!
- Enormously profit from a diverse set of experiences among experimentalists and theorists at numerous institutions worldwide

 Critical for a broad EIC scientific program

- Over two decades, the nuclear physics community has developed the scientific and technical case for the Electron-Ion Collider, to push the frontiers of human understanding of the fundamental structure and dynamics of matter -> Emergent phenomena in QCD!
- Enormously profit from a diverse set of experiences among experimentalists and theorists at numerous institutions worldwide -> Critical for a broad EIC scientific program
- Successful merging of several proposal efforts, forming a new collaboration in 2022/2023:
 ePIC collaboration

- Over two decades, the nuclear physics community has developed the scientific and technical case for the Electron-Ion Collider, to push the frontiers of human understanding of the fundamental structure and dynamics of matter -> Emergent phenomena in QCD!
- Enormously profit from a diverse set of experiences among experimentalists and theorists at numerous institutions worldwide -> Critical for a broad EIC scientific program
- Successful merging of several proposal efforts, forming a new collaboration in 2022/2023:
 ePIC collaboration
- A very exciting time is ahead of us to explore the structure and dynamics of matter at a new ep/eA collider facility following years of preparation Join us!

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023

Schedule: EIC Project Detector at IP 6 / ePIC

Low-x Workshop 2023 Leros, Greece, September 4-8, 2023 40