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๏You are searching for Dark Matter. You 
build a detector underground, screened 
by any source of natural radiation 

๏You are waiting for a DM particle to hit 
your detector and produce an energy 
deposit 

๏Signal = large energy deposit leading 
to a large electronic signal 

๏Background = electronic noise 

๏You count events with large enough 
electronic signal 

๏You you see any, you get a Nobel Prize 

๏Why do you need statistics at all?

Searching for a signal
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๏Real life is not like that: whatever is 
your fiducial region (your cut on E) you 
never expect 0 background  

๏This is true even if you know exactly 
the number of bkg events you expect 
(e.g., λ = 1 event) 

๏This is because statistical 
fluctuations happen 

๏If you toss the same coin ten times, 
you expect 5 heads, but you might 
see 4, or 6, etc 

๏What is the probability of seeing k 
events when you expect λ?

Separating Sig from Bkg
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๏You pick k items out of a 
bag with N items and you 
ask a yes/no question 

๏has my event E above a 
threshold? 

๏is my ball red? 

๏Let’s call  

๏p: probability that the 
answer is Yes 

๏q = 1-p : probability 
that the answer is No

Bernoulli’s process
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P(k |N) =
n!

k!(N − k)!
pkqN−k

k
N

k

k
k

k

๏Probability of 
one/one item 
being Y 

๏Probability of 
one/two item 
being Y [order 
not important!] 

๏Probability of 
k/N items being 
Y [order not 
important!]

Binomial distribution

5

P(k = 1 |N = 1) = p

P(k = 1 |N = 2) =
pq + qp

p2 + pq + qpq2
= 2pq



๏For N→∞ with p→0 so that Np stays finite, the Binomial 
distribution takes the form of a Poisson distribution

Limit of rare events
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๏This is the 
distribution 
followed by your 
counting 
experiment for a 
very hard cut on 
the recorded 
energy (i.e., for 
a very small 
number of expected 
background events)



๏k is the unknown (the outcome of our 
experiment counting). It takes 
integer values by construction 

๏λ is the parameter determining the 
distribution shape and it is related 
to the most probable outcome of our 
counting experiment. It might be an 
integer, but in general it is a real 
number (why?)

Poisson distribution
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๏What is the most probable outcome of our experiment? 

๏For a given value of λ, the probability of seeing k=0, 
1, 2, etc. depends on the value of the Poisson 
distribution 

๏So, we can compute the expectation value of k as a 
weighted average of all the possible outcomes of the 
experiment, waited by the value of the Poisson 
distribution

Expectation value
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Expectation value
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Expectation value
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๏E[x] is not enough to characterize 
a distribution 

๏distributions with same E[x] can 
be very different 

๏It is convenient to have a measure 
of the dispersion of points around 
E[x] 

๏One typically introduced the 
variance (aka mean square error)

Variance
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Var[x] = E[(x − E[x])2] = E[x2] − E[x]2



๏The Variance of 
Poisson 
distribution is 
equal to its 
expectation value 

๏It is convenient 
to introduce the 
Root Mean Square 
(RMS) = √Var, 
since it has the 
same “units” as 
the mean and it 
quantifies the 
“statistical 
uncertainty” 
around it

Variance of a Poisson dist.
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E[(k − E[k])2] = E[k2] − E[k]2 = λ2 + λ − λ2 = λ



Expectation value and variance
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Function Distribution E[x] Var[x]

Poisson λ λ

Binomial pN p(1-p)N

Gaussian μ σ2

P(k |λ) =
e−λλk

k!

P(k |p, N) =
N!

k!(N − k)!
pk(1 − p)N−k

G(x |μ, σ) =
1

2πσ
e− (x − μ)2

2σ2



๏The number of entries in a histogram 
bin can be computed as a Y/N question 
(Bernoulli process 

๏The for large pi, the bin counting 
follows a binomial distribution 

๏expected count = 

๏For small p_i, the bin counting 
follows a Poisson distribution  

๏expected counts = 

๏In both cases, the relative 
uncertainty on the expected 
counting decreases ∝ 1/√N  (which is 
why experiments take more data to 
increase precision)

Histogram uncertainty
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Npi ± Npi(1 − pi)

Npi ± Npi



Asymptotic limit: Gaussian
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How big is big λ?
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The special role of Gaussian
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The special role of Gaussian
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๏The central limit theorem establishes the role of the Gaussian distribution as the 
asymptotic limit of a much broader class of problems 

๏In practice, in a counting experiment one has to deal with  

๏The intrinsic variation (statistical uncertainty) associated with the spread of the 
distribution (Poisson, Binomial, etc.) 

๏The systematic uncertainty, associated to the uncertainty on the knowledge of the 
expectation. This is typically the result of many contributions -> it tends to have 
a Gaussian behavior

In probability theory, the central 
limit theorem establishes that, in 
m a n y s i t u a t i o n s , w h e n 
independent random variables are 
s u m m e u p , t h e i r p r o p e r l y 
normalized sum tends toward a 
normal distribution even if the 
original variables themselves are 
not normally distributed. (from 
Wikipedia)

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normal_distribution


๏Demonstrate that a Binomial distribution tends to a 
Gaussian for N→∞ 

๏Calculate the expectation value and the variance of the 
Binomial function 

๏Calculate the expectation value and the variance of the 
Gaussian function

Exercises
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๏We have a discriminating quantity, in our 
case the energy E 

๏We apply a threshold and count values above 
threshold 

๏The integral of the background distribution 
above threshold sets the expected background 
count 

๏In absence of a signal, we expect to observe 
a number of counts distributed around b and 
following a Poisson distribution (we 
typically cut tight enough for the expected 
yield to be small) P(n|b) 

๏In presence of a signal, we expect that the 
observed counting distributed according to a 
Poisson P(n|s+b) (signal, if exists, is 
rare, so s is also small) 

๏How do we know if what we observe favours 
the BKG-only hypothesis P(n|b) or the 
SIG+BKG hypothesis P(n|s+b)?

Back to our counting experiment
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๏Probability: When we introduced distributions, we started 
from known distributions (e.g., a  Poisson on known λ) and 
we tried to characterize a typical experiment outcome  

๏Hypothesis Testing: Now we inverted the problem: we know 
the experiment outcome (e.g., we counted events above 
threshold during a one-year run) and we ask ourselves 
which of two λ values (bkg-only or sig+bkg) they come from 

๏Inference: we could also just ask what is the value of λ 
more compatible with the observation (trivial question in 
this case - right? - but not in general). This is a 
typical application of maximum likelihood fits and a 
regression problem in Machine Learning (not much to say 
about this today) 

Which is the unknown?
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๏You could exclude a signal 
hypothesis, given the 
observation 

๏H0: BKG-only  

๏H1: SIG+BKG 

๏you want to check if the 
data exclude H1 in favour of 
H0 

๏You could establish a signal, 
given the observation, i.e. 
reject H0 in favour of H1 

๏observe more than “5 sigma” 
evidence

Hypothesis Testing
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๏In your counting experiment, the 
expected signal depends on the 
mass of the particle and its 
cross section 

๏Assume a mass value 

๏For each mass value, assume a 
cross section and build the two 
distributions for a test 
statistic (e.g., the expected 
counting) Λ under H0 and H1 

๏A simple Poisson distribution 
for our example 

๏But life much be harder and 
you might need to use toy MC 
experiments to obtain these 
distributions

Trying to exclude a signal
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   Λ          



Your observation
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Λ

H1

H0

-2ln(Λobs)

   Λ          

   Λobs          



Observed CLs+b
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Λ

H1

H0

-2ln(Λobs)

CLs+b

   Λ          

   Λobs          CL =  confidence level



Observed CLb
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Λ

H1

H0

-2ln(Λobs)

CLb

   Λ          

   Λobs          



Observed CLs
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Λ

H1

H0

-2ln(Λobs)

CLs+b

CLb
CLs=

   Λ          

   Λobs          



Expected CLs
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Λ

H1

H0

-2ln(Λmedian)

CLs+b

CLb
CLs=

CLb=0.5 
(definition of 
median)

=2CLs+b

   Λ          

   Λmedian          



Λ

H1

H0

CLs+b

CLb
CLs=

CLs+b
=

0.16

16
%

34
%

34
%

16
%

Expected “1 sigma” CLs
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   Λ          

Λmedian+34%Λmedian-34%



๏At fixed mass value, repeat the procedure for different cross section values 
and compute 

๏observed CLs 

๏expected CLs @ median 

๏expected CLs ±1σ 

๏expected CLs ±2σ

Build the CLs exclusion

30

Cross section

0.4 1.8



Cross section

Observed

0.4 1.8

๏At fixed mass value, repeat the procedure for different cross section values 
and compute 

๏observed CLs 

๏expected CLs @ median 

๏expected CLs ±1σ 

๏expected CLs ±2σ

Build the CLs exclusion
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95% CLs

90% CLs



Build the CLs exclusion
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Cross section

Observed

0.4 1.8

95% CLs

90% CLs

๏At fixed mass value, repeat the procedure for different cross section values 
and compute 

๏observed CLs 

๏expected CLs @ median 

๏expected CLs ±1σ 

๏expected CLs ±2σ



Build the CLs exclusion
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Cross section

Observed

0.4 1.8

95% CLs

90% CLs

๏At fixed mass value, repeat the procedure for different cross section values 
and compute 

๏observed CLs 

๏expected CLs @ median 

๏expected CLs ±1σ 

๏expected CLs ±2σ



๏Repeating the procedure for every mass value, one derives 
the exclusion plot that you typically see on papers

Build the CLs exclusion
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๏Sometimes observed line goes 
outside the band. This is the 
sign that something is going 
on 

๏A weak limit implies that 
the outcome is signal-like, 
so the signal can’t be 
excluded 

๏A strong limit implies the 
opposite: data fluctuated 
below the expectation 

๏People read this as evidence 
of a signal. But this is not 
a correct quantitative 
statement. A different 
procedure is needed in that 
case

How to read these plots wrongly
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๏To claim a discovery, one needs 
to exclude the possibility that 
background could mimic a signal 

๏To do so, one measures (with toy 
experiments? by hand?) the 
probability that a bkg-only 
sample gives a result as signal-
like as what was seen on data 

๏If a conventional threshold 
(decided a-priori, e.g., the 5σ 
threshold in HEP) is passed, a 
discovery is claimed 

Number of Sigmas
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Background p-value
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Λ

H1

H0

-2ln(Λobs)

   Λ          

   Λobs          
p-value = probability of having a result 
more extremal (i.e., more towards the 

tail) than the observed one



Λ

H1

H0

-2ln(Λobs)

Background p-value
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   Λ          

   Λobs          This is a much stronger evidence for a 
signal: result more on the tail of the 
bkg-only distribution, towards signal 

distribution



That’s how you’ll make your discovery
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๏The power of your test depends on how well separating the 
chosen Λ quantity is (the Energy distribution in our example) 

๏What’s the best Λ? In absence of systematic uncertainties (aka, 
simple hypotheses, more about this later), we have an answer 

๏Next question: what is a likelihood?

Which test statistics?
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๏Given a statistical model (e.g., our Poisson of known λ 
and unknown k), we can assess probabilities. Pr is a 
function of k 

๏Given a class of statistical models for k, function of 
unknown λ, we have a likelihood model 

๏A likelihood is a function of λ, given the observed k

Likelihood
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๏Let’s imagine a histogram of a quantity x 
and a curve b(x) predicting the amount of 
expected background 

๏for each bin centre xi we can compute 
bi=b(xi) 

๏the bi values will depend on a set of 
parameters that describe the curve y = 
b(x) 

๏In each bin, we observe some counting ni 

๏The likelihood of the model is given by

Likelihood
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ℒ( ⃗n | ⃗α ) = ∏
i

P(ni |bi( ⃗α )) = ∏
i

P(ni |b(xi | ⃗α )) = ∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!



๏A simple hypothesis is one in which the statistical 
model is fully specified 

๏In our example, we do know the α values for a BKG-only 
and and SIG+BKG model 

๏Whenever this is not the case, the likelihood ratio is 
not the strongest test statistics 

๏This is always the case, since there are nuisance 
parameters determining systematic effects 

๏This doesn’t mean that the LR test statistics should not 
be used

Simple hypotheses
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๏In real life, many (all?) the a parameters might be unknown but we might have some 
information on them  

๏Theory parameters might be predicted by a calculation 

๏Experimental parameters (e.g., muon reconstruction efficiency) might be known from a 
control sample 

๏In this case, the model is extended multiplying the likelihood by the function that 
constraints α around some measured value ᾶ. This is where statistical interpretations 
diverge 

๏Frequentist: ᾱ is a measured value of α and the product of P and the likelihood is still 

a likelihood 

๏Bayesian: P(ᾱ) is a prior function of α and the product of P and the likelihood is a 

posterior probability function

Non-simple hypotheses
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∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!
→ ∏

i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni! ∏
j

𝒫(ᾱj |αj)

∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!
→ ∏

i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni! ∏
j

𝒫(αj | ᾱj)



๏One would then try to go back to a simple-hypothesis 
case, removing the dependence on the nuisance parameters 

๏Profiled likelihood:  

๏Marginalized posterior:  

๏In any case, when is Gaussian and narrow, the difference 
becomes small: even in Bayesian statistics one tends to 
use the maximum posterior approximation 

ℒ(D |α)𝒫(ᾱ |α) → ℒ̂(D | α̂) = max
α

ℒ(D |α)𝒫(ᾱ |α)

ℒ(D |α)𝒫(ᾱ |α) → ∫ dαℒ(D |α)𝒫(α | ᾱ)

Back to simple hypothesis
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๏When using a max-like approximation, one goes back to 
simple hypotheses. The likelihood ratio is then  

๏The NP Lemma does not guarantees that this is the 
optimal choice 

๏It is also very demanding computationally  

๏For hypothesis testing, one needs to generate “toy 
samples” and profile the likelihood at each toy to 
build the test statistics distribution

Back to simple hypothesis
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ℒ̂(D |H1)
ℒ̂(D |H0)

=
ℒ̂(D |μ = μ̄)
ℒ̂(D |μ = 0)

Signal yield (and shape) fixed to specific signal under test 

Signal yield =0, i.e., BKG-only hypothesis



๏At the LHC, one typically uses a 
different test statistics 

๏It can be demonstrated that for 
large-enough samples this test 
statistics assumes a specific 
analytical shape independent of 
nuisance (Wilks theorem) 

๏Its p-values, CLs etc can be 
computed analytically in a few 
seconds, w/o running any toy-
sample minimisation

The LHC Test Statistics
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̂ℒ̂(D |μ = μ̄)
ℒ̂(D)

=
maxα ℒ(D |μ = μ̄, α)𝒫(ᾱ |α)

maxα,μ ℒ(D |μ, α)𝒫(ᾱ |α)
 with(*)  0 ≤ μ ≤ μ̄

(*) It's more complicated than that when the max on μ is outside the fit range. 
See "Practical Statistics for the LHC" by K. Cranmer for more details

https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0


๏You are not expected to be doing this by hand 

๏ROOT has specific packages (RooFit+RooStat) for this  

๏Experiments have software tools built on it that 
implement most of the routine statistical applications 
that you need to survive: 

๏ATLAS PyHf  

๏CMS Combine 

๏But it is important to have clear in mind what is going 
on in these softwares

Hypothesis testing in practice
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https://iris-hep.org/projects/pyhf.html
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/


๏PDG Statistics Review  

๏K. Cranmer “Practical Statistics for the LHC" 

๏ATLAS+CMS “Procedure for the LHC Higgs boson search combination in Summer 2011” 

And references there 

But don’t forget that: 

Most of what we do is custom convention, not always based on solid 
(professional) statistics foundation (e.g., CLs) 

Some statistician would call HEP people “Fisher likelihoodists” more than 
frequentists 

At the end of the day, we write down a posterior and we pretend that it’s a 
likelihood (most of the s constraining the nuisance are not measurements, 
e.g., our priors on theory uncertainties) 

There is a Bayesian world out there

𝒫

Further Reading
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https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://cds.cern.ch/record/1379837/files/NOTE2011_005.pdf

