

Low-x Workshop September 4-8, 2023, Leros island, Greece

Transverse analyzing power measurement in the high energy forward and scattering at RHIC hydrogen jet target polarimeter

A.A. Poblaguev

Brookhaven National Laboratory

The Atomic Polarized Hydrogen Gas Jet Target (HJET)

- At RHIC, HJET is utilized to measure absolute polarization of the proton beams.
- For the future EIC, HJET is planned for the proton beam polarimetry with low systematic uncertainties of $\sigma_P/P \leq 1\%$.
- HJET is also considered for 3 He beam polarimetry at EIC.
- The jet target polarization is $P_{jet} \approx 96 \pm 0.1$ %.
- The hydrogen gas target allows us to measure spin asymmetry in CNI region 0.0013 < -t < 0.018 GeV² (where analyzing power is well predictable) with low background and low systematic uncertainties.
- Actually, HJET is a standalone fixed target experiment to measure $p^{\uparrow}p$ and $p^{\uparrow}A$ transverse analyzing powers $A_{\rm N}(t)$. The measurements are carried out in parasitic mode during RHIC operations with proton p or ion A beams.

The Atomic Polarized Hydrogen Gas Jet Target (HJET)

A. P. et al., Nucl. Instrum. Meth. A 976, 164261 (2020)

- The vertically polarized proton beams are scattered from the vertically polarized gas jet target.
- The recoil protons are detected in the vertically oriented Si strip detectors.
- For elastic events $\frac{z_{\rm R}-z_{\rm jet}}{L} \approx \sqrt{\frac{T_R}{2m_p}} \times \left(1 + \frac{m_p}{E_{\rm beam}}\right)$
- $T_R = -t/2m_p$ is (measured) kinetic energy of the recoil proton

The beam polarization can be precisely determined with no detailed knowledge of the analyzing power

$$a_{\text{beam}}(T_R) = \frac{N_R^{\uparrow} - N_R^{\downarrow}}{N_R^{\uparrow} + N_R^{\downarrow}} = A_N(t)P_{\text{beam}}$$

$$P_{\text{beam}} = \frac{\langle a_{\text{beam}} \rangle}{\langle a_{\text{jet}}(T_R) \rangle} = \frac{N_R^{+} - N_R^{-}}{N_R^{+} + N_R^{-}} = A_N(t)P_{\text{jet}}$$

$$_{\text{eam}} = \frac{\langle a_{\text{beam}}(T_R) \rangle}{\langle a_{\text{jet}}(T_R) \rangle} P_{\text{jet}}$$

Typical results for an 8-hour store in RHIC Run 17 (255 GeV)

$$P_{beam} \approx (56 \pm 2.0_{stat} \pm 0.3_{syst})\%$$

 $\sigma_P^{syst}/P_{beam} \lesssim 0.5\%$

Elastic single spin proton-proton analyzing power $A_{N}(s, t)$

For CNI elastic scattering, analyzing power is defined by the interference of the *spin-flip* $\phi_5(s,t)$ and *non-flip* $\phi_+(s,t)$ helicity amplitudes: $A_N(s,t) \approx -2 \operatorname{Im}(\phi_5^*\phi_+)/|\phi_+|^2$

 $\phi = \phi^{\rm h} + \phi^{\rm em} e^{i\delta_C}$

<u>B. Kopeliovich and L. Lapidus, Yad. Fiz. 19, 218 (1974)</u> <u>N. Buttimore et al., Phys. Rev. D 18, 694 (1978)</u> N. Buttimore et al., Phys. Rev. D 59, 114010 (1999)

$$A_{N}(t) = \frac{2\mathrm{Im}[\phi_{5}^{\mathrm{em}}\phi_{+}^{\mathrm{h}} + \phi_{5}^{\mathrm{h}}\phi_{+}^{\mathrm{em}} + \phi_{5}^{\mathrm{h}}\phi_{+}^{\mathrm{h}}]}{|\phi_{+}^{\mathrm{h}} + \phi_{+}^{\mathrm{em}}e^{i\delta_{C}}|^{2}}$$

$$\kappa_{p} = \mu_{p} - 1 = 1.793$$

$$t_{c} = -8\pi\alpha/\sigma_{\text{tot}} = -1.86 \times 10^{-3} \text{ GeV}^{2}$$

$$\rho = -0.079$$

$$\delta_{c} = 0.024 + \alpha \ln t_{c}/t$$
(for 100 GeV beam)

$$= \frac{\sqrt{-t}}{m_p} \frac{\kappa_p t_c/t - 2I_5 t_c/t - 2R_5}{(t_c/t)^2 - 2(\rho + \delta_c)t_c/t + 1}$$

The primary goal of the experimental study of the elastic *pp* analyzing power in the CNI region is an evaluation of the hadronic spin-flip amplitude, parameterized by

$$r_5 = \frac{m_p \phi_5^{\text{had}}(s,t)}{\sqrt{-t} \operatorname{Im} \phi_+^{\text{had}}(s,0)} = R_5 + iI_5, \qquad |r_5| \sim 2\%$$

$$\phi_5^{\text{had}}(s,t) = \frac{\sqrt{-t}}{m_p} \frac{r_5}{i+\rho} \phi_+^{\text{had}}(s,0)$$

Some important corrections to $A_{\rm N}(t)$

• The following parametrization of $A_{\rm N}(t)$ [N. Buttimore et al., Phys. Rev. D 59, 114010 (1999)] was standardly used in experimental data analysis's]

$$A_N(t) = \frac{\sqrt{-t} \left[\frac{\kappa_p (1 - \rho \delta_c) - 2(I_5 - R_5 \delta_c) \right] t_c / t - 2(R_5 - \rho I_5)}{(t_c / t)^2 - 2(\rho + \delta_c) t_c / t + 1 + \rho^2}$$

- However, it was pointed out [B. Kopeliovich and M. Krelina (2017)] that
 - ✓ The difference between hadronic $B = 11.2 \text{ GeV}^{-2}$ ($p_{Lab} = 100 \text{ GeV}$) and electromagnetic $B_{em} = \frac{2}{3} \langle r_p^2 \rangle = 12.1 \text{ GeV}^{-2}$ slopes was neglected. The following correction may be needed

$$t_c/t \rightarrow t_c/t + (B_{\rm em}-B)/2$$

✓ The electromagnetic form factor was determined in *ep* scattering. For *pp* scattering it is modified by the absorption effect $B_{em} \rightarrow B_{em} + a$, which results in

$$R_5 \rightarrow R_5 - \frac{\alpha \kappa_p}{2} \frac{B}{B + B_{\text{em}}^{\text{sf}}} \approx R_5 - 0.003$$

The corrections

- are essential for the HJET experimental accuracy.
- may alter interpretation of the STAR results for elastic $pp A_N(t)$ at $\sqrt{s} = 200$ GeV.
- are critically important for understanding $p^{\uparrow}Au$ analyzing power.

Measurements of $A_N(t)$ in Runs 15 (100 GeV) & 17 (255 GeV)

A.P. et al., Phys. Rev. Lett. 123, 162001 (2019)

- The filled areas specify 1σ experimental uncertainties, stat.+syst., scaled by x50.
- The dashed curves are for the leading order approximation predicted in 1974.

The measured hadronic spin flip amplitudes:

$$\sqrt{s} = 13.76 \text{ GeV} \quad R_5 = (-12.5 \pm 0.8_{\text{stat}} \pm 1.5_{\text{syst}}) \times 10^{-3}$$
$$I_5 = (-5.3 \pm 2.9_{\text{stat}} \pm 4.7_{\text{syst}}) \times 10^{-3}$$
$$\sqrt{s} = 21.92 \text{ GeV} \quad R_5 = (-3.9 \pm 0.5_{\text{stat}} \pm 0.8_{\text{syst}}) \times 10^{-3}$$
$$I_5 = (-19.4 \pm 2.5_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-3}$$

Incorporating spin dependence in a Regge pole analysis

 $R^{\pm}(s) \propto \left(1 \pm e^{-i\pi\alpha_{R^{\pm}}}\right) \left(\frac{s}{4m_{p}^{2}}\right)^{\alpha_{R^{\pm}}-1}$ $P(s) \propto \pi\alpha_{F} \ln \frac{s}{4m_{p}^{2}} + i \left(1 + \alpha_{F} \ln^{2} \frac{s}{4m_{p}^{2}}\right)$ $\alpha_{R^{+}} = 0.65, \ \alpha_{R^{-}} = 0.45, \ \alpha_{F} = 0.009$ D.A. Fagundes et. al., Int. J. Mod. Phys. A 32, 1750184 (2017)

 $\sigma_{tot}(s) \times [i + \rho(s)] = P(s, \alpha_F) + R^+(s, \alpha_{R^+}) + R^-(s, \alpha_{R^-})$ $\sigma_{tot}(s) \times r_5(s) = f_5^P P(s, f_F) + f_5^+ R^+(s, \alpha_{R^+}) + f_5^- R^-(s, \alpha_{R^-})$

The HJET $r_5(s)$ data fit:

 $\chi^2/\text{ndf} = 0.7/1$ $f_5^P = 0.054 \pm 0.002_{\text{stat}} \pm 0.003_{\text{syst}}$

Pomeron single spin-flip coupling is well determined and found to be significantly different from zero.

- Although, the model used to fit $r_5(s)$ is oversimplified, it is in good consistent with the HJET measurements.
- Any improvements cannot be statistically significant if only HJET data is used.
- The HJET results cannot be explained by Regge poles
 R[±](s) only.

Extrapolation to $\sqrt{s} = 200 \text{ GeV}$

• Froissaron (
$$\alpha_{R^+} = 0.65$$
, $\alpha_{R^-} = 0.45$, $\alpha_F = 0.009$)

$\chi^2/\mathrm{ndf}=0.7/1$	HJET
$\chi^2/{\rm ndf} = 4.8/3$	HJET+STAR

• Simple pole $(\alpha_{R^{\pm}} = 0.5, \ \alpha_P = 1.1)$ $\alpha_P = 1.10^{+0.04}_{-0.03} \ \chi^2/ndf = 0/0$ HJET $\alpha_P = 1.13^{+0.04}_{-0.03} \ \chi^2/ndf = 2.8/2$ HJET+STAR $\alpha_P^{nf} = 1.096^{+0.012}_{-0.009}$ (global fit of the unpolarized data)

1- σ contours (stat+syst)

- **1.** HJET, $\sqrt{s} = 13.76 \text{ GeV}$
- **2.** HJET, $\sqrt{s} = 21.92 \text{ GeV}$
- 3. Extrapolation (Froissaron) to 200 GeV
- 4. Extrapolation (simple pole) to 200 GeV
- 5. STAR, $\sqrt{s} = 200 \text{ GeV}$ (as published)
- 6. STAR, $\sqrt{s} = 200 \text{ GeV}$ (corrected, used in the fit)

- Some discrepancy between HJET (extrapolated) and STAR (corrected) values of r₅ is statistically equivalent to 1.8 standard deviations.
- The correction applied to the STAR value of r₅ is mainly due to the difference between B^{eff}_{em} (including absorption) and hadronic slope B. There was no revision of the measured A_N(t).
- Theoretical estimates of Pomeron contribution to r_5 at $\sqrt{s} = 200$ GeV should be compared with the corrected STAR value rather than with the published one.

Double spin-flip analyzing power $A_{NN}(s, t)$

A.P. et al., Phys. Rev. Lett. 123, 162001 (2019)

 $\frac{d^2\sigma}{dtd\varphi} \propto \left[1 + A_{\rm N}(t)\sin\varphi\left(P_b + P_j\right) + A_{\rm NN}(t)\sin^2\varphi P_b P_j\right] \text{ (at HJET, } \sin\varphi = \pm 1)$

Double spin-flip amplitude parameter $r_2 = \frac{\phi_2^{had}(s,t)}{2 \operatorname{Im} \phi_+^{had}(s,0)} = R_2 + iI_2$ $\sqrt{s} = 13.76 \text{ GeV}$ $R_2 = (-3.65 \pm 0.28_{\text{stat}}) \times 10^{-3}$ $I_2 = (-0.10 \pm 0.12_{\text{stat}}) \times 10^{-3}$ $\sqrt{s} = 21.92 \text{ GeV}$ $R_2 = (-2.15 \pm 0.20_{\text{stat}}) \times 10^{-3}$ $I_2 = (-0.35 \pm 0.07_{\text{stat}}) \times 10^{-3}$

- The hadronic double spin-flip amplitudes are well isolated
- The Regge fit suggests non-zero double spin-flip Pomeron coupling $\chi^2/ndf = 1.6/1$

 $f_2^P = -0.0020 \pm 0.0002_{\text{stat}}$

• The sensitivity of $A_{NN}(t)$ to the Odderon was discussed in E Leader and T. Trueman, Phys. Rev. D 61, 077504 (2000). The measured $A_{NN}(t)$ noticeably disagrees with the theoretical estimate without Odderon contribution.

Inelastic scattering in HJET

At the HJET, the elastic and inelastic events can be separated by comparing recoil proton energy and z coordinate (i.e. the Si strip location). For $A + p \rightarrow X + p$ scattering:

$$\frac{Z_R - Z_{jet}}{L} = \sqrt{\frac{T_R}{2m_p}} \times \left[1 + \frac{m_p}{E_{beam}} + \frac{m_p\Delta}{T_R E_{beam}}\right]$$

 $\int_{N}^{12} v = 1.5$ v = 1.0 v = 0.5 v = 0 (Elastic) $\int_{N}^{2} \frac{10}{10} v = 0 (Elastic)$ $\int_{N}^{2} \frac{10}{10} v = 0 (Elastic)$ $\int_{N}^{2} \frac{10}{10} v = 0 (Elastic)$

 $\Delta = M_X - m_p > m_\pi$ E_{beam} is the beam energy per nucleon

- The inelastic events occupy the area above the elastic line.
- For the 100 GeV beam, the inelastic event detection in HJET is strongly suppressed.
- For 255 GeV elastic events are well detected (but not overlapped with the elastic ones)

Transverse analyzing power measurements at HJET

$p_{beam}^{\uparrow} + p_{jet}^{\uparrow} ightarrow X + p_{jet}$ at 255 GeV (Run 2017)

Proton-nucleus Scattering at HJET

- Since $r_5^{pA} \approx r_5^{pp}$, proton-nucleus A_N for 100 GeV may allow us to study nonflip pA amplitudes for wide range of A.
- If the result can be extrapolated to the 4-30 GeV/nucleon Au beam, r₅^{pp} can be evaluated in this energy range.

In HJET measurements, the breakup contamination of the elastic data is strongly suppressed.

$$\left(\frac{d\sigma_{\rm brk}^{p\rm Au}(T_R,\Delta)}{d\sigma_{\rm el}^{p\rm Au}(T_R)} \right)_{1.7 < T_R < 4.4 \,\rm MeV}$$

$$3.85 \,\rm GeV/n: \quad 0.20 \pm 0.12\% \quad [3.6 < \Delta < 8.5 \,\rm MeV]$$

$$26.5 \,\rm GeV/n: \quad -0.08 \pm 0.06\% \quad [20 < \Delta < 60 \,\rm MeV]$$

How to measure the EIC ³He beam polarization with HJET

AP, Phys. Rev. C 106, 065202 (2022)

$$P_{\text{meas}}^{h}(T_{R}) = P_{\text{jet}} \frac{a_{\text{beam}}(T_{R})}{a_{\text{jet}}(T_{R})} \times \frac{A_{N}^{h^{\dagger}p}(T_{R})}{A_{N}^{h^{\dagger}p}(T_{R})}$$

$$= \frac{a_{\text{beam}}}{a_{\text{jet}}} P_{\text{jet}} \times \frac{\kappa_{p} - 2I_{5}^{ph} - 2R_{5}^{ph}T_{R}/T_{c}}{\kappa_{h} - 2I_{5}^{hp} - 2R_{5}^{hp}T_{R}/T_{c}} \qquad \kappa_{p} = \mu_{p} - 1 = 1.793$$

$$\approx P_{\text{beam}}^{h} \times (1 + \xi_{0} + \xi_{1}T_{R}/T_{c}) \qquad \kappa_{h} = \mu_{h}/Z_{h} - m_{p}/m_{h} = -1.398$$

(-) $p^{\uparrow}h(m)$

The systematic uncertainties in value of P_{beam}^{h} are defined by ξ_{0} , $\xi_{0} = 2\delta I_{5}^{hp}/\kappa_{h} - 2\delta I_{5}^{ph}/\kappa_{p}$, ξ_{1} - can be determined in the measurements

Since
$$r_5^{pA} = r_5^{pp} \frac{i+\rho^{pA}}{i+\rho^{pp}} \approx r_5^{pp}$$
 [B. Kopeliovich and T. Trueman, Phys. Rev. D 64, 034004 (2001)],
 $r_5^{ph} \approx r_5^{pp}$
 $r_5^{hp} \approx r_5^{pp} \langle P_{p,n} \rangle \approx r_5^{pp} / 3$

Systematic error in the ³He beam polarization measurements due to possible uncertainties in values of r_5^{ph} and r_5^{hp} is expected to be small

$$rac{\sigma_P^{
m syst}ig(r_5^{ph}/r_5^{pp},\!r_5^{hp}/r_5^{pp}ig)}{P}\ll 1\%$$

Hadronic spin-flip amplitude in $p^{\uparrow}A$ scattering

According to B. Kopeliovich and T. Trueman, Phys. Rev. **D 64**, 034004 (2001), for high energy elastic scattering to a very good approximation

 $\phi_{\mathrm{sf}}^{pA}(t)/\phi_{\mathrm{nf}}^{pA}(t) = \phi_{\mathrm{sf}}^{pp}(t)/\phi_{\mathrm{nf}}^{pp}(t)$ \Longrightarrow $r_{5}^{pA} = r_{5}^{pp} \frac{i+\rho^{pA}}{i+\rho^{pp}} \approx r_{5}^{pp}$

The result can be easily reproduced in the Glauber theory. For example, elastic proton-deuteron (pd) scattering can be approximated by the proton-nucleon collisions (pN):

$$F_{ii}(\boldsymbol{q}) = S\left(\frac{\boldsymbol{q}}{2}\right)f_n(\boldsymbol{q}) + S\left(\frac{\boldsymbol{q}}{2}\right)f_p(\boldsymbol{q}) + \frac{i}{2\pi k}\int S(\boldsymbol{q}')f_n\left(\frac{\boldsymbol{q}}{2} + \boldsymbol{q}'\right)f_p\left(\frac{\boldsymbol{q}}{2} - \boldsymbol{q}'\right)d^2\boldsymbol{q}'$$

Since the pN spin-flip amplitude is small (at HJET),

 $f_N^{\mathrm{sf}}(\boldsymbol{q}) = \frac{qn}{m_p} \frac{r_5}{i+\rho} f_N(\boldsymbol{q}), \qquad \left| f_N^{\mathrm{sf}}(\boldsymbol{q}) / f_N(\boldsymbol{q}) \right| \le 0.003,$

to calculate the spin-flip pd amplitude, one should replace in the right-hand side

$$f_n \to f_n^{sf}, \quad f_p \to f_p^{sf}, \quad \text{and} \quad f_n f_p \to f_n^{sf} f_p + f_n f_p^{sf}$$

$$F_{ii}^{\mathrm{sf}}(\boldsymbol{q}) \equiv \frac{\boldsymbol{q}\boldsymbol{n}}{m_p} \frac{r_5^{pA}}{i+\rho^{pA}} F_{ii}(\boldsymbol{q}) = \frac{\boldsymbol{q}\boldsymbol{n}}{m_p} \frac{r_5}{i+\rho} F_{ii}(\boldsymbol{q})$$

³He breakup

Similar corrections,

 $1 + \omega_{int}(T_R), \quad \omega_{int} \in \left\{\omega_{\kappa}^p, \omega_I^p, \omega_R^p, \omega_{\kappa}^h, \omega_I^h, \omega_R^h\right\}$ modify the interference terms in the analyzing power ratio $\frac{\kappa_p - 2I_5^{ph} - 2R_5^{ph}T_R/T_c}{\kappa_h - 2I_5^{hp} - 2R_5^{hp}T_R/T_c} \implies \frac{\kappa_p [1 + \omega_{\kappa}^p] - 2I_5^{ph} [1 + \omega_I^p] - 2R_5^{ph} [1 + \omega_R^p]T_R/T_c}{\kappa_h [1 + \omega_{\kappa}^h] - 2I_5^{hp} [1 + \omega_I^h] - 2R_5^{hp} [1 + \omega_R^h]T_R/T_c}$

Since for all $\omega(T_R)$ and $\omega_{int}(T_R)$, $\omega(T_R \rightarrow 0) = 0$,

The breakup corrections cancel in the extrapolation of the measured ³He beam polarization $P_{\text{meas}}^{h}(T_R \rightarrow 0)$.

A model used to search for the $h \rightarrow pd$ breakup events at HJET

For incoherent proton-nucleus scattering, a simple kinematical consideration gives:

$$\Delta = \left(1 - \frac{m^*}{M_A}\right) T_R + p_x \sqrt{\frac{2T_R}{m_p}},$$

where $m^* = m_p$ and p_x is the target nucleon transverse momentum

Assuming the following p_x distribution,

$$f_{\rm BW}(p_x,\sigma_p) = \frac{\pi^{-1}\sqrt{2\sigma_p}}{p_x^2 + 2\sigma_p^2}, \qquad \int f_{\rm BW}(p_x,\sigma_p)dp_x = 1,$$

one finds for a two-body breakup (for given T_R)

 $\frac{dN}{d\Delta} \propto f_{\rm BW}(\Delta - \Delta_0, \sigma_{\Delta}) \Phi_2(\Delta), \qquad \Delta_0 = (1 - m_p / M_A) T_R, \ \sigma_{\Delta} = \sigma_p \sqrt{2T_R / m_p}$ phase space factor

$$\frac{d^2\sigma_{h\to pd}(T_R,\Delta)}{d\sigma_{h\to h}(T_R)\,d\Delta} = |(\psi_0 T_R,\Delta)|^2 \omega(T_R,\Delta) = |\psi_0|^2 f_{BW}(\Delta - \Delta_0,\sigma_\Delta) \frac{\sqrt{2m_p m_d}}{4\pi m_h} \sqrt{\frac{\Delta - \Delta_{\text{thr}}^h}{m_h}}$$

Deuteron beam measurements at HJET

- In RHIC Run 16, deuteron-gold scattering was studied at beam energies 10, 20, 31, and 100 GeV/n.
- In the HJET analysis, the breakup events $d \rightarrow p + n$ $(\Delta_{thr}^d = 2.2 \text{ MeV})$ were isolated for 10, 20, and 31 GeV data.
- The breakup was evaluated for $2.8 < T_R < 4.2 \text{ MeV}$
- In the data fit, the $d \rightarrow pd$ breakup fraction $\omega(T_R, \Delta)$ was parameterized,

 $|\psi| \approx 5.6$, $\sigma_p \approx 35 \text{ MeV}$

• For $T_R \sim 3.5$ MeV, the breakup fraction was evaluated to be $\frac{d\sigma_{d \to pn}(T_R)}{d\sigma_{d \to d}(T_R)} = \omega_{d \to pn}(T_R)$

$$= |\psi|^2 \int d\Delta \,\omega_{d \to pn}(T_R, \Delta) \approx 5.0 \pm 1.4\%$$

• The result obtained strongly depends on the used parametrization and, thus, a verification is needed.

AP, Phys. Rev. 106, 065203 (2022)

$d \rightarrow pn$ breakup in the hydrogen bubble chamber

- The HJET measurement of the deuteron beam breakup is in reasonable agreement with the bubble chamber measurements
- The model used satisfactory describes the HJET measurements (within the experimental accuracy.
- Only a small fraction, $\sim 1.5\%$, of $d \rightarrow pn$ breakups can be detected at HJET.

$p^{\uparrow}A ightarrow p + A_1A_2$ scattering

	nonflip amplitudes	spin-flip amplitudes
Elastic:	$f_{\rm el}(T_R)$	$f_{\rm el}^{\rm sf}(T_R) = f_{\rm el}(T_R) \frac{k_p n}{m_p} \frac{r_5^{pA}}{i + \rho^{pA}}$
Breakup:	$f_{\rm brk}(T_R,\Delta) = f_{\rm el}(T_R) \tilde{f}_{\rm brk}(T_R,\Delta)$	$f_{\rm brk}^{\rm sf}(T_R,\Delta) = f_{\rm el}(T_R) \tilde{f}_{\rm brk}(T_R,\Delta) \frac{k_p n}{m_p} \frac{\tilde{r}_5^{pA}}{i+\rho^{pA}}$
Similarly to the formula $\tilde{r}_5^{pA} = r_5^{pp} \frac{i+1}{i+1}$	$\frac{p_{pA}}{p_{p}} = r_5^{pA}$	$T_R = -t/2m_p$ $\Delta = M_X - M_A \approx (M_X^2 - M_A^2)/2M_A$ k_p is the recoil proton momentum n is unit vector perpendicular the beam spin an momentum

Using the previous page notations:

 $f_{\text{brk}}(T_R, \Delta) = f_{el}(T_R) \psi_0(T_R, \Delta) \psi_{\text{BW}}(T_R, \Delta) \qquad |\psi_{BW}(T_R, \Delta)|^2 = f_{BW}(\Delta - \Delta_0, \sigma_\Delta)$ Explains dependence on T_R Explains dependence on Δ For the low $t \to 0$ scattering, $\psi_0(T_R, \Delta) \approx \psi_0(0, 0)$, should be the same for all, nonflip/spin-flip and hadronic/electromagnetic, amplitudes of the considered breakup $A \to A_1 + A_2$

The breakup corrections

<u>AP, Phys. Rev. C 108, 025202 (2023)</u>

An incoherent scattering of proton from ³He can be approximated by scattering off a nucleon $(m^* = m_p)$ or di-nucleon $(m^* = 2m_p)$. Thus, the breakup corrections (to the interference terms) are limited by: $\omega_{2m}(T_R) \leq \omega_{int}(T_R) \leq \omega_m(T_R)$

Assuming linear fit of the measured polarization $P_{meas}^{h}(T_{R})$, the following estimate can be done :

$$\begin{aligned} \left| P_{\text{meas}}^{h}(T_{R}) / P_{\text{beam}}^{h} - 1 \right| &< \left| \omega_{m}(T_{R}) - \omega_{2m}(T_{R}) \right| / 2 \\ &\approx -0.11\% + 0.13\% \frac{T_{R}}{T_{c}} \end{aligned}$$

The ³He breakup fraction estimate followed from the experimental study of the deuteron beam breakup at HJET:

Effect of the helion breakup is negligible in the EIC ³He beam polarization measurement using HJET.

Summary

- HJET, which was designed to measure absolute proton beam polarization at RHIC, can also be used for the proton and ³He beam polarimetry in the future EIC.
- The HJET performance allows us to study $p^{\uparrow}p^{\uparrow}$ and $p^{\uparrow}A$ transverse analyzing powers in the Coulomb-nuclear interference scattering, $0.0013 < -t < 0.018 \text{ GeV}^2$.
- To complete the HJET experimental data analysis, the following theoretical calculations (studies) are important:
 - ✓ Regge pole, including Pomeron/Froissaron P(t, s) and Odderon O(t, s) functions, which can be used to study single $r_5(s)$ double $r_2(s)$ spin-flip elastic pp amplitude at low t.
 - ✓ The beam and target analyzing power parametrization for the inelastic ppscattering $p_{\text{beam}}^{\uparrow} + p_{\text{target}}^{\uparrow} \rightarrow X + p_{\text{recoil}}$.
 - ✓ Parametrization (ready to use in the HJET data) for the forward $p^{\uparrow}A$ analyzing power $A_N(t, s, A)$ for |t| < 0.02 GeV, 2 < A < 200, and the proton beam energy $4 < E_p < 100$ GeV.
 - ✓ More accurate calculation of the breakup effects in the ³He beam scattering of the HJET protons is needed.

Backup

Hadronic polarimetry at the EIC

High energy, 40-275 GeV polarized proton and helion (³He[↑]) beams are planned at the future Electron Ion Collider.

The requirement for the EIC beam polarimetry:

 $\sigma_P^{\rm syst}/P \lesssim 1\%$

Compared to RHIC, there are new challenges for the hadronic beam polarimetry at EIC

- Much shorter, 10 ns bunch spacing (107 ns at RHIC)
- ³He↑ beam

- A complete analysis of the beam polarization includes measurement of the polarization profile, polarization decay time, ...
- The main goal of this presentation is to discuss the RHIC Hydrogen Jet Target (HJET) feasibility to measure the ³He[↑] beam averaged absolute polarization at EIC.

Hadronic Single Spin-Flip Amplitude $r_5(\sqrt{s})$

 $p_{\text{beam}}^{\uparrow} + p_{\text{jet}}^{\uparrow} \rightarrow X_{\text{beam}} + p_{\text{jet}}$

More general consideration of the elastic $p^{\uparrow}A$ scattering

The hadronic amplitude for a proton-nucleus elastic and/or breakup scattering can be approximated (R.J Glauber and Matthiae, Nucl. Phys. B21 (1970) 135) by

$$F_{fi}(\boldsymbol{q}_T) = \frac{ik}{2\pi} \int e^{i\boldsymbol{b}\boldsymbol{q}_T} \Psi_f^*(\{\boldsymbol{r}_j\}) \Gamma(\boldsymbol{b}, \boldsymbol{s}_1 \dots \boldsymbol{s}_A) \Psi_i(\{\boldsymbol{r}_j\}) \prod_{i=1}^A d^3r_j d^2b$$

Λ

and can be calculated if initial $\Psi_i(\{r_j\})$ and final $\Psi_f(\{r_j\})$ state wave functions are known.

In Glauber theory, elastic pA amplitude can be expressed via the proton nucleon ones

$$F_{ii}(q) = \sum_{a} \{S_{a}f_{a}\} + \sum_{a,b} \{S_{ab}f_{a}f_{b}\} + \sum_{a,b,c} \{S_{abc}f_{a}f_{b}f_{c}\} + \dots$$

$$\sum_{a,b,c} \{S_{abc}f_{a}f_{b}f_{c}\} = \int S_{abc}(q'_{a}, q'_{b}, q'_{c})f_{a}(q'_{a})f_{b}(q'_{b})f_{c}(q'_{c})\delta(q - q'_{a} - q'_{b} - q'_{c})d^{2}q'_{a}d^{2}q'_{b}d^{2}q'_{c}$$

No knowledge of form factors S_a , S_{ab} , ... is needed to calculate the elastic spin flip amplitude

$$F_{ii}^{\rm sf}(\boldsymbol{q}) = \frac{\boldsymbol{q}\boldsymbol{n}}{m_p} \frac{r_5}{i+\rho} F_{ii}(\boldsymbol{q}) \implies r_5^{pA} = r_5 \frac{\boldsymbol{i}+\rho^{pA}}{\boldsymbol{i}+\rho^{pp}}$$

Elastic $\mathbf{p} + \mathbf{h}^{\uparrow} \rightarrow \mathbf{p} + \mathbf{h}$ hadronic spin-flip amplitude

• The spin-flip proton-nucleon amplitude depends on the nucleon's polarization

$$pN^{\uparrow} \Rightarrow f^{sf}(q) = \frac{qn}{m_p} \frac{r_5 P_N}{i+\rho} f(q)$$

• If all nucleons in a nuclei have the same spatial distributions, i.e., if $S_{a,b,\ldots} = S_{b,a,\ldots} = S_{b,c,\ldots}$, then for unpolarized proton scattering off the polarized nuclei

$$r_5^{Ap} = r_5 \frac{i + \rho^{pA}}{i + \rho^{pp}} \frac{\sum P_i}{A}$$

where P_i are nucleon polarizations in the nuclei.

Since in a fully polarized helion in the ground S state, $P_n = 1$ and $P_p = 0$,

$$r_5^{hp}=r_5/3$$

Considering also S'- and D-wave components, it was found $P_n \approx 0.88$, $P_p \approx -0.02$ [J.L. Friar *et al.*, Phys. Rev. C **42**, 2310 (1990)]

$$r_5^{hp} = (0.27 \pm 0.06)r_5$$

$p^{\uparrow} + A \rightarrow p + (A_1 + A_2 \dots)$ hadronic spin-flip amplitude

For a breakup scattering $p^{\uparrow}A \rightarrow pX$ (e.g., $ph \rightarrow ppd$), the amplitude can be a function of $\Delta = M_X - M_A$ (and other the breakup internal variables).

It may be convenient to define ratio of the breakup and elastic amplitude,

$$\psi_{fi}(\boldsymbol{q},\Delta) = F_{fi}(\boldsymbol{q},\Delta) / F_{ii}(\boldsymbol{q}) = \left| \psi_{fi}(\boldsymbol{q},\Delta) \right| e^{i\varphi_{fi}(\boldsymbol{q},\Delta)}$$

and (redefine) the spin-flip parameter \tilde{r}_5

$$F_{fi}^{\rm sf}(\boldsymbol{q}) = \frac{\boldsymbol{q}\boldsymbol{n}}{m_p} \frac{\tilde{r}_5}{\boldsymbol{i} + \boldsymbol{\rho}} F_{fi}(\boldsymbol{q})$$

Generally, $\phi \neq 0$

A breakup pA amplitude can be expresses via proton-nucleon amplitudes in the same way as elastic one, but with some different set of formfactors

$$F_{fi}(q) = \sum_{a} \{\tilde{S}_{a}f_{a}\} + \sum_{a,b} \{\tilde{S}_{ab}f_{a}f_{b}\} + \sum_{a,b,c} \{\tilde{S}_{abc}f_{a}f_{b}f_{c}\} + \dots$$
$$\mathbf{p}^{\uparrow}A \to \mathbf{p}A_{1}A_{2}\dots$$
$$\tilde{\mathbf{r}}_{5}^{\mathbf{p}^{\uparrow}A} = \mathbf{r}_{5}$$

A model used to search for the d ightarrow pn breakup events at HJET

- In the HJET measurements, $\Delta < 50$ MeV is small.
- The breakup to elastic amplitude ratio, $\psi(T_R, \Delta)$, is about independent of the T_R and Δ .
- The $h \to pd$ breakup is strongly suppressed by the phase space factor $\omega(T_R, \Delta) \propto \sqrt{\Delta \Delta_{\text{thr}}^h}$.
- For the $h \to ppn$ breakup the suppression is much stronger $\omega(T_R, \Delta) \propto (\Delta \Delta_{thr}^h)^2$.
- The electromagnetic *ph* amplitudes are nearly the same for elastic and breakup scattering.

³He breakup measurements in the hydrogen bubble chamber

 $\sigma_{\rm el} = 24.2 \pm 1.0 \,{\rm mb}$ $\sigma_{h \to pd} = 7.29 \pm 0.14 \,{\rm mb}$ $\sigma_{h \to ppn} = 6.90 \pm 0.14 \,{\rm mb}$

J. Stepaniak , Acta Phys. Polon. B **27**, 2971 (1996)

The effective cross sections in HJET measurements:		
$\sigma_{ m elastic}^{ m HJET} pprox 11~ m mb$		
$\sigma^{ m HJET}_{h ightarrow ppn} < 0.02~ m mb$	(bubble chamber)	
$\sigma_{h \to pd}^{\text{HJET}} \sim 0.15 \text{ mb}$	(bubble chamber)	
$\sigma_{h \to pd}^{\text{HJET}} \approx 0.25 \text{ mb}$	(deuteron beam in HJET)	

The ³He breakup rates $\omega(T_R)$ and $\tilde{\omega}(T_R)$ derived from the deuteron beam measurements at HJET can be interpreted as upper limits. $E_{\text{beam}} = 4.6 \text{ GeV/n}$

