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Ol Searching for a si

® You are searching for Dark Matter. You
build a detector underground, screened
by any source of natural radiation

® You are waiting for a DM particle to hit
your detector and produce an energy
deposit

® S1ignal = large energy deposit leading
to a large electronic signal

® Background = electronic noise

N
® You count events with large enough ?
electronic signal >
O

J

® You you see any, you get a Nobel Pri

® Why do you need statistics at all?
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Ol Seporating Sig from Bkg swener

@ Real life 1s not li1ke that: whatever 1s
your fiducial region (your cut on E) you
never expect 0 background ‘

@ This 1s true even 1f you know exactly
the number of bkg events you expect
(e.g., A = 1 event)

@ Th1s 1s because statistical
fluctuations happen

@ I you toss the same coin ten times,
you expect 5 heads, but you might
see 4, or 6, etc

® What 1s the probability of seeing k
events when you expect A?
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Bernoullls process SMARTHER -

® You pick k 1tems out of a
bag with N 1tems and you
ask a yes/no question

Axiomatic Probability
® has my event E above a

hreshold? Probability is a set function P(E) that assigns to every event E
threshold a number called the “probability of E” such that:

® 1S my ball red? |. The probability of an event is greater than or equal to zero
P(E)=0
O Let’s call 2.The probability of the sample space is one
P(€2) =1

@p: probability that the
answer 1s Yes

© Byjus.com

©q = 1-p : probability
an e answer 1 0 e
Herc e




Binomial distribution  sweme

@ Probability of _ _ _
one/one 1tem P(k=1|N=1) — P

being Y 4+
Pk=1|N=2)=—279% _ 1,

o 2 2
® Probability of P+ pq + gpq
one/two 1tem
being Y [order Probability that the selected
. event is obtained k times out
not 1mportant I'] of the total of N trials.
n! ' 7/ /, Probabability that something
o ther than the ch vent
@ Probability of P(k ‘ N)y=—— pqu —k | willoccur in allthe other tials.
k/N items being k'(N — k) !

.  The' combnnatuon expression, which is
Tmportant ! ] : the permutation relationship (the number ,
. of ways to get k occurrences of the selected
. event) divided by k ! (the number of different

Y [order not T ———— ;

orders in which the k events could be chosen, : . European
. assuming they are distinguishable). ; HEOYC oo
5 ............................................................ -".‘.,“.’..'.o..: ;.:::




® For N—=o with p—0 so that Np stays finite, the Binomial
distribution takes the form of a Poisson distribution

@ Th1s 1s the FCMNIV):_:V_"__ e (1-¢) :
distribution (v )t K
fol lowed by your
counting =

experiment for a
very hard cut on
the recorded
energy (1.e., for
a very small
number of expected
background events)




Polsson distribution  swmRc

Ake—A
f(E{A) = Pr(X=k) = T
0.40 .

@k is the unknown (the outcome of our  035f 1 fifi
experiment counting). It takes 0.0 b . /\;10 i
integer values by construction _oxl

— 0.
. . 020}
@A 1s the parameter determining the 2
: : . C 0.5 F
distribution shape and 1t 1s related
to the most probable outcome of our 0107
counting experiment. It might be an 0.05
1nteger, but 1n general 1t 1s a real 0.00 -5 - - m
number (why?)
erc Coun
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® What 1s the most probable outcome of our experiment?

® For a given value of A, the probability of seeing k=0,
1, 2, etc. depends on the value of the Poisson
distribution

® So, we can compute the expectation value of k as a
weighted average of all the possible outcomes of the
experiment, waited by the value of the Poisson
distribution




Expectation value SMARTHEP -
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Expectation value

DEFrFInvITION -
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Variance SMARTHEP

@ E[x] 15 not enough to characterize
a distribution

@distributions with same E[x] can
be very different

@It 1s convenient to have a measure
of the dispersion of points around

E[x]

® One typically 1ntroduced the
variance (aka mean square error)

Var[x] = E[(x — E[x])*] = E[x*] — E[x]*

11



variance or 3 PolSson dist. memi

® The Variance of
Poisson
distribution 1s
equal to 1ts
expectation value

@ It 1s convenient
to 1ntroduce the
Root Mean Square
(RMS) = yVar,
since it has the
same “units” as
the mean and it
quantifies the
“statistical
uncertainty”
around 1t

ELE -

= _A .

K
= € A K
4

—

b !

=5
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Expectation value and varianCce SMARTHEP -

Function Distribution

—A1k
Poisson Pk|2) = e "4 A A

k!

N k N—k
Binomial P(k|p,N) = KI(N — k)!p (I =p) oN p(1-p)N
1 _(x—/t)2
Gx|u,o) = e 202
Gaussian \/ 2o ¥ 02
:..e.:rc E:uncuh
11 5 £ R
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Histoaram uncertalnt

® The number of entries 1n a histogram

bin can be computed as a Y/N question
(Bernoull1 process

® The for large pi, the bin counting

175 -
follows a binomial distribution

150 -

® expected count = Np; i\/Np,-(l —P;)  125-

-
o
o

frequency

® For small p_1, the bin counting

follows a Poisson distribution =

50 -

® expected counts = Np,x£4/Np. % .
@ In both cases, the relative ’ 5

uncertainty on the expected

counting decreases <« 1/JYN (which is

why experiments take more data to

increase precision) Bt o
p %i%.g.rc Council
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RAsymptotic imit: Gaussian sweme
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@ The speclal role of Gaussian sMARTHE -
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The speclal role of Gaussian

® The central 1imit theorem establishes the role of the Gaussian distribution as the
asymptotic limit of a much broader class of problems

In probability theory, the central
limit theorem establishes that, In
many situations, when
independent random variables are
summe up, their properly
normalized sum tends toward a
normal distribution even Iif the
original variables themselves are
not normally distributed. (from

Density

1.0~
0.8 4
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0.4 4

3
-
-
1
~
-

-

-

0.2

0.0

Density of Sum of 2 Independent Uniform(0,1)

Random Variables Densities of Sums of Independent U[0,1] Deviates

1 2
1 1#

3 Undorm Dewates
6 Uniform Dewates
2 Unidform Dewviates

—n

Density
o — (%) w EN o ) -~ 0
| | | | | | |

Wlklpedla) 00 02 04 06 08 10 12 14 16 18 20 “0 1

Z=U1+U2

@® In practice, 1n a counting experiment one has to deal with

® The 1ntrinsic variation (statistical uncertainty) associated with the spread of the
distribution (Poisson, Binomial, etc.)

® The systematic uncertainty, associated to the uncertainty on the knowledge of the
expectation. This 1s typically the result of many contributions -> 1t tends to have
a Gaussian behavior

.
"_" ‘ -
oooooooooo

- -
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https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normal_distribution

Exercises SMARTHEP -

@ Demonstrate that a Binomial distribution tends to a
Gaussian for N—ow

@ Calculate the expectation value and the variance of the
Binomial function

@ Calculate the expectation value and the variance of the
Gaussian function

19




3’ Back to our counting experiment sMaArTHep

® We have a discriminating quantity, 1n our
case the energy E

@ We apply a threshold and count values above L6 (
threshold B' $’ &

® The 1ntegral of the background distribution
above threshold sets the expected background
count

@® In absence of a signal, we expect to observe
a number of counts distributed around b and
following a Poisson distribution (we

typically cut tight enough for the expected
yield to be small) P(n/b)

C ouwnwTS

1155
'lllll.:'—\

.‘u-.--.-

== Ip=
@ In presence of a signal, we expect that the Il b é
observed counting distributed according to a
Poisson P(n|s+b) (signal, 1f exists, 1S
rare, so s 1s also small)

@ How do we know 1f what we observe favours
the BKG-only hypothesis P(n[b) or the o
SIG+BKG hypothesis P(n|s+b)? R | Suopem

-'-:grc Council
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Whieh s the unknowne  swerer

® Probability: When we 1ntroduced distributions, we started
from known distributions (e.g., a Poisson on known A) and
we tried to characterize a typical experiment outcome

® Hypothesis Testing: Now we 1nverted the problem: we know
the experiment outcome (e.g., we counted events above
threshold during a one-year run) and we ask ourselves
which of two A values (bkg-only or sig+bkg) they come from

@ Inference: we could also just ask what 1s the value of A
more compatible with the observation (trivial question 1n
this case - right? - but not 1n general). This 1s a
typical application of maximum likelihood fits and a
regression problem 1n Machine Learning (not much to say
about this today) | cvren

=1
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othesis Testin SMARTHEP
® You could exclude a signal 20 o e~ =
: : c £ ATLAS 2011-2012 [+ -
hypothesis, given the S F ; + 26 -
. é - \s=7TeV: det=4.6-4.8fb - .
observation = [ \s=8Tev:|Ldt-5859f" — Observed g
1 L Bkg. Expected 4
o L /\
® HO: BKG-only 2
3
@ H1: SIG+BKG
g o CLLimits —
® you want to check i1f the 110 150 200 00 40 5[%%6\/]
data exclude H1 1n favour of 1
o I e e o BB R 08
HO 3 %7 o
] - 126
R [V S / e
® You could establish a signal, gm"‘:— T\ 1,
given the observation, 1.e. = \/ =
. . 10° = - 56
reject HO 1n favour of Hl1 - 7°
10° — . __6
@ observe more than "5 sigma” 100 e | e -
viden = HoyeHozz T A R | R
€ de ce 10—12_,...;....i....:....:Y.Y...:....:...~.~,.=7G ._:--..:.-:.-,.-:.grccgunc;.
== 110 115 120 125 130 135 14 145 -_-...f_.::.:-:... ;:.:-:-5
m, (GeV) R




® In your counting experiment, the
expected signal depends on the

mass of the particle and 17ts [::]H1
Cross section

@ Assume a mass value

ents
S
(-
(-
(-
T
o

@ For each mass value, assume a
cross section and build the two
distributions for a test
statistic (e.g., the expected
counting) A under HO and H1

-Experim

Pseudo
N
(-
(-
(-]

@A simple Poisson distribution
for our example

@ But 11fe much be harder and
you might need to use toy MC A
experiments to obtain these
distributions D | European
CHETC| comer

=3



Your observation SMARTHERS
Nobs.

N
-
-
-
L
S

-Experiments

Pseudo
N
(-
(-]
(-

=24



Observed ClL s+b SMARTHEP

Nobs CL = confidence level

CLs+b

N
-
-
-
L
S

-Experiments

Pseudo
N
(-
(-]
(-

=5



/

_ OoservedCls =~ semRc

/\QbS,

e
o
-,
S
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-Experiments

N
-
-
-

Pseudo
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_ Observed CLs =  ses

/\QbS,

N
-
-
-
L
S

-Experiments

Pseudo
N
(-
(-]
(-

=2/
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Expected CL s

Amgdian ,

C Ls+b
CLys —— 2CLs+b

CLp

N
-
-
-
I
o

CL,=0.5
(definition of
median)

Experiments

Pseudo-
N
(-
(-
(-

N\
R LT Research
' -::::'.erc Council
® o ‘o.o.o..... ®
. ~. .. :::o..:...:..
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C Ls+b C Ls+b

N
-
-
-

CLp 0.16

-Experiments

Pseudo
N
o
(-]
(-]

Laterdetle ean
o o.'. e® 0... .
R = esearc
'-’,-‘.'.'.e, c Counci
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Bulgd the CLs exclusion s

@At fixed mass value, repeat the procedure for different cross section values
and compute

@ observed (CLs

® expected CLs @ median

® expected (CLs *1o

@ expected CLs +20 10 - ; $

12
0.4 1.8

Cross section

o ;:;:..‘:'..:; European
.-, .

. RRRX AL Research
| -::::'.erc Council
.:.:o:....:: .,
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Ol Build the CLs exclusion swane

@At fixed mass value, repeat the procedure for different cross section values
and compute

‘_]wl
@,

-

@ observed ClLs

® expected CLs @ median

Observed

® expected (CLs *1o

90% CLs

-1
@ expected (CLs *20 10 :

¥ ;.:;-..; European
XX o s Research
' -',:‘.‘.'.erc Council
e ees
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| Buid the CLs exclusion swre

@At fixed mass value, repeat the procedure for different cross section values
and compute

- |
@ observed CLs 5 L
® expected CLs @ median :

| Observed
® expected ClLs #1o I
90% CLs
-1

® expected CLs +20 ol w

1n2 '

. .;...:...; European
.";’.'-°.."°° 24 Research
e I:‘.':erc Council
:.:. :,’::: oy
2 e
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Buld the CLs exclusion swere:

@At fixed mass value, repeat the procedure for different cross section values
and compute

@ observed CLs

Observed

® expected CLs @ median

® expected (CLs *1o
90% CLs

® expected (CLs +20

= : ;...:...; European
B S Research
‘ -',-‘.‘.'.erc Council
...‘.:. o ,'.o:: oy
33 e
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Bl Build the CLs exclusion swen

® Repeating the procedure for every mass value, one derives
the exclusion plot that you typically see on papers

3. 1o T T -
c | ATLAS 2011-2012 [+ 1o -
E - \s=7TeV: det=4.6-4.8 fo’ t+ 20 _
7 : \'s =8 TeV: fl_dt=5.8-5.9 ip? — Observed :
4 | N Bkg. Expected

O

o 1 B\ e

o~

LO

o)

10" E CLS Limits —
110 150 200 300 400 500
mH [G eV] .::::,. European

=4 s




Ol How to read these plots wrongly swastee

® Sometimes observed I|ine goes
outside the band. This 1s the

CMS \s=7TeV,L=5.11" \s=8TeV,L=531b"

Sign that Something 7.5 going (L) _I | | | | | | | | | | | |SI | Iel | | | | | |SI | Iel | | | | I_

2. 1E —=— Observed =

o s S U Expected (68%) | =
"6 10-1 —— ‘ ------- Expected (95%) |—= 05%

@A weak Timit implies that < s =
the outcome is signal-like, < 102g A A o997
so the signal can’t be =N AV WA

excluded = 10 e/ = |

. . . . 2 10-4 ;— ~\s —;

@A strong 11mit 1mplies the n = =

opposite: data fluctuated O ,o5L _

below the expectation 1’ E =

© 0%k =

® People read this as evidence 75 =

1 1 ; 10 == v Lo v v b b s e Ny T

gféiri;gza;&agggtggzie7s not 110 115 120 125 130 135 140 145

: m, (GeV

statement. A different 1 (GeV)
procedure 1s needed 1n that Curenn
CaS e i:::;::g.rc Council

=5 T,




umber of Sigmas SMARTHEP -

@ To claim a discovery, one needs E T
to exclude the possibility that & S
background could mimic a signal 8 =0

® To do so, one measures (with toy N
experiments? by hand?) the L e I S -

. . | BTy Hovyy+H-—>ZZ .\\__70
probability that a bkg-only O TR I T
sample gives a result as signal- e MGy

. = ATLAS 2011 + 2012 Data
77/(8 as What was Seern on data § [ Ldt~ 4648.fb \s=7TeV |Ldt~58-59f5"1s=8TeV
@ If a conventional threshold T e e

(decided a-priori, e.g., the 5o
threshold 1n HEP) 1s passed, a
discovery 1s claimed

10 115 120 125 130 135 140 145 150 | European
my [GeV] : Council
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p-value = probability of having a result
more extremal (i.e., more towards the
- tail) than the observed one

20
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This is a much stronger evidence for a

i
-
-
-

-Experiments

Pseudo
N
(-
(-
(-

38

signal: result more on the tail of the
bkg-only distribution, towards signal
distribution

20




(X That's how you’'ll make your discovery SMARTHEP -

CMS \s=7TeV.L=51t"' {s=8TeV,L=531b"

1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I
g i _ - _’; _|1o
. , e 120
(_5_ 10 i 30
8 | —
4
o 107 —
9 — = 40
6| _
107 C -1 90
10° - -
% 66
| = Combined obs. ‘\. -
107" | ---- Exp. for SM H e —
| =—Vs=7TeV T _
~ |—— Vs=8TeV H—=vy+H— 22 e 76
10’12 1 T T 1 T T 1 I I T T 1 T T 1 1 |~‘1.—

'1 15 120 125 130 135 140 145 : erc —
39 m,, (G e V) Counds
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® The power of your test depends on how well separating the
chosen N quantity 1s (the Energy distribution 1n our example)

® What’s the best A? In absence of systematic uncertainties (aka,
simple hypotheses, more about this later), we have an answer

type I error per unit increase of power”. Another interpretation is that these are the points
providing the strongest evidence in favor of H; over Hy. The statistic

9= 1150

is called the likelihood ratio statistic, and the test that rejects for small values of L(X)

is called the likelihood ratio test. The Neyman-Pearson lemma shows that the likelihood
ratio test is the most powerful test of H, against H;:

Theorem 6.1 (Neyman-Pearson lemma). Let Hy and H, be simple hypotheses (in which the
data distributions are either both discrete or both continuous). For a constant ¢ > 0, suppose
that the likelihood ratio test which rejects Hy when L(x) < c¢ has significance level a. Then

for any other test of Hy with significance level at most «, its power against Hy is at most
the power of this likelihood ratio test.

® Next question: what 1s a likeli1hood?

s s ...:..‘ European
LI Research
| -‘_-‘.'.'.erc Council
g '.:.:.::.O:: o,
40 RS




\ee=A
k!

@ Given a statistical model (e.g., our Poisson of known A
and unknown k), we can assess probabilities. Pr 1s a
function of k

Pr(X=k) =

@ Given a class of statistical models for k, function of
unknown A, we have a li1kelihood model

@A l1kelihood 1s a function of A, given the observed k

4]



Likelinhooaod

@ Let’s 1magine a histogram of a quantity Xx
and a curve b(x) predicting the amount of
expected background

@ for each bin centre xi we can compute
bi=b (x;i)

® the bi values will depend on a set of
parameters that describe the curve y =

b(x)
® In each bin, we observe some counting ni

® The l1kelihood of the model 1s given by

21| @) = [[Posl @) = [[ Pl b1 @) =

A =

30
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Simple hypotheses

@A simple hypothesis 1s one 1n which the statistical
model 1s fully specified

® In our example, we do know the a values for a BKG-only
and and SIG+BKG model

® Whenever this 1s not the case, the likeli1hood ratio 1s
not the strongest test statistics

® This 1s always the case, since there are nuisance
parameters determining systematic effects

@ Th1s doesn’t mean that the LR test statistics should not
be used

43




Bl MNon-simple hypotheses  swane

@ In real 1i1fe, many (all?) the a parameters might be unknown but we might have some
Tinformation on them

® Theory parameters might be predicted by a calculation

® Experimental parameters (e.g., muon reconstruction efficiency) might be known from a
control sample

@ In this case, the model 1s extended multiplying the li1kelihood by the function that
constraints a around some measured value . This 1s where statistical 1nterpretations
diverge

@ Frequentist: a 1s a measured value of a and the product of L and the likelihood is still

a likeli1hood e_b(xila‘)b(x \7)”

| ; —b(xla) n,
H n.!z )H b(x‘a) H@(a‘a)

l ! l

@ Bayesian: L(a) is a prior function of a and the product of ?and the l1kelihood 1s a

e—b(xilﬁ)b(xi | )" e—b(xilﬁ)b(xi | )"
H ’ H l_IgJ (aj‘aj)

ni! ni!

l l ] s _.:;-.° European

et re et Research
L, %0
2T C| counc

.. '...........:: ..'

posterior probability function
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BacK to simple hypothesis s

@® One would then try to go back to a simple-hypothesis
case, removing the dependence on the nuisance parameters

o Profiled Tikelihood: Z(D|a)P@|a) - L(D| &) = max L(D|a)P(a|a)

@Marginah'zed posterior: LD|a)P(a|a) — JdafZ(D\a)@(alo‘c)

® In any case, when 1s Gaussian and narrow, the difference
becomes small: even 1n Bayesian statistics one tends to
use the maximum posterior approximation

45



BackK to simple hypothesi|s e

® When using a max-11ke approximation, one goes back to
simple hypotheses. The li1kelihood ratio 1s then

:? (D \ H 1) :? (D U = /Z) Signal yield (and shape) fixed to specific signal under test

:?(D | Hy) - ff(D u = (0) Signalyield =0, i.e., BKG-only hypothesis

® The NP Lemma does not guarantees that this 1s the
optimal choice

@It 1s also very demanding computationally

® For hypothesis testing, one needs to generate “toy
samples” and profile the likelihood at each toy to
build the test statistics distribution

46



@ At the LHC, one typically uses a

—

Q

\l
—l'rm111| | lllllrl'l

@ Its p-values, CLs etc can be

different test statistics 4 0 e
A ] ] ] 1E s=10,b=10,7="1
ZD|p=p)  max, L(D|p= g, )P (ala) K
&(D) (D | p, )P (@ | a) TOEN ™ .
with® 0 < u < 10-2? N .. / (q()l ) _§
® It can be demonstrated that for 107F N E
large-enough samples this test 104k BN .
statistics assumes a specific <F N E
analytical shape independent of 107 . = -
nuisance (Wilks theorem) 10°® N =
f(d,10) -
AV R
4

. . -8
computed ana7yt7cag77y 1n a few 107" 5 10 15 20 o5
seconds, w/o0 running any toy-
sample minimisation

() It's more complicated than that when the max on p is outside the fit range.

See "Practical Statistics for the LHC" by K. Cranmer for more details
47
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https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
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Hypothesis testing 1N practice smarr

ANAL
D IN

® You are not expected to be doing this by hand
® ROOT has specific packages (RooFit+RooStat) for this

® Experiments have software tools built on 1t that
1mp lement most of the routine statistical applications
that you need to survive:

®ATLAS PyHf

@ CMS Combine

@ But 1t 1s 1mportant to have clear 1n mind what 1s going
on 1n these softwares

48
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https://iris-hep.org/projects/pyhf.html
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

Further Readin

@ PDG Statistics Review

® K. Cranmer “Practical Statistics for the LHC"

JJ

@® ATLAS+CMS “Procedure for the [HC Higgs boson search combination in Summer 2011

And references there
But don’t forget that:

O Most of what we do 1s custom convention, not always based on solid
(professional) statistics foundation (e.g., CLsS)

O Some statistician would call HEP people “Fisher Ilikelihoodists” more than
frequentists

O At the end of the day, we write down a posterior and we pretend that 1t’s a

likelihood (most of the Ss constraining the nuisance are not measurements,
e.g., our priors on theory uncertainties)

O There 1s a Bayesian world out there
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https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://cds.cern.ch/record/1379837/files/NOTE2011_005.pdf

