# PART 3



### WHAT WILL THIS LECTURE BE ABOUT?

#### INTRODUCTION

• Definitions and basic concepts

#### **INPUT TO THE PHYSICS**

- The data: trigger, data preparation
- The theory: Monte carlo simulations
- Reconstruction, or how to translate detector signals to particles

#### **PHYSICS ANALYSES**

- Through example, step-by-step
- Discussion of analysis methods



Is there a topic you would like to add to this material? If so: please let me know at the end of this lecture and I will see if I can add it!

# RECONSTRUCTION



### WHAT DO WE RECONSTRUCT?

• Tracks and clusters

Combining those:
"objects", i.e. "particles"



#### **Simplified Detector Transverse View**



#### **RECONSTRUCTION - FIGURES OF MERIT**



#### **RECONSTRUCTION - FIGURES OF MERIT**

|            | DEFINITION                                                                                 | EXAMPLE                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NEEDS BE:                          |
|------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| EFFICIENCY | how often do we<br>reconstruct the<br>object we are<br>interested in                       | electron identification<br>efficiency = (number of<br>reconstructed electrons)<br>/ (number of true<br>electrons) in bins of<br>transverse momentum | $\begin{array}{c} 0.95 \\ 0.95 \\ 0.85 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.8 \\ 0.75 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ $ | High                               |
| RESOLUTION | how accurately do<br>we reconstruct the<br>quantity                                        | energy resolution =<br>(measured energy – true<br>energy)/(true energy)                                                                             | $\sigma = (1.12 \pm 0.03)\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Good</b><br>(a small<br>number) |
| FAKE RATE  | how often we<br>reconstruct a<br>different object as<br>the object we are<br>interested in | a jet faking an electron,<br>fake rate = (Number of<br>jets reconstructed as an<br>electron) / (Number of<br>jets) in bins of<br>pseudorapidity     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low                                |

#### **RECONSTRUCTION - GOALS**

- High efficiency
- Good resolution
- Low fake rate

Noise

Dead regions of the detector

Increased pile-up

#### **©** Computing-friendly-

CPU time per event
Memory use

![](_page_6_Figure_11.jpeg)

![](_page_6_Figure_12.jpeg)

### WHAT DO WE RECONSTRUCT?

![](_page_7_Picture_1.jpeg)

- Combining those:
  - "objects", i.e. "particles"

![](_page_7_Figure_4.jpeg)

#### **©** For a track we measure:

- Its momentum;
- Its direction;
- Its charge;
- Its "perigee": the closest point to a reference line, transverse ( $d_0$ ) or longitudinal ( $z_0$ ).

Tracks are key ingredients of most of particle reconstruction.

### TRACKING IN A NUTSHELL

![](_page_8_Figure_8.jpeg)

![](_page_8_Picture_9.jpeg)

### TRACKING IN A NUTSHELL - TRACK FITTING

![](_page_9_Picture_1.jpeg)

Perfect measurement – ideal

![](_page_9_Picture_3.jpeg)

Imperfect measurement – reality

![](_page_9_Picture_5.jpeg)

**©** Small errors and more points help to constrain the possibilities

![](_page_9_Figure_7.jpeg)

- **©** Quantitatively:
  - Parameterize the track;
  - Find parameters by Least-Squares-Minimization;
  - Obtain also uncertainties on the track parameters.

### TRACKING IN A NUTSHELL - TRACK FITTING

#### **©** For a track we measure:

- Its momentum;
- Its direction;
- Its charge;
- Its "perigee": the closest point to a reference line, transverse ( $d_o$ ) or longitudinal ( $z_o$ ).

![](_page_10_Figure_6.jpeg)

### TRACKING IN A NUTSHELL - TRACK FITTING

#### **©** For a track we measure:

- ◎ Its momentum;
- Its direction;
- Its charge;
- Its "perigee": the closest point to a reference line, transverse ( $d_0$ ) or longitudinal ( $z_0$ ).
- And their uncertainty

#### **Small uncertainties are required.**

- <sup>(©)</sup> δdo is < O(10 $\mu$ m) and δθ < O(0.1mrad).
- Allows separation of tracks that come from different particle decays (which can be separated at the order of mm).

![](_page_11_Figure_10.jpeg)

#### Presence of Material

- Coulomb scattering off the core of atoms
- Energy loss due to ionization
- Bremsstrahlung
- Hadronic interaction

#### Misalignment

- Detector elements not positioned in space with perfect accuracy.
- Alignment corrections derived from data and applied in track reconstruction.

![](_page_12_Figure_9.jpeg)

#### **IMPACT OF GOOD ALIGNMENT**

Improving the tracker alignment description in the reconstruction gives better track momentum resolution which leads to better mass resolution.

![](_page_13_Figure_2.jpeg)

- Can see the reconstructed Z width gets narrower if we use better alignment constants. Very important for physics analysis to have good alignment.
- Alignment of detector elements can change with time, for example when the detector is opened for repair, or when the magnetic field is turned on and off.

### WHAT DO WE RECONSTRUCT?

![](_page_14_Picture_1.jpeg)

- Combining those:
  - "objects", i.e. "particles"

![](_page_14_Figure_4.jpeg)

#### A CALORIMETER VIEW

![](_page_15_Figure_1.jpeg)

### **CLUSTERING IN A NUTSHELL**

![](_page_16_Picture_1.jpeg)

Reconstruct energy deposited in the calorimeter by charged or neutral particles;
 electrons, photons and jets.

#### For a cluster we measure:

- ◎ The energy;
- ◎ The position of the deposit;
- The direction of the incident particles;

#### Calorimeters are segmented in cells.

Typically, a shower created by a particle interacting with the matter extends over several cells.

#### Various clustering algorithms, e.g.:

- Sliding window. Sum cells within a fixed-size rectangular window.
- Topo-clustering. Start with a seed cell and iteratively add to the cluster the neighbor of a cell already in the cluster.

#### CLUSTER FINDING - AN EXAMPLE

CMS crystal calorimeter – ECAL clusters
 electron energy in central crystal ~80%,

in 5x5 matrix around it ~96%.

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

#### CLUSTER FINDING - AN EXAMPLE

![](_page_18_Figure_1.jpeg)

#### Simple example of an algorithm

- Scan for seed crystals = local energy maximum above a defined seed threshold
- @ Starting from the seed position, adjacent crystals are examined, scanning first in  $\phi$  and then in  $\eta$
- - <sup>©</sup> The crystal's energy is above the noise level (lower threshold)
  - <sup>©</sup> The crystal has not been assigned to another cluster already

#### CLUSTER FINDING - AN EXAMPLE: DIFFICULTIES

Oreful tuning of thresholds needed.

- needs usually learning phase;
- adapt to noise conditions;
- ◎ too low : pick up too much unwanted energy;
- ◎ too high : loose too much of "real" energy. Corrections/Calibrations will be larger.

![](_page_19_Figure_6.jpeg)

### WHAT DO WE RECONSTRUCT?

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

### **ELECTRONS / PHOTONS**

Final Electron momentum measurement can come from tracking or calorimeter information (or a combination of both)

- Often have a final calibration to give the best electron energy
- Working points define categories
  - © E.g. loose, medium, tight
  - Trade-off: Efficiency vs Fakes
- Often want "isolated electrons"
  - Require little calorimeter energy or tracks in the region around the electron

![](_page_22_Figure_8.jpeg)

### **ELECTRONS / PHOTONS**

Final Electron momentum measurement can come from tracking or calorimeter information (or a combination of both)

- Often have a final calibration to give the best electron energy
- Working points define categories
  - © E.g. loose, medium, tight
  - Trade-off: Efficiency vs Fakes
- Often want "isolated electrons"
  - Require little calorimeter energy or tracks in the region around the electron

![](_page_23_Picture_8.jpeg)

### ELECTRONS / PHOTONS - BACKGROUNDS

#### **Sources of backgrounds:**

Hadronic jets leaving energy in calorimeter

- While calorimeter clusters are much wider for jets than for electrons/photons there are many thousands more jets than electrons
   rate of jets faking an electron needs to be very small (~10<sup>-4</sup>)
- Complex identification algorithms are required to give the rejection whilst keeping a high efficiency

### **ELECTRONS – IDENTIFICATION ALGOS**

Signal

Signal

Signal

Background

Background

0 900 10 Δ E. (MeV)

Background

![](_page_25_Figure_1.jpeg)

Information can be exploited using multi-variate techniques such as **likelihood discriminants** or **boosted decision trees** or **other machine learning methods**.

Example of different calorimeter shower shape variables used to distinguish electron showers from jets in ATLAS

![](_page_26_Picture_0.jpeg)

 Combine the muon segments found in the muon detector with tracks from the tracking detector

- Momentum of muon determined from bending due to magnetic field in tracker and in muon system
  - Combine measurements to get best resolution
  - Need an accurate map of magnetic field in the reconstruction software
  - Alignment of the muon detectors also very important to get best momentum resolution

![](_page_26_Figure_6.jpeg)

### MUONS ON ATLAS

**Simplified Detector Transverse View** 

"MS" - Muon Spectrometer

![](_page_27_Figure_2.jpeg)

JETS

![](_page_28_Figure_1.jpeg)

#### **JET PRODUCTION PROCESSES**

![](_page_29_Figure_1.jpeg)

#### Jets are produced:

- by fragmentation of gluons and (light) quarks in QCD scattering
- by decays of heavy Standard Model particles, e.g. W & Z
- in association with particle
   production in Vector Boson Fusion,
   e.g. Higgs
- In decays of beyond the Standard Model particles, e.g. in SUSY

JETS

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

At low energy, jets are more likely produced by gluon fusion.

![](_page_30_Figure_4.jpeg)

### JET ALGORITHMS

• Theory requirements: infrared and collinear safe

![](_page_31_Figure_2.jpeg)

Soft gluon radiation should not merge jets

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

...and on signal split in two possibly below threshold

- Experimental requirements: Independent to detector technology and data taking conditions, easily implementable
- Jet algorithm commonly used at the LHC: 'anti-k<sub>t</sub>'. A 'recursive recombination' algorithm. Starts from (topo-)clusters. Hard stuff clusters with nearest neighbor. Various cone sizes (standard R=0.4/0.5, "fat" R=1.0).

![](_page_31_Figure_9.jpeg)

### JET CALIBRATION

- Correct the energy and position measurement and the resolution.
- Account for:

Instrumental effects Detector inefficiencies 'Pile-up' Electronic noise Clustering, noise suppression Dead material losses Detector response Algorithm efficiency

#### Physics effects

Algorithm efficiency 'Pile-up' 'Underlying event'

![](_page_32_Figure_6.jpeg)

#### JETS AND PILE-UP

![](_page_33_Picture_1.jpeg)

Multiple interactions from pile-up

![](_page_33_Figure_3.jpeg)

#### **B-JETS**

b-hadrons have a lifetime of ~ 10<sup>-12</sup> s.
They travel a small distance (fraction of mm) before decaying.
A "displaced vertex" creates a distinct jet, so b-jets can be tagged (b-tagged).
b-tagging uses sophisticated algorithms, mostly multi-variate (machine learning).

![](_page_34_Picture_3.jpeg)

![](_page_35_Picture_0.jpeg)

### MISSING TRANSVERSE MOMENTUM – ME<sub>T</sub>

![](_page_36_Figure_1.jpeg)

In the transverse plane:

$$\Sigma_i \vec{p}_{T,i} = 0$$

So for what we can't directly measure (e.g. neutrinos)

$$E_{\rm T}^{\rm miss} = -\Sigma_i \vec{p}_{T,i}$$

![](_page_36_Figure_6.jpeg)

### MISSING TRANSVERSE MOMENTUM – ME<sub>T</sub>

![](_page_37_Picture_1.jpeg)

In the transverse plane:

$$\Sigma_i \vec{p}_{T,i} = 0$$

OR DARK MATTER CANDIDATES!

So for what we can't directly measure (e.g. neutrinos)

$$E_{\rm T}^{\rm miss} = -\Sigma_i \vec{p}_{T,i}$$

#### **Simplified Detector Transverse View Muon Spectrometer Toroids** HadCAL **EMCAL** photon Solenoid electrol TRT SCT **Pixels** muon κv

## PARTICLE FLOW FOR HADRONIC RECONSTRUCTION

#### PARTICLE FLOW

![](_page_39_Picture_1.jpeg)

#### PARTICLE FLOW

![](_page_40_Picture_1.jpeg)

### PARTICLE FLOW

- Reconstruct and identify all particles, photons, electrons, pions, …
- Use best combination of all subdetectors for measuring the properties of the particles.
- First used at LEP (ALEPH) and then at the LHC (CMS).

![](_page_41_Figure_5.jpeg)

#### JETS IN PILE-UP

![](_page_42_Picture_1.jpeg)

Multiple interactions from pile-up

### JETS IN PILE-UP

![](_page_43_Figure_1.jpeg)

175

Multiple interactions from pile-up

![](_page_44_Figure_1.jpeg)

**Resolution**: the quality with which we measure the jet momentum.

![](_page_45_Figure_1.jpeg)

**Resolution**: the quality with which we measure the jet momentum.

![](_page_46_Figure_1.jpeg)

**Resolution**: the quality with which we measure the jet momentum.

![](_page_47_Figure_1.jpeg)

Significant improvement for low-pT jets. Similar for MET.

![](_page_48_Figure_1.jpeg)

In Jet Energy resolution and uncertainty, large improvements with respect to calo jets!

#### A COMPARISON

![](_page_49_Figure_1.jpeg)

PF jets (CMS) and calo jets (ATLAS) have similar performance.
 Particle reconstruction always needs to be optimized depending on the detector technologies and experimental requirements.

#### A COMPARISON

![](_page_50_Figure_1.jpeg)

 PF jets (CMS) and calo jets (ATLAS) have similar performance.
 Particle reconstruction always needs to be optimized depending on the detector technologies and experimental requirements.

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

Objective:Trigger ("online") reconstruction same as "offline".Problem:Time. Trigger decision needs to be taken fast.Solution:Simplification.Challenge:Clever simplification = good performance.

![](_page_52_Figure_2.jpeg)

E.g. track reconstruction in regions of interest and simplified MET calculation.

![](_page_53_Picture_0.jpeg)

• To profit fully from an improvement in reconstruction, the relevant algorithm has to be used at the relevant trigger selections to provide **optimal online-to-offline correlation**.

![](_page_53_Figure_2.jpeg)

Variable A: e.g. leading jet pT

#### **ONLINE RECONSTRUCTION**

trigger efficiency =  $\frac{\# \text{ events passing offline selection } \& \text{ trigger}}{\# \text{ events passing offline selection}}$ 

![](_page_54_Figure_2.jpeg)

Clever ideas need to be deployed to bring online closer to offline, making efficiency curves **sharper** and **plateau closer to 1**.

### **EFFICIENCY MEASUREMENTS**

Relevant beyond the trigger...

#### TAG AND PROBE

- Select events based on requirements on one object (tag) and study the response of the second object (probe), not used in the event selection, using some constraint such as the Z mass.
  - e.g.  $Z \rightarrow \tau \tau$  events.
  - Typically used for measurement of the identification efficiency

#### ORTHOGONAL SAMPL

- Measure directly the efficiency on an independent, orthogonal sample.
  - e.g. jet trigger efficiency on a sample triggered by muons,

#### BOOTSTRAP METHOD

• The efficiency,  $\varepsilon_B$ , of a selection B, inclusive compared to a selection A, can be determined in a sample of events passing selection A (provided that  $\varepsilon_{A}$  is measurable):  $\varepsilon_{B} = \varepsilon_{B|A} \times \varepsilon_{A}$ . ε ε<sub>ΒΙΑ</sub>

• e.g. trigger efficiencies, say B: tau50 loose & A: tau16 loose

## PHYSICS MENUS

| Trigger selection   | 2015 offline<br>threshold<br>(GeV)                  | 2016 offline<br>threshold<br>(GeV)                    | 2017 offline<br>threshold<br>(GeV)                    | 2022 offline<br>threshold<br>(GeV)                    | Representative physics case                                         |  |
|---------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--|
| Peak Luminosity     | 5x10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> | 1.2x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 1.7x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 2.0x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |                                                                     |  |
| isolated single e   | 25                                                  | 27                                                    | 27                                                    | 27                                                    | "Main" triggers.<br>Thrs driven by<br>Higgs (ZH, WH),<br>Top, SUSY. |  |
| isolated single μ   | 21                                                  | 27                                                    | 27                                                    | 25                                                    |                                                                     |  |
| di-γ                | 40, 30                                              | 40, 30                                                | 40, 30                                                | 40, 30                                                | Higgs (H→γγ,<br>HH→bbγγ).                                           |  |
| di-τ (+ jet)        | 40, 30                                              | 40, 30                                                | 40, 30                                                | 40, 30                                                | Higgs (H→ττ,<br>HH→bbττ), SUSY.                                     |  |
| four-jet (incl. HF) | 45                                                  | 45                                                    | 45                                                    | 45                                                    | SUSY, Higgs,<br>exotics                                             |  |
| MET                 | 180                                                 | 200                                                   | 200                                                   | 200                                                   |                                                                     |  |

Offline selections from which the triggers are "usable", i.e. at efficiency plateau or highly efficient otherwise

#### **RECONSTRUCTING PARTICLES**

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

#### TAUS

| Tau Decay Mode |         |                                                          |       |  |
|----------------|---------|----------------------------------------------------------|-------|--|
| Leptonic       |         | $\tau^{\pm} \rightarrow e^{\pm} + \nu + \nu$             | 17.8% |  |
|                |         | $\tau^{\pm} \rightarrow \mu^{\pm} + \nu + \nu$           | 17.4% |  |
| Hadronic       | 1-prong | $\tau^{\pm} \rightarrow \pi^{\pm} + \nu$                 | 11%   |  |
|                |         | $\tau^{\pm} \rightarrow \pi^{\pm} + \nu + n\pi^{\circ}$  | 35%   |  |
|                | 3-prong | $\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu$                | 9%    |  |
|                |         | $\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu + n\pi^{\circ}$ | 5%    |  |
| Other          |         |                                                          | ~5%   |  |

Hadronic tau reconstruction extremely challenging
 Using multi-variate (machine learning) techniques
 based on track multiplicity and shower shapes

![](_page_58_Figure_3.jpeg)

![](_page_59_Picture_0.jpeg)

![](_page_59_Figure_1.jpeg)

### AND THE HIGGS!

![](_page_60_Figure_1.jpeg)

### HOW ABOUT NEW PARTICLES?

• These decay to Standard Model particles or create  $\ensuremath{\mathsf{ME}_{\mathsf{T}}}$ 

![](_page_61_Figure_2.jpeg)

#### **PHYSICS ANALYSES**

![](_page_62_Figure_1.jpeg)