PART 2

WHAT WILL THIS LECTURE BE ABOUT?

INTRODUCTION

• Definitions and basic concepts

INPUT TO THE PHYSICS

- The data: trigger, data preparation
- The theory: Monte carlo simulations
- Reconstruction, or how to translate detector signals to particles

PHYSICS ANALYSES

- Through example, step-by-step
- Discussion of analysis methods

Is there a topic you would like to add to this material? If so: please let me know at the end of this lecture and I will see if I can add it!

THE LIFETIME OF A COLLISION EVENT

DATA PREPARATION

WORLDWIDE LHC COMPUTING GRID an international collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage resource into a single infrastructure accessible by all LHC physicists.

- 161 sites, 42 countries
- 1 M CPU cores
- 1 EB of storage
- o > 2 M jobs/day
- o > 100 PB moved/month
- o accessed by 10k users
- o 10-100 Gb links

Network proved better than anyone imagined: Any job can run anywhere

WORLDWIDE LHC COMPUTING GRID THE TIER SYSTEM

\odot Tier-0 (CERN):

- Data recording, reconstruction and distribution
- \circ Tier-1:
 - Permanent storage, re-processing, analysis

\circ Tier-2:

• Simulation, end-user analysis

ATLAS DATA MANAGEMENT

RUCIO

⁶⁰⁰ ATLAS data volume managed by Rucio

HARDWARE

CPUs

GPUs

Opportunistic

resources

Tape (at CERN) about 270 PB	 Most reliable and cost-effective technology for large-scale archiving Data stored there infinitely 	Magnetic tapes, retrieved by robotic arms, are used for long-term storage
Disk about 200 PB	 Data for initial processing Copies for further processing / user analysis Data in disks gets staged from tape, on demand 	

Mainly GRID
About 400k cores
Mostly for RnD Also considering for the future: Few 10s FPGA accelerators
Online farm, 100k cores
High Performance Computers, primarily in the US

• Volunteer computing

Nvidia

GeForce

101

Processing power

Storage

SOFTWARE

-**o- 70,356** Commits 🗜 34 Branches 🔗 1,374 Tags 🗈 2.6 GB Files 🕞 2.6 GB Storage 🛷 124 Releases

The ATLAS Experiment's main offline software repository

 All software organized in packages in Git. For example: <u>https://gitlab.cern.ch/atlas/athena</u>

- All software open source, copyrighted and licenced (Apache 2)
 - "Copyright (C) 2002-2020 CERN for the benefit of the ATLAS collaboration"
 - For open use but also for crediting developers who move out of academia
- Thorough tracking of software developments a key of success
 - Via the Jira software, supported by CERN IT Jira Software
 - Multiple releases exist for merging of new code with existing one
 - Automated tools run nightly to verify code sanity & performance
 - Globally the software projects are coordinated with careful planning
- Software Tools
 - Databases
 - Analysis tools: ROOT is the workhorse!

• Analysis-specific software developed by teams available to whole collaboration!

102

DATA PREPARATION

THE LIFETIME OF A COLLISION EVENT

THE EVENT AT TIER-0

105

E.G. ALIGNMENT

Day-by-day value of the relative longitudinal shift between the two half-shells of the BPIX as measured with the primary vertex residuals, for the last month of pp data taking in 2012.

DATA QUALITY

- ✓ The data we analyze have to follow norms of quality such that our results are trustable.
- Online: Fast monitoring of detector performance during data taking, using dedicated stream, "express stream".
- Offline: More thorough monitoring at two instances:
 - Express reconstruction; fast turn-around.
 - Prompt reconstruction: larger statistics.

What is monitored?

- Noise in the detector.
- Reconstruction (tracks, clusters, combined objects, resolution and efficiency).
- Input rate of physics.
- ◎ All compared to reference histograms of data that has been validated as "good".

DATA QUALITY AND "GRL"

LUM INOSITY

LUM INOSITY

LUMINOSITY - THE FIGURE OF MERIT

More of less fixed parameters: Revolution frequency and Number of bunches

LUMINOSITY - THE FIGURE OF MERIT

- The LHC is built to collide protons at 7 TeV per beam, which is 14 TeV centre of Mass
- In 2012 it ran at 4 TeV per beam, 8 TeV c.o.m.
- Since 2015 it runs at 6.5 TeV per beam, 13 TeV c.o.m
- In Run 3, starting this year, it will run at 6.8 TeV per beam, 13.6 TeV c.o.m

Why not 14 TeV?

Figure from R. Steerenberg

URL: https://op-webtools.web.cern.ch/vistar/vistars.php?usr=LHC1

LUMINOSITY - THE FIGURE OF MERIT

 $L = \int \mathcal{L} dt$

 σ

 $\frac{N \text{ events}}{L}$

114

LUMINOSITY DETERMINATION "FIGURE OF MERIT"

- ◎ A measurement of the number of collisions per cm² and second.
- Multiple methods used for determining luminosity: reducing uncertainties.
- Principle detectors for luminosity determination on ATLAS:
 - Beam Conditions Monitor (BCM)
 - Designed for beam abort system
 - Diamond Sensors, $|\eta| \sim 4.2$

- UCID
 - Oblicated Luminosity Monitor
 - ^(a) Cherenkov Tubes, $5.6 < |\eta| < 6.0$

LUCID 2 installation in 2014

fast turn-around time. $2^{n} \Delta x^{\Delta y}$

116

Standard Model Total Production Cross Section Measurements

A TINY BIT OF MONTE CARLO

WHY DO WE NEED MONTE CARLO SIMULATION?

We only build one detector: how does this influence the physics we are doing?

- How do we compromise physics due to detector design?
- How would a different detector design affect measurements?
- How does the detector behave to radiation?
- In the detectors we only measure voltages, currents, times: how do we go from these to particles?
 - It's an interpretation to say that such-and-such particle caused such-and-such signature in the detector.
 - ◎ Simulating the detector behavior we correct for inefficiencies, inaccuracies, unknowns.
- We need a theory to tell us what we expect and to compare our data against.
- A good simulation is the way to demonstrate to the world that we understand the detectors and the physics we are studying.

MONTE CARLO PRODUCTION CHAIN

MONTE CARLO GENERATORS VARIOUS MODELS OF THE PHYSICS OF INTEREST

VARIOUS MODELS OF THE PHYSICS OF INTEREST

OUR LHC SIMULATION: THE DREAM

OUR LHC SIMULATION: THE REALITY?

THIS IS MOST PEOPLE'S VIEW OF THE CHAIN

and this is how we will treat it too, in lack of time...

SIMULATION - FULL AND FAST

SIMULATION - FULL AND FAST

The **SATLAS** Open Data

Why? 🄊 Guarantee openness and preservation of experimental data

New open data policy in support of open science from CERN & the LHC experiments

PEER-REVIEWED PUBLICATIONS

- Open Access
- Followed by detailed data related to the results, available at hepdata.net
 Purpose: Communicate results and maximize their scientific value

RECONSTRUCTED & CALIBRATED DATA

- Followed by related metadata
- Accompanied by appropriate simulated data samples
- Purpose: Algorithmic, performance and physics studies

DATA FOR OUTREACH AND EDUCATION

- Selected and formatted ("light") datasets
- Examples available in Jupyter notebooks
- Used in university classes, in growing numbers
 Purpose: Maximize educational impact

More info: https://atlas.cern/resources/opendata

Searching for the Higgs boson in the $H{\rightarrow}\gamma\gamma$ channel

Python notebook example

Introduction Let's take a current ATLAS Open Data sample and create a histogram:

```
In [1]: import ROOT
from ROOT import TMath
import time
```

Welcome to JupyROOT 6.07/03

In [2]: start = time.time()