# Leros, GR Sep 4-8, 23

# The LHCspin project

a polarised gas target at the LHC

Marco Santimaria in collaboration with V.Carassiti, G.Ciullo, P. Di Nezza, P.Lenisa, S.Mariani, L.Pappalardo, E.Steffens Low-x, Leros 08/09/2023













### Fixed-target physics at LHCb

- LHCb is a general-purpose forward spectrometer, fully instrumented in  $2 < \eta < 5$ and optimised for b- and c-hadron detection
- Excellent momentum resolution with VELO + tracking stations:  $\sigma_p/p = 0.5 - 1.0\% \ (p \in [2,200] \text{ GeV})$
- Particle identification with RICH+CALO+MUON:  $\epsilon_{\mu} \sim 98\%$  with  $\epsilon_{\pi \to \mu} \lesssim 1\%$
- Run 3 (ongoing): new detector & software trigger to face 5x luminosity increase
- Fixed-target kinematics:

0.45 – 7 TeV 2.76 TeV

pp/pA collisions, 7 TeV beam:  $\sqrt{s} = \sqrt{2m_N E_p} = 115 \text{ GeV}$  $2 \le y_{lab} \le 5 \rightarrow -3.0 \le y_{CMS} \le 0$ 

AA collisions, 2.76 TeV beam:  $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$ 

Low-x 2023

gas target

LHC beam



1: beam, 2: target Large CM boost  $\rightarrow$  large  $x_2$  values ( $x_F < 0$ )







### SMOG and SMOG2

- The FT program at LHCb is active since 2015 with <u>SMOG</u>: inject noble gases into the VELO, populating  $z = \pm 20 \text{ m}$  in the beam pipe
- Trigger on beam-empty collisions: turn LHCb into a FT experiment!
- See our publications  $\rightarrow$  <u>here</u>



- <u>SMOG2 gas storage cell installed for</u> <u>Run 3:</u>
- 8 35 X density wrt SMOG
- Negligible impact on the beam lifetime:  $\tau^{\rm p-H_2}_{beam-gas} \sim 2000 {\rm ~days}$  ,  $\tau_{beam-gas}^{Pb-Ar} \sim 500$  h
- Luminosity precision at the percent level thanks to new GFS and temperature probes on the cell walls
- Can be filled with: He, Ne, Ar
- H<sub>2</sub> also tested successfully
- $D_2$ ,  $N_2$ ,  $O_2$ , Kr, Xe to be tested

Low-x 2023



#### SMOG2 Gas Feed System







#### Fixed-target event reconstruction in Run 3

- retained in the beam-gas region
- in the LHCb reconstruction sequence



Candidates





#### Early SMOG2 resuged + Data — Fit $-D^0 \rightarrow K^- \pi^+$ ---- Background

- Right: event display from a Run 3  $p^{-}Ar^{1}$
- $\bullet$  Bottom: tomography of the closed SMOG2 cell from residual gas & secondary interactions
- $J/\psi \rightarrow \mu^+\mu^-$  from 18 minutes of p-Ar data-taking
- $\Lambda \rightarrow p\pi^-$  from 20 minutes of p-H<sub>2</sub> data-taking
- Excellent results albeit low gas pressure & preliminary subdetector performance as we're commissioning them!



Low-x 2023

![](_page_4_Figure_9.jpeg)

![](_page_4_Figure_10.jpeg)

![](_page_4_Figure_11.jpeg)

![](_page_4_Picture_13.jpeg)

![](_page_4_Picture_14.jpeg)

### The LHCspin project

• SMOG2 sets the basis for the development of a polarised gas target (PGT)

Two main goals of the "LHCspin" project:

- 1. Extend the broad physics program with unpolarised gases to Run 4 (2029) and Run 5 (2035, HL-LHC)
- 2. Bring spin physics at the LHC for the first time

![](_page_5_Figure_5.jpeg)

Low-x 2023

 $10^{0}$ 

<u>Unique QCD laboratory at LHC:</u>

- Large-x content of g,  $\overline{q}$  and heavy quarks in nucleons and nuclei
- Spin distributions of gluons inside unpolarised and polarised nucleons
- Heavy ion FT collisions at an energy in between SPS and RHIC
- Broad and poorly explored kinematic range
- High luminosity, high resolution detectors: access to a large variety of probes incl. exotic
- Several unpolarised gas targets
- Polarised gas targets:  $H^{\uparrow}, D^{\uparrow}$

![](_page_5_Figure_20.jpeg)

![](_page_5_Picture_21.jpeg)

### The Polarised Gas Target

- efficiency when the cell is close to the VELO
- trigger lines...

![](_page_6_Picture_4.jpeg)

#### Kinematic coverage

- LHCb p-H FT simulations at  $\sqrt{s} = 115 \text{ GeV}$ . Using  $x_F = 2E_T/\sqrt{s_{NN}} \sinh(y^*)$  with  $E_T^2 = M^2 + P_T^2$

![](_page_7_Figure_4.jpeg)

•  $x_F$  spectra for some channels:

![](_page_7_Figure_6.jpeg)

Low-x 2023

• Actual SMOG2 region [-560, -360] mm as a reference, [-670, -470] mm a possible solution to fit the LHCspin setup • The kinematic coverage depends on the cell position  $\rightarrow p_T$  slightly affected, x range shrinks when moving upstream:

 $Y \rightarrow \mu^+ \mu^-$ 

![](_page_7_Figure_12.jpeg)

![](_page_7_Figure_14.jpeg)

![](_page_7_Figure_15.jpeg)

![](_page_7_Picture_16.jpeg)

#### The Polarised Gas Target

• Inject both polarised and unpolarised gases via ABS and uGFS

![](_page_8_Figure_2.jpeg)

- Compact dipole magnet around the cell to provide static transverse field
- Superconductive coils + iron yoke configuration fits the space constraints
- B = 300 mT with polarity inversion and  $\Delta B/B \simeq 10\%$ , suitable to avoid beam-induced depolarisation
- Possibility to switch to a solenoid and provide longitudinal polarisation

[PoS (SPIN2018)]

Low-x 2023

![](_page_8_Figure_10.jpeg)

![](_page_8_Figure_11.jpeg)

![](_page_8_Picture_13.jpeg)

#### ABS and BRP R&D

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_4.jpeg)

- Starting from the well established HERMES setup @ DESY ... to create the next generation of polarised fixed-targets!
- Reduce the size of both ABS and BRP to fit into the available space in the LHCb cavern: a challenging R&D!
- No need for additional detectors in LHCb!
- Aiming at HERMES performance:

Polarisation degree:  $\approx 85\%$ 

Intensity of injected H-atoms:  $6.5 \times 10^{16} \text{ s}^{-1}$ 

FT luminosity (HL-LHC): ~  $8 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ 

![](_page_9_Picture_12.jpeg)

## Cell coating for the LHC

- The storage cell must have a low secondary electron yield (SEY)
- This is already achieved in SMOG2 via carboncoating (bottom picture)
- In a polarised target, hydrogen recombination must be kept low too
- A thin layer of ice is a possible solution: renewable surface but needs cooling
- SEY vs ice layers measured, recombination measurements ongoing

![](_page_10_Picture_6.jpeg)

![](_page_10_Figure_7.jpeg)

![](_page_10_Picture_11.jpeg)

#### More on the R&D

- Drifilm + ice was very successful at HERMES but challenging at LHC
- Alternative solution is being investigated in parallel: a jet target would provide lower density (  $\approx 1/40$ ) but higher polarisation degree
- $\theta_{iet} \approx 10^{12} \text{ cm}^{-2}$  but  $P \approx 90\%$  with very small systematic error
- PRO: precision measurements on high-statistics channels
- CON: Makes kinematic binning and rare channels harder

- We are also exploring the possibility of a test setup at the IR3 of the LHC
- Useful to study a new compact polarimeter system, understanding the beam interactions etc.
- This activity would be parallel to LHCb and open to external members

![](_page_11_Figure_11.jpeg)

![](_page_11_Picture_14.jpeg)

## LHCspin physics: overview

- Complementarity is the key:
- 12 GeV JLab probing high-x, low  $Q^2$
- EIC measurements to focus on low-x, starting ~2035
- higher  $Q^2$  reach with future EIC upgrade

![](_page_12_Figure_5.jpeg)

• LHCspin to best cover mid- to high-x at intermediate  $Q^2$ 

Low-x 2023

• SMOG2 is performing above the expectation: early datataking with low pressure:  $443 J/\psi \rightarrow \mu^+\mu^-$  in just 18 minutes while all sub-detectors are undergoing commissioning!

![](_page_12_Figure_10.jpeg)

• Based on this important milestone, we can estimate for a Run of p-H collision at LHCspin:

| Channel                                                   | Events / week       | Total yield         |
|-----------------------------------------------------------|---------------------|---------------------|
| $J/\psi 	o \mu^+\mu^-$                                    | $1.3 \times 10^{7}$ | $1.5 \times 10^{9}$ |
| $D^0 \to K^- \pi^+$                                       | $6.5 	imes 10^7$    | $7.8 	imes 10^9$    |
| $\psi(2S) 	o \mu^+ \mu^-$                                 | $2.3 	imes 10^5$    | $2.8 	imes 10^7$    |
| $J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ (DPS)         | 8.5                 | $1.0 \times 10^3$   |
| $J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^- (SPS)$ | $2.5 	imes 10^1$    | $3.1 \times 10^3$   |
| Drell Yan (5 < $M_{\mu\mu}$ < 9 GeV)                      | $7.4 	imes 10^3$    | $8.8 	imes 10^5$    |
| $\Upsilon  ightarrow \mu^+ \mu^-$                         | $5.6 	imes 10^3$    | $6.7 	imes 10^5$    |
| $\Lambda_c^+ \to p K^- \pi^+$                             | $1.3 	imes 10^6$    | $1.5 	imes 10^8$    |

![](_page_12_Picture_13.jpeg)

![](_page_13_Picture_0.jpeg)

parton pdfs and the parton publicated your effective officient q q 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117

b 125 Once a b quark is produced house held to hadronise in a colouries

At these

13-1011011050

![](_page_13_Picture_86.jpeg)

### Polarised target: multi-dimensional nucleon mapping

• Overcome the 1D view of the nucleon and investigate its spin structure: GPDs and TMDs

![](_page_14_Figure_2.jpeg)

[from B. Pasquini @ DIS2021] • red: vanish if no OAM

- : accessible at LHCspin (dipole)
- : accessible at LHCspin (solenoid)
- Marco Santimaria

![](_page_14_Picture_11.jpeg)

#### **MDs**

• 3D momentum "tomography" of hadrons:

![](_page_15_Figure_2.jpeg)

• To access the transverse motion of partons inside a polarised nucleon: measure TMDs via TSSAs at high  $x_2^{\uparrow}$  (and low  $x_1$ )

• Projections of polarised Drell-Yan data with  $10 \text{ fb}^{-1}$ 

![](_page_15_Figure_8.jpeg)

![](_page_15_Picture_10.jpeg)

• Verify the sign change of the Sivers TMD in DY wrt SIDIS:

$$f_{1T}^{\perp q}(x, k_T^2)_{\text{DY}} = -f_{1T}^{\perp q}(x, k_T^2)_{\text{SIDIS}}$$

• + isospin effect with polarised deuterium

![](_page_15_Picture_14.jpeg)

#### More TMDs

- Plenty of observables with polarised DY: azimuthal asymmetries of the dilepton pair to probe TMDs
- $h_q^1$ : transversity  $\rightarrow$  difference in densities of quarks having T pol.  $\uparrow\uparrow$  or  $\uparrow\downarrow$ in T pol. nucleon
- $f_{1T}^{\perp q}$  : Sivers  $\rightarrow$  dependence on  $p_T$  orientation wrt T pol. nucleon
- $h_1^{\perp q}$ : Boer-Mulders  $\rightarrow$  dependence on  $p_T$  orientation wrt T pol. quark in unp. nucleon
- $h_{1T}^{\perp q}$  : pretzelosity  $\rightarrow$  dependence on  $p_T$  and T. pol of both T pol. quark and nucleon
- $f_1^q$  : unpolarised TMD, always present at the denominator

- Polarised Drell-Yan to access unpolarised TMDs of sea quarks and polarised TMDs in the valence region
- gluon-induced asymmetries:  $h_1^{\perp g}$  never measured, can be accessed together with the  $f_1^g$  TMD (also unconstrained) in di-J/ $\psi$  and  $\Upsilon$ production

[<u>ArXiv:1807.00603</u>] [<u>PLB 784 (2018) 217-222</u>]

$$\begin{split} A_{UU}^{cos2\phi} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_1^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin\phi_S} &\sim \frac{f_1^q(x_1, k_{1T}^2) \otimes f_{1T}^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin(2\phi+\phi_S)} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_{1T}^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin(2\phi-\phi_S)} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_1^{\bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \end{split}$$

![](_page_16_Figure_18.jpeg)

#### Expected precision on $A_N$

• Expected uncertainty on a TSSA at LHCspin:

$$A_N = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \quad \rightarrow \quad \Delta A \approx \frac{1}{\sqrt{2N^{\uparrow}}}$$

•  $\Delta A_N$  showed for different polarisation degrees on two scenarios: small asymmetry A = 2%(left) and large asymmetry A = 10% (right)

![](_page_17_Figure_4.jpeg)

- Systematic limit from P reached after few minutes for  $J/\psi \rightarrow \mu^+\mu^-$ : precision TSSA measurements possible with very short  $pH^{\uparrow}$  runs during Run 4!
- Event rate further enhanced during HL-LHC (Upgrade II)
- Cell target example:  $P = 0.70 \pm 0.07$ ,  $\theta = 3.7 \times 10^{13}/\text{cm}^2$  (used in the plots)
- Jet target example:  $P = 0.90 \pm 0.01$ ,  $\theta \approx 10^{12}/\text{cm}^2$

![](_page_17_Figure_11.jpeg)

![](_page_17_Figure_12.jpeg)

![](_page_17_Picture_13.jpeg)

#### An example measurement: GSF

- Gluon Sivers Function (GSF) can be probed with quarkonia and open heavy-flavour production
- broad x range at a scale  $M_T = \sqrt{M^2 + P_T^2}$  with several unique probes:  $\eta_c, \chi_c, \chi_b, J/\psi J/\psi$  ...
- $A_N$  predictions on  $J/\Psi \rightarrow \mu^+\mu^-$  with LHCspin kinematics:

![](_page_18_Figure_4.jpeg)

Low-x 2023

- This can easily be measured with LHCspin!
- Full LHCb simulation for fixed-taget p-H collisions
- Emulate the polarisation according to a given model  $\rightarrow$  fit the resulting pseudo-data
- $A_N \sim 0.1 \pm 0.01$  with  $4 x_F \times 2 p_T \times 8 \phi$  bins on  $J/\Psi \rightarrow \mu^+ \mu^-$
- $\Delta P = 5\%$ , negligible in this example

![](_page_18_Figure_13.jpeg)

![](_page_18_Figure_15.jpeg)

![](_page_18_Picture_16.jpeg)

- The FT program at LHCb is active since Run 2, now greatly enriched with the SMOG2 cell for Run 3

- states (some examples shown, find some more in the backup slides)
- High degree of complementarity with existing facilities & EIC
- The R&D calls for a new generation of polarised gas targets: challenging task but worth the effort!

• SMOG2 early results demonstrate simultaneous beam-gas and beam-beam data-taking with excellent performance • LHCspin is the natural evolution to extend SMOG2 and to bring spin physics for the first time at the LHC • Vast physics program with both unpolarised and polarised gases, with plenty of observables & unique final

![](_page_19_Picture_11.jpeg)

## backup slides

### Heavy ion fixed-target collisions

- The LHC delivers proton beam at 7 TeV and lead beam at 2.76 TeV, while the storage cells technology allows for an easy target change
- Great opportunities to probe nuclear matter over a new rapidity domain at  $\sqrt{s} = 72 \text{ GeV}$
- Suppression of  $c\overline{c}$  bound states as QGP thermometer
- Complement the RHIC Beam Energy Scan (BES) with a y scan

![](_page_21_Figure_5.jpeg)

- Probing the dynamics of small systems via Ultrarelativistic collisions of heavy nuclei (Pb) on transversely polarised deuterons  $(D^{\uparrow})$
- Deformation of  $D^{\uparrow}$  is reflected in the orientation of the generated fireball in the transverse plane

![](_page_21_Figure_10.jpeg)

D polarised along  $\Phi_p$  , perpendicular to the beam

![](_page_21_Figure_12.jpeg)

![](_page_21_Picture_14.jpeg)

#### The spin puzzle & GPDs

• TMDs  $\rightarrow$  nucleon spin

![](_page_22_Picture_2.jpeg)

- Orbital Angular Momentum (OAM) information via TMDs is only indirect: position and momentum correlations are needed
- Quark OAM from GPD moments via Ji Sum Rule:

$$\frac{1}{2} = J^{q}(\mu) + J^{g}(\mu) = \frac{1}{2}\Delta\Sigma(\mu) + L_{z}^{q}(\mu) + J^{g}(\mu)$$

[PRL 78 (1997) 610-613]

- Experimental hints of large OAM contribution
- GPDs can be probed via UltraPeripheral Collisions (UPCs), dominated by EM interaction

• Exclusive dilepton / exclusive quarkonia production, the latter being sensitive to gluon GPDs

![](_page_22_Figure_12.jpeg)

Marco Santima

 $\partial \ln(1/x)$