Low-X 2023 workshop, Leros, Greece

Associated production of vector bosons and heavy flavours with the CMS experiment

07 September 2023

Michael Pitt

The University of Kansas

On behalf of the CMS Collaboration

07 September 2023

Why Vector boson + heavy flavour (HF) quarks?

Probes the HF content of the proton PDF

arXiv:2109.02653

فحوجه

 $\sim Z$

M. Pitt - LowX2023

Constrains the V+HF backgrounds

Search for a high-mass dimuon resonance produced in association with b quark

Observation of Higgs boson decay to bottom quarks Phys. Lett. B 778 (2018) 121801

Heavy flavour tagging at CMS

<u>https://cms.cern/news/performance-jet-flavour-algorithms-ml-calibrate-ml-data</u>

Identification of heavy-flavour jets JINST 13 (2018) P05011

A new calibration method for c jets JINST 17 (2022) P03014

Identification of heavy-flavour jets

- Tagging based on Deep Neural Networks and Combined Secondary
 Vertex tagger (DeepCSV)
- Exploiting combined heavy flavour quark kinematic properties:
 - ✓ Secondary vertex
 - ✓ Impact parameter
 - ✓ Lifetime
 - ✓ Multi-tracking

The DeepCSV is trained for b-jets vs both c- or light- jets

Misidentification probability

10

jet

13 TeV, 2016

JINST 13 (2018) P05011

Λ

Identification of heavy-flavour jets

JINST 17 (2022) P03014

displaced tracks

charged

lepton

heavy-flavour

iet

Charm jet tagging based b-tagging discrimination in between b and jet light jets BvsC/L CvsB CvsL Tagger P(c)P(c) DeepCSV P(b)+P(bb)P(c)+P(b)+P(bb) $\overline{P(c)+P(udsg)}$ jet **CMS** Simulation **CMS** Simulation 2017 (13 TeV) 2017 (13 TeV) tt jets pT > 20 GeV tt jets pT > 20 GeV DeepCSV - CvsL DeepCSV - CvsB

0.7 0.8

0.9 10

ΡV

Selection	Jet yield	с %	b %	udsg %
W+c	362 002	92.9	0.957	6.14
tī	380 366	12.1	81.0	6.91
DY + jet	8 509 206	8.87	5.05	86.1

Recent results from CMS experiment in pp collisions at $\sqrt{s} = 13$ TeV

W + c quark (2308.02285, Submitted to EPJC) Z + c jets (JHEP 04 (2021) 109) Z + b jets (PRD 105 (2022) 092014)

W boson + charm

Strange quark content of the proton

- + s/\overline{s} asymmetry
- $d + g \rightarrow W + c$ is Cabibbo supressed

Charm tagging:

- A muon inside the jet (SL channel)
- A displaced secondary vertex inside the jet (SV channel)

Charm charge:

- Muon charge (SL channel)
- Sum of charged of tracks originating from the secondary vertex (SV channel)

 Analysis rely on the correlation between c-jet charge and lepton charge from the W boson leptonic decay: background rejection using SS-OS subtraction

W boson + charm

Simulated signal and background composition (in %)

07 September 2023

W boson + charm

$s, d/\bar{s}, \bar{d}$ — W^-/W^+ **SV** channel High event purity (due to a good c-jet charge ID) c/\bar{c} 000000 g CMS ×10³ CMS 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) Yield (OS-SS) Yield Data Data 105 Z+jets W+c tt,VV W+c W+cc. W+bb W+cc, W+bb (SS-SO) single t W+udsg 104 Syst. uncertainty W+udsg Z+jets tt.VV 10³ single t Syst. uncertainty 10² 10 Data/Pred. Data/Pred .5E 0.6 $p_{T}^{0.7}$ 0.8 0.9 1 p_{T}^{0.7} of SV / $p_{T}^{0.9}$ of jet 0.5 5 0 0.1 0.2 0.3 0.4 0.6 Corrected SV mass [GeV] SV channel $W + Q\bar{Q}$ W + udsgSingle t VV SV channel Data Background W+cZ+jets tŦ $338\,504\pm1717$ 60565 ± 1577 $W \rightarrow e\nu$ 82.1 ± 0.8 0.7 ± 0.4 1.0 ± 0.6 0.1 ± 0.2 7.2 ± 0.1 8.4 ± 0.1 0.5 ± 0.1 $W \rightarrow e\nu$ $94\,356\pm2002$ 0.7 ± 0.3 0.5 ± 0.4 0.5 ± 0.2 8.0 ± 0.1 0.5 ± 0.1 $W \rightarrow \mu \nu$ $494\,264\pm 1876$ $W \rightarrow \mu \nu$ 80.9 ± 0.6 8.9 ± 0.1

Simulated signal and background composition (in %)

07 September 2023

Results

W+c production cross section and $\sigma(W^++c)/\sigma(W^-+c)$ cross section ratio with full Run 2 data

Results

Fiducial and differential unfolded cross section as a function of the pseudorapidity (η) and transverse momentum (pT) of the lepton from the W decay

Results

Highest precision cross section ratio: $R_c^{\pm} = \sigma (W^+ + \bar{c}) / \sigma (W^- + c)$ as a function of the pseudorapidity (η) and transverse momentum (pT) of the lepton from the W decay

Z boson + charm

JHEP 04 (2021) 109

- Charm quark content of the proton
- Measurement of total and differential distributions of Z+c using 2016 data

Z boson + charm

JHEP 04 (2021) 109

35.9 fb⁻¹ (13 TeV)

CMS

Results

CMS

35.9 fb⁻¹ (13 TeV)

- 4FS vs 5FS: experimental test of the beaty dynamics in the proton
- Test of pQCD with HF: gluon splitting, quark mass effects, NLO effects

https://cms.cern/news/z-and-b

Results (≥1 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

Testing pQCD with leading b-jet transverse momentum

Results (≥1 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

Testing pQCD with dR between Z boson and b-jet (sensitive to NLO corrections)

But do not completely describe the shapes of some kinematic observables

Results (≥2 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

Testing pQCD with leading b-jet transverse momentum

Results (≥2 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

bb and Zbb invariant masses important in searches for resonances and new particles

No deviation with respect to the Standard Model

Results (≥2 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

bb and Zbb invariant masses important in searches for resonances and new particles

No deviation with respect to the Standard Model

PRD 105 (2022) 092014

Results (≥2 b-jet)

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

A→1: emission of additional group radiation (not described by any prediction)

Summary

- Recent 13 TeV CMS measurements of W+c, Z+b, and Z+c have been presented: many interesting results improving our understanding of pQCD
- Results of differential cross-sections have enabled the extraction of information related to PDFs, NNLO precision, and strange quark sea
- In general, there is good agreement with NLO predictions. However, there is a minor tension observed in the case of Z+c, where the predictions overestimate the data by ~20%

Thank You for your attention!

Results

Theory: Madgraph LO, NLO w/NNPDF30/31 + CP5tune and Sherpa NLO

Testing pQCD with Z boson transverse momentum

good description of data by MG5_aMC(LO)