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WHY?

e Avariety of models suggest Lorentz/CPT violation regimes are possible, for example:

V. A. Kostelecky, 3. Samuel, PLB 207, 169 (1989) V. A.
Kostelecky, R. Potting, NPB 359, 545 (1991)

S. Carroll et al., PRD 41, 1231 (1990)

3. Coleman, 5. Glashow, PRD, 59, 116008 (1999)

S. Carroll et al., PRL 87, 141601 (2001)

X. Calmet et al., EPJC 23, 363 (2002)

J. Alfaro et al., PRL 84, 2318 (2000)

e Lorentz/CPT violation could explain existing mysteries, such as:

O. Bertolami et al., PLB 395, 178 (1997)

V. A. Kostelecky, M. Mewes, PRD 70, 031902 (2004)
R. Bluhm and V.A. Kostelecky, PRD 71, 065008 (2005)
V. A Kostelecky, R. Potting, PRD 79, 065018 (2009)

Some situations can be described in terms of an effective or apparent Lorentz violation (e.g. dark matter wind)

WHY at low x?

Extensions to the Standard Model (SME) with effective vector or tensor couplings

produce effects at x~ 103 1



« Lorentz invariance = isotropy under rotations and relativistic boosts.

« Lorentz violation often implies CPT violation.

« Few studies of Lorentz/CPT violation in the quark sector

« Construct an Standard Model Extension with Lorentz Violation using 4D and
5D operators in context of Effective Field Theory
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Interactions that we consider are (g = u, d, s):
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This affects propagators
and coupling

Not invariant under rotation of the particle fields
The 4-D c operators are CPTevenand  do o (ff+ff}

The 5-D a operators are CPT odd and do o< (fy— [f). 2



We are a the lab frame which is non-inertial due to the Earth’s axial rotation and
revolution around the Sun- but the rotation matters most
Consider the approximately inertial Sun Centred Frame (SCF)
The a and c coefficients would be space-time constants in the SCF but would oscillate in
time in the lab frame AN A

Clab — j SCF

Thus lab cross sections will oscillate with period controlled by the length of the sidereal
day= length of time for the Earth to rotate once wrt the fixed stars ~24hr — 4mins

The SCF T=0 is the time of the vernal equinox 2000

N
~
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Z is aligned with the Earth’s rotation axis

X points from Earth to Sun at equinox, Y makes rhs
At T=0 the equator is in the XY plane and the
longitude A\,=66.25 will observe the Sun right

’ % overhead

We must know the co-latitude of ZEUS, x = 36.4, the
orientation of the beam direction, ¥ = 20 south of
west, and the local sidereal time 7% , the Zero of
this is defined when the y axis of the Iab Is parallel to

Y ...
Ap — A
HERA is not at longitude A, but at A = 9.88 360°
and the sidereal day is 23hr 56min 4 sec
SO T, = (0 Is3.75 hrs after the equinox 3

T'—T5 = Tiidereal = 3.748 h |




So the net rotation from the beam direction in the lab to the SCF is..
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Where wo = 27/Tgdereal 's the sidereal frequency.
Thus the c coefficients in the SCF frame ¢*X,c¥ etc will appear in the lab frame as,
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With time oscillations in multiples of wyyeeq » Where only the following 18 combinations

actually lead to oscillations X K7 A F7 K and (7K~ Y) f = u, d, and s.

Similarly for a coefficients 36 combinations lead to oscillations with frequencies up to

3w. and since s (TXX _ (G)TYY (B)XXZ _ (5)YYZ ()TXY  BTXZ  GTYZ  (5XXX
! (a Qg gy ), (a I f Qg ), a agy . Agy s Agf : Ugf ;
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ag ; : : and ag
only 24 of these are ss 5f sy sf asf S

non-zero 4



Study performed on HERA-II data, 372 pb-! of data
at E,= 920GeV and E_=27.5 GeV, Vs = 318 GeV, Neutral Current events

e the final-state lepton was identified using an algorithm based on a neural network [31,
32|, giving a probability larger than 90%;

e theenergy of the final-state lepton £ > 10 GeV to ensure a high electron-identification

efficiency;
2 I 2.
e () >5 GeV7:;

e (. > 1 rad, where f, is the scattering angle between the outgoing lepton and incoming

proton direction to ensure the high efficiency of the electron-identification algorithm.

e the scattered lepton was required to enter the calorimeter at a radial position larger

than 15 cm, implying an upper bound on the lepton scattering angle 0, < 3 rad;

e the position of the event vertex along the laboratory = axis was required to be within
30 e¢m of its nominal value and the transverse distance of the event vertex from the

interaction point was required to be within 0.5 em, to reject background;

o 17 GeV < E — p, < 69 GeV, where E and p, are the total energy and z-component

of the final state, to reject background.

This selection resulted in 4.5 - 107 events covering the kinematic range 7.7- 107> < xp; < 1

and 5 < Q? < 8800 GeV?2.



We study do where o1, = Mod (T, Tp) J;TP Is the phase of the
drp; dQ)? dor,

event with time stamp 7 for the period T, defined in the range O to 1,

Only the choice of period T, = Tg4ereq 9iVES @ genuine non-vanishing dependence
on the phase.

However, there can be a dependence on instantaneous luminosity
SO what is actually done is to take double ratios of the phase dependence, for two
regions of the x, Q2 plane, PS, and PS,, for which the luminosity uncertainty cancels

. 2 do 2 do
| fPSL drg;d() Zom 4Q7 dor, ! fps drp;d() dcr;r Ton; 407 41,
e VR e 7o LI -y W Ty &
JPSy BTN dapy dQT dér, | JPSy B YT dap; dQ2 dér,

This ratio will simply be unity if there are no SME LV effects, but choosing the regions of
phase space carefully can yield strong deviations from unity if there are such effects

An optimal choice is to look at events above and below an x cut of x.=10-3for both c
and a coefficients, since although c coefficients are in principal more sensitive to low x---

involving do o [ff+ff) rather than ;, (f — ff) -------------

we do not wish to enter the region where QCD BFKL effects complicate the analysisé..



But we must test for systematic effects.
First construct a double ratio that would not be expected to deviate from unity, and
check if it does. E.g. consider a Q2 cut not an x cut, at Q% = 20 GeV?.

We will check how this ratio behaves when plotted against various time periods
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We also look at 24hr + 4minutes
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For each choice of phase the histograms taken above and below the cut 7

track each other and their ratio, shown underneath, is close to unity



To be sure there are no overall systematic effects we apply Kolmogorov/Smirnov test
to these ratios to evaluate what is the probability the distributions are compatible with
an unsorted sampling of a normal distribution mean unity and standard deviation
compatible with statistical uncertainties.
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Regardless of the period, solar or sidereal, the ratios using the Q2 cut are compatible
with an assumption of only statistical uncertainties...
This is also true if fewer bins are used to decrease statistical uncertainties

Now let us look at ratios using the x cut, where we may expect some real
Standard Model Extension effects....



For low and high regions of x, the triggers are different and could be affected by the
instantaneous luminosity..

For periods such as the solar or sidereal day, the time bins are larger than the duration
of one fill so fluctuations in trigger efficiencies and accelerator effects could affect the
high and low lumi parts of the fill differently...............

so it is not clear that such ratios are systematics free

ZEUS ZEUS
S e oo ERE e The ratios for the x cut behave
g g very much like those with the
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And if the data are binned more coarsely to decrease statistical uncertainties, we can

see that the K-S probability is rather low
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We use can use this to estimate the size of the systematic

2

~ 2 _
Ogyst ~ \/g Ostat »

from the spread of this distribution o and its statistical spread o,

1.0



Such a systematic was not identified before, it is too small to have mattered in
previous analyses

We check this out by looking at MC samples of the DIS events (QCD, LO) passed
through detector and trigger simulations. Time stamps are applied to the MC samples to
simulate time dependence associated with instantaneous luminosity and detector
response

BUT there is no evidence of systematic effects in these MC samples...we cannot
simulate it, so we just have to estimate it.

The size of the systematic for the solar period is 0,~0.26%.

We can also calculate it for the periods 24hrs + 4mins as 0,~0.16%/0.18% resp.
These smaller values suggest a genuine solar effect that may be a consequence of the
operation of the experiment.

Consequently sidereal time effects which we are looking for may be affected by this.

We chose to assign a systematic uncertainty, 04 ,~0.16%, from the 24hr+4minutes
period as a measure of the dilution of the solar effect when moving by 4mins from 24hr--
-- independently of the sidereal result.
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Finally the results are got from the sidereal phase plot for the xcut, x,= 103

The theory to be compared to this plot in the SCF is got from the equations
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We consider only ONE coefficient at a time and go from the SCF to the lab predictions
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The ratios then depend on the local sidereal angle 0z = waT5.
For each bin omi

Npins

theo *?\"Ibin-"i

7 r(x > ze, v < x5 0p)dl |

© T or
2m(i—1)
Nhins
1 -'nl"'rb[ns
.. ) 2 exp  _theo 2 ..
This is compared to the data ratio X = 2 Z (7} T ) for each coefficient
tot

=1
where the total uncertainty
includes the statistical ~0.32% and systematic ~0.16% components.

There are 42 SCF coefficients which could make these ratios deviate from unity

The x2 for the Standard Model—all coefficients zero-- is 113.8 for 100 points,
Paie=0.16. So the Standard Model is compatible with the data

For each coefficient we present a range of acceptable values with p>0.05
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The data is in black the red and blue curves show lower and upper limits from the
present analysis, the green curve shows values 10* higher for comparison

have periods of
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The coefficients shown for illustration ¢I¥, XX — &Y
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and ag’
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Coefficient Lower Upper
CE:X —25x10* 6.6 x10°°
cgy —1.7x107* 98 x 1073
cfy —-32x107* 41x107°
CQ’Z —54x107* 14 x 107
¥ —3.7x107* 2.1 x 10

AX Y _21x107* 25%x 107
C.EX —78x107* 2.0 x10~*
cgy —52x107* 3.0 x 1074
cfi"y —-1.6 x 1072 2.0 x 10~
cé"z —2.7x 1072 7.0x107*
cgz —18x 1073 1.0x 1073

AX Y 10x1077 1.2x 1073
ci{X —96x10* 25x10*
CEY —6.4x107* 3.7 x 1074
cﬁ”’ —26x 102 33 x 107
CSXZ —44x10% 12x10°°
cfz —3.0x107% 1.7x1073

cfX cz} —1.7x107% 2.0x 1073

Coefficient

Lower (GeV™!)

Upper (GeV™!)

For the ¢ coefficients these are the first

limits from sidereal oscillations

Constraints on the u, d exist from cosmic

rays but are model dependent

The s constraints are the first ever.

The constraints on the a coefficients are all

the first ever

GITXX _ _(B)TYY

ag, 'S

B)XXZ (B)YYZ

Qg agy,
(5)TXY
ag,

(5)TXX (5)TYY

S Sd
(5)XXZ (5)YYZ

—5.1x 1077
—1.7x 1075
—8.3 x 1078
—2.9x 1077
—4.3 x 1077
-3.9x 1077
—2.3x 1077
—4.6 x 1077
—2.6 x 107°
—5.4 x 1077
—2.9x 1077
—3.6 x 1077

~7.3 % 107
24 % 10°°
~1.2x 107
—4.1x 107
—6.1x 107
~5.7x 107
~3.4 % 10
—6.8 x 107
~3.7%x 107
~8.1x 107°
~43x 107
—5.4x 107

4.3 x 1077
2.0 x 1078
6.5 x 1077
1.1 x 1076
7.4 %1077
1.2 x 1077
1.8 x 1077
9.2 x 107%
3.3x 1077
1.4 x 1077
1.5 x 1077
2.1 x 1077

6.1 x 107°
2.8 x 107°
9.4 x 107
1.6 x 107°
1.1 x107°
1.7 x 107°
2.7 x 107
1.3 x 107°
4.6 x 1076
2.1 x 107
2.3 x107°
3.1x 107
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One can also estimate sensitivities for the EIC

HERA EIC
aDTAE O 7.0 % 1076 | 2.3 % 1076
aD**2 gV 2 18 %1075 | 5.2 % 1076
a) Y 23 x 1076 | 3.4 % 1077
a e 4.7 %1076 | 1.3 x 1077
aS)" e 16 %1076 | 1.3x 1077
alIxAx 1.7 %1075 | 1.4 x 1077
asI* Y 1.6 x 1075 | 1.4 x 1077
 (D)AYY 1.6 x 1075 | 1.4 x 1077
aS)* e 1.0 x 107° | 4.3 x 1077
aI* 4?4 2.1 x 1076 | 1.2 x 1077
ar Y 1.7% 1075 | 1.4 x 1077
a) 44 2.1 %1076 | 1.2 x 1077

EIC improvements over HERA are due to much larger
expected luminosity

16



Summary

Standard Model Extensions with Lorentz Violation using 4D and 5D operators in
context of Effective Field Theory would induce sidereal time dependence on DIS cross
sections

ZEUS data has been used to study this.
Systematic effects due to variations of instantaneous luminosity are carefully
eliminated/estimated

The Standard Model describes that data with p value 0.16

Upper and lower limits are set on the vector and tensor coefficients of the Standard
Model Extension in the quark sector. Many of these are constrained for the first time.
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For the 4-D c operators..

do ﬁguBJ -
= 7 — L H‘”’ Te) .

where ¢ is the scattered lepton azimuthal angle, @? = —q5 = —(g"+ C’Uq)(q# + Cfuq) Where C”q C”yqy.l

kel Ukg

Ly HY = 8[Q(Ef-s)(?;?f-r)+i?f-(z—f’)(z-s’)+2(1?f-z)(f =)

+2(ky - 1) A ) —2(1- 1) "f‘ﬂ |
with I’}f = Tf(p" — ") The parton distribution functions (PDFs) are denoted f;(7s) and

are evaluated at the shifted Bjorken variable [9]

2% TE.
T = Tp; (1 + q—g) + S (+F) . (7)

where ¢! = " q,q,, etc.
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For the 5-D a operators..

The cross section including effects of the a'®)-type coefficients from Eq. (3) is [6,9]

do a’ F}B'SQ  ypilyp —2)s
— > I3 (14 (1= ygy)?] dsp + =2 Ts
drgdyp;dy ()4 ; " [ 1)) ds TR !
_ (43:% (5)ppl + 6apia g?lpq+2 «J)qu)
.'I:Bj
190 (4x2.aPPPP 4 4. (5)ppa |y (B)pp | 9, (a}qu (5)paq
UBj 1BJan +dagjagy + dwpjagy T + + gy
4yp; 5
UB; (93: Bja éf)uer (5 )Hq)] . {8)
I'B;j
where Fop = e?ff(;rgf)mgf with m"sf = rgj — Ty and
: g 2 (5)ppq o}pqq
Osf = 1+ — (4;1.’BJa + 3a ) . (9)
UBjs YB;js
2
rgp = — (2;1?23Ja(5}ppq+3 Jasﬁpqq—l— (Q)qqq), (10)
YB;js
5)pafs S5paf Bupo e/ 5)puo al
agf)# _ % Z (a} Jnaf %G; Jep o] B _ %agc Iz o] ,3). (11)
(paf3)
where aé‘?qqq = a(SE}}” 7u9093, etc. The sum in Eq. (11) denotes symmetrisation with
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e Arotation of the observer cannot be distinguished from an opposite rotation of the system

jon
‘Ormaﬁo
¢ trans
obseV®
indistinguishable
from observer
point of view

.

¢ In presence of a directional background, the two rotations are inequivalent

non
peforma
tr,
anSfOrmaﬁon

measurable

L = observer (reference frame) ‘ = particle (actual physical system) = Lorentz-violating background field



2) Some situations can be described in terms of an effective or apparent Lorentz violation (e.g. dark matter wind)

dark-martter halo

« In Sun-Earth system frame, a velocity-dependent
dark matter “wind” is observed

oalactic disk + Produces daily variations ( “rotation violation”)

Sun-Earth system

+ Produces annual variations ( “boost violation”)

. 5 R =3 . . .
Q\ti’,ﬂ + In this example, dark matter interactions are Lorentz

invariant, but lead to apparent Lorentz violation!
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Sensitivities to such coefficients across the x,y Q2 plane
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Figure 3: Regions in rg;, )? and ygj that have sensitivity to Lorentz-violating effects for
a single c-type and a®-type coefficient. The points displayed in the plots are taken from

Figures 2 and 4 of Ref. [9], where no experimental restrictions on the kinematic region
have been considered.
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