PART 4

WHAT WILL THIS LECTURE BE ABOUT?

INTRODUCTION

• Definitions and basic concepts

INPUT TO THE PHYSICS

- The data: trigger, data preparation
- The theory: Monte carlo simulations
- Reconstruction, or how to translate detector signals to particles

PHYSICS ANALYSES

- Through example, step-by-step
- Discussion of analysis methods

Is there a topic you would like to add to this material? If so: please let me know at the end of this lecture and I will see if I can add it!

LHC PHYSICS AN ANALYSIS STEP-BY-STEP

PHYSICS ANALYSES

"Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.

Measurements

- Allow important tests of the consistency of the theory.
- Typically limited
 by systematic uncertainties.

Searches

- ◎ ... For new particles.
- If no signal, set limits on some model.
- If signal, a potential discovery!
- More data typically improve a search.

SIMPLE EXAMPLE: MEASURING THE Z⁰ CROSS-SECTION AT LHC

© Z^o boson decays to lepton or quark pairs

O We can reconstruct it in the e⁺e⁻ or $\mu^+\mu^-$ decay modes

Obscovery and study of the Z^o boson was a critical part of understanding the electroweak force.

O And now, at the LHC?

- Important test of theory: does the measurement agree with the theoretical prediction at LHC collision energy?
- A standard candle for studying reconstruction and deriving calibrations.
- Can be used for luminosity determination!

MEASURING THE Z^0 CROSS-SECTION AT LHC

MEASURING THE Z⁰ CROSS-SECTION AT LHC

RECONSTRUCTING Z⁰'S

STEP-1: IDENTIFY THE OBSERVABLE OF INTEREST

- Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \mathbf{p}_i) = 4$ -vector for lepton *i*

- Under assumption that lepton is massless compared to mass of Z^o => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

STEP-2: SELECT Z⁰ **EVENTS WITH** 'ANALYSIS CUTS':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z^o mass

(e.g. 70<m_{l+l-}<110 GeV)

Very little background in Z^o mass region!

RECONSTRUCTING Z⁰'S

STEP-1: IDENTIFY THE OBSERVABLE OF INTEREST

- Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \mathbf{p}_i) = 4$ -vector for lepton *i*

- Under assumption that lepton is massless compared to mass of Z^o => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

STEP-2: SELECT Z^0 events with 'ANALYSIS CUTS':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z^o mass

(e.g. 70<m_{l+l-}<110 GeV)

Very little background in Z^o mass region!

Z->ee in UA1

Two EM clusters with E_T >25GeV.

205

As above plus a track with $p_T > 7$ GeV pointing to the cluster. Hadronic and track isolation requirements applied.

A second cluster has also an isolated track.

http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf

MEASURING Z⁰ CROSS-SECTION

THEORETICALLY

Cross-section calculated for:

- © Specific production mechanism (pp, pp, e⁺e⁻)
- © Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

EXPERIMENTALLY

$$\sigma \cdot \mathrm{BR} = \frac{\mathrm{Number \ of \ events}}{\alpha \cdot \epsilon \cdot \mathrm{L}}$$

N of events: N of events on data – N of expected background events
 α – acceptance: fraction of events passing selection requirements
 ε – efficiency: reconstruction efficiency of relevant objects
 L – luminosity

All numbers carry **uncertainties** – both **"statistical"** and **"systematic"**!

MEASURING Z⁰ CROSS-SECTION

THEORETICALLY

Cross-section calculated for:

- [©] Specific production mechanism (pp, pp, e⁺e⁻)
- © Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

EXPERIMENTALLY

$$\sigma \cdot \mathrm{BR} = \tfrac{\mathrm{Number of events}}{\alpha \cdot \epsilon \cdot \mathrm{L}}$$

N of events: N of events on data – N of expected background events
 α – acceptance: fraction of events passing selection requirements
 ε – efficiency: reconstruction efficiency of relevant objects
 L – luminosity

All numbers carry **uncertainties** – both **"statistical"** and **"systematic"**!

Total production cross section [nb]

207

MEASURING Z⁰ CROSS-SECTION

MEASURING W CROSS-SECTION

$$M_{T^{2}} = 2 E_{T_{1}} E_{T_{2}} (1 - \cos \theta_{12})$$

MEASURING W CROSS-SECTION

ANALYSIS FLOW - E.G. CROSS-SECTION MEASUREMENT

ANALYSIS FLOW - E.G. CROSS-SECTION MEASUREMENT

MASSES - RECENT NEWS! (NOT FROM THE LHC)

"

This measurement, M_W =80,433.5±9.4 MeV, is more precise than all previous measurements of M_W combined.

A comparison with the SM expectation of M_W =80,357±6 MeV [...] yields a difference with a significance of 7.0 σ and suggests the possibility of improvements to the SM calculation or of extensions to the SM.

https://www.science.org/doi/10.1126/science.abk1781

Following up from discussion in class...

WHAT "NEW PHYSICS" CAN CREATE BUMPS?

Many models giving answers to the SM problems include new heavy particles with short lifetime that appear as resonances

- Heavy bosons e.g. in grand unified and additional gauge symmetries
- High mass states, gravitons, e.g. in 'randall-sundrum' models
- Heavy quark partners, excited leptons, leptoquarks
- Composite Higgs
- Dark matter candidates

SIMPLE SEARCH EXAMPLE: SEARCH FOR A HEAVY Z'

Ike Z->ee but at higher mass

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Data inconsistent with a 1TeV Z'

Cross-section decreases with mass (higher the mass of the Z', the more data needed to discover it)

SIMPLE SEARCH EXAMPLE: SEARCH FOR A HEAVY Z'

And similar for muons

Events

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Data inconsistent with a 1TeV Z'

Cross-section decreases with mass (higher the mass of the Z', the more data needed to discover it)

A SMALL COMPARISON

Differences in:

- Resolution
- **Background composition**
- Oataset

EVOLUTION...

ATLAS Preliminary

 $L dt = 236 \text{ pb}^{-1}$

√s = 7 TeV

200

300

Data 2011
 Z/γ*
 Diboson

W+Jets

1000

QCD Z'(1000 GeV) Z'(1250 GeV) Z'(1500 GeV)

2000

 $m_{\mu\mu}$ [GeV]

🗖 tī

arXiv:1209.2535

EXCLUSION LIMITS

EVOLUTION...

223

arXiv:1903.06248

EXCLUSION LIMITS

HIGH MASS RESONANCES

SEARCHES

A WELL-KNOWN BUMP SEARCH

THANK YOU MARIO!

BUT OUR PRINCESS IS IN ANOTHER CASTLE!

LHC PHYSICS OTHER SEARCHES

ANOTHER SEARCH EXAMPLE: SEARCH FOR SUSY IN EVENTS WITH LARGE JET MULTIPLICITIES

Disclaimer:

This is only an example!

There are numerous such searches! Each of them differs in

- event selections,
- background determinations,
- methodology SEARCHING FOR NEW PHYSICS IS FUN!

b-jets

233

b-jets

Signal regions can range in jet p_T and jet & b-jet multiplicity.

"fat-jets"

235

"fat-jets"

236

"fat-jets"

"fat-jets"

Fat-jets are a key signature in searches for boosted objects, e.g. boosted tops. 238

"fat-jets"

 $m_j (\text{QCD}) < m_j (\text{SUSY})$ Proposed in arXiv:1202.0558

"fat-jets"

 $m_j (\text{QCD}) < m_j (\text{SUSY})$ Proposed in arXiv:1202.0558

"fat-jets"

Signal regions can range in jet multiplicity and M_J^{Σ} cuts.

"b-jet stream" ------

ID		8j5	0		9j5	0	≥10j50		7j8	0		≥8j8	80
Jet ŋ				< 2.0				-					
Jet p _T				50	Ge	V		80 GeV					
Jet count		=8		=9			≥10	=7			≥8		
b-jets	0	1	≥2	0	1	≥2	-	0	1	≥2	0	1	≥2
ME _T /VH _T							> 4 GeV ^y	2					

An example of a search

"fat-jet stream" ------

ID	≥8	j50	≥9	j50	≥10j50		
Jet ŋ							
Jet p _T							
Jet count	2	28	2	:9	≥10		
M_J^Σ (GeV)	>340	>420	>340	>420	>340	>420	
ME _T /√H _T		•	> 4 (GeV ^½	•	•	

 $M_J^{\Sigma} = \sum_{i=1}^{nJ} m_{j_i}$

BACKGROUND DETERMINATION

BACKGROUND DETERMINATION

RESULTS

ID		8j50			9j50		≥10j50	
b-jets	0	1	≥2	0	1	≥2	0	
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	1.37±0.3	
Observed evts	40	44	44	5	8	7	3	
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11	
					-		-	
ID		7j80			≥8j80			
b-jets	0		1	≥2	0	1	≥2	
Expected evts	11.0±2	2.2	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2	
Observed evts 12			17	13	2	1	3	
C_{i}	gnificance (σ) 0.05		-0.14	_1 0	0.0	-0.28	-0.06	

ID	≥8	Bj50	≥9	j50	≥10j50		
M^{Σ}_{I} (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	69	37	13	9	1	1	
Significance (σ)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

it-jet strean

RESULTS

ID		8j50			9j50		≥10j50	
b-jets	0	1	≥2	0	1	≥2	0	
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	1.37±0.35	
Observed evts	40	44	44	5	8	7	3	
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11	
ID			7i80	≥8i80				
b-jets	0		1	≥2	0	1	≥2	
Expected evts	11.0±2	2.2	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2	
Observed evts	12		17	13	2	1	3	
Significance (σ)	0.05	5	-0.14	-1.0	-1.0 0.9		-0.06	

246

ID	≥8	3j50	≥9	j50	≥10j50		
M_{I}^{Σ} (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	69	37	13	9	1	1	
Significance (σ)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

RESULTS

INTERPRETATIONS

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists.

INTERPRETATIONS

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists. 249

26	C	ontents				
27	1	Introduction			3	
28	2	Differences compared to the previous multijet analysis			3	
29	3	Data-set and Monte Carlo samples			5	
30		3.1 Data Sample			5	
31		3.2 Standard Model Monte-Carlo			. 5	
32		3.3 Signal Models		•	5	
33	4	Trigger			10	
34	5	Object selection and event cleaning				
35		5.1 Definition of Primary Objects	65		11.2 Int	ernre
36		5.2 General Analysis Cuts	66		11.	2.1
			67		11.	2.2
37	6	Effect of Pile-up on jets			a .	
38	7	Event selection	68	12	Conclus	ions
39	,	7.1 Signal region optimization	69	Α	B-taggir	ıg in
40		7.2 Jet mass selection			00	0
41		7.3 Signal region definitions	70	В	Optimiz	atior
			71		B.1 Mu	ıltijet
42	8	Standard Model background estimation	72		B.2 Mu	ıltijet
43		8.1 Multi-Jet Production	73		B.3 Mt	iltijet
4		8.1.1 Central jets, split by <i>b</i> -tag	74		В.:	3.1
15		8.1.2 Total Jet Mass, $M_{\rm J}^{\Sigma}$	75	С	Trigger	
6		8.2 Leptonic backgrounds	75	C	1118801	
,		8.2.1 $t\bar{t}$ and W+jets Background	76	D	Theory S	Syste
3		8.2.2 Z+jets Background	77		D.1 <i>tī</i> \$	Syste
9		8.3 Other SM Processes	78		D.2 Sin	igle 7
D		8.4 Summary	79		D.3 Ve	ctor I
	•		80		D.4 Ttb	oar+V
1	9	Systematic uncertainties	01	F	Sonsitivi	ity to
2		9.1 Experimental Uncertainties	01	Ľ	Schart	ity 10
3		9.2 Theoretical Uncertainties	82	F	Signal c	ontai
4		9.2.1 If Systematics \dots			-	
55		9.2.2 $W + \text{jets Systematics}$	83	G	Heavy F	lavo
56		9.2.5 $W + D/D/DD + \text{Jets Systematics}$		п	Signal m	
57		9.2.4 $\Sigma \rightarrow VV$ +jets Systematics	84	п	Signal ro	at SD
58		9.2.5 Single 10p Systematics $\dots \dots \dots$	85		$H_{2}^{H_{1}} M^{2}$	
59		$9.2.0$ $u + w/Z$ Systematics \ldots	80		11.2 mj	bitte
60	10	Statistical Methods	87	Ι	Minor b	ackg
61	11	Results and Interpretation	88	J	Fit tests	
62		11.1 Fit results		K	Stream	ovorl
63		11.1.1 <i>b</i> -jet analysis stream	89	n	Suean	overi
64		11.1.2 $M_{\rm J}^{\Sigma}$ analysis stream	90	L	HEP dat	ta
				м	Front di	cnlo
			91	IVI	Event a	spia

CONTENTS OF A RANDOM SEARCH INTERNAL DOCUMENTATION

5 6 7		11.2 Interpretation	156 156 157
8	12	Conclusions	161
9	A	B-tagging in Different Monte-Carlo Samples	165
0 1 2 3	B	Optimization studies B.1 Multijet plus b-jets signal regions B.2 Multijet plus M_J^{Σ} signal regions B.3 Multijet plus M_J^{Σ} control regions - systematic uncertainties B.3.1 Reweighting distributions using the leading fat jet p_T	166 166 173 177 182
5	С	Trigger	197
6 7 8 9 0	D	Theory Systematic Variations D.1 $t\bar{t}$ Systematic variations	203 203 204 204 204
1	Е	Sensitivity to SUSY models	208
2	F	Signal contamination	229
3	G	Heavy Flavour systematics	237
4 5 6	Н	Signal region distributions H.1 b -jet SRs H.2 M_J^{Σ} SRs	242 242 244
7	I	Minor backgrounds	247
8	J	Fit tests	250
9	K	Stream overlap	250
0	L	HEP data	256
1	М	Event displays	285

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: March 2022

ATLAS Preliminary $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-channe 1 e, μ 1 e, μ 1 e, μ	1 - 4j -2j $\ge 3j$ -1 2j/1J $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3j$	Yes - - - Yes 2j Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	MD Ms Mth Mth GKK mass GKK mass GKK mass KK mass KK mass		11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$ \begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ \Gamma/m=15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to tt \\ \mathrm{SSM}\ W' \to \ell\nu \\ \mathrm{SSM}\ W' \to \tau\nu \\ \mathrm{SSM}\ W' \to tb \\ \mathrm{HVT}\ W' \to WZ \to \ell\nu\ell'\ell' \ \mathrm{model} \\ \mathrm{HVT}\ W' \to WZ \to \ell\nu\ell'\ell' \ \mathrm{model} \\ \mathrm{HVT}\ W' \to WR \\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B \\ 0 \ C \\ 3 \ e, \mu \\ 0 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 a \\ - \\ 2 j / 1 J \\ 2 j (VBF) \\ \geq 1 b, \geq 2 a \\ 1 J \end{array}$	– – Yes Yes J – Yes Yes J –	139 36.1 36.1 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass W _R mass	0 GeV	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2007.05293 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	- 2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ & \textbf{35.8 TeV} \\ \textbf{g}_* = 1 \\ \textbf{g}_* = 1 \\ C_{4t} = 4\pi \end{array} \qquad $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ Λ) 0 e, μ multi-channe	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} 3 m _{med} 3 m _{med}	376 GeV 560 GeV	2.1 TeV 3.1 TeV	$\begin{array}{l} g_q = 0.25, g_{\chi} = 1, m(\chi) = 1 \mathrm{GeV} \\ g_q = 1, g_{\chi} = 1, m(\chi) = 1 \mathrm{GeV} \\ \tan\beta = 1, g_Z = 0.8, m(\chi) = 100 \mathrm{GeV} \\ \tan\beta = 1, g_{\chi} = 1, m(\chi) = 10 \mathrm{GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e$ 2μ 1τ $0 e, \mu$ $\geq 2 e, \mu, \geq 1 \tau$ $0 e, \mu, \geq 1 \tau$ 1τ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j, \geq 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139	LO mass LO mass LO ⁴ mass LO ³ mass LO ³ mass LO ³ mass LO ³ mass	, 1 1	1.8 TeV 1.7 TeV 1.2 TeV 2.4 TeV 1.43 TeV .26 TeV 1.77 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_3^u\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^u\rightarrow t\nu)=1\\ \mathcal{B}(\mathrm{LQ}_3^d\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^d\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^V\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^V\rightarrow b\tau)=0.5, \mathrm{Y-M} \ \mathrm{coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Heavy quarks	$\begin{array}{c} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ T \to Ht/Zt \\ VLQ \ S \to Hb \end{array}$	$\begin{array}{l} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ 2(SS)/\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu \geq \end{array}$	≥1 b, ≥1 j	– Yes Yes 1J –	139 36.1 36.1 139 36.1 139	T mass B mass T _{5/3} mass T mass Y mass B mass		1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV	$\begin{array}{l} & \mathrm{SU(2)\ doublet} \\ & \mathrm{SU(2)\ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1,\ c(T_{5/3}Wt) = 1 \\ & \mathrm{SU(2)\ singlet},\ \kappa_{T} = 0.5 \\ & \mathcal{B}(Y \rightarrow Wb) = 1,\ c_{R}(Wb) = 1 \\ & \mathrm{SU(2)\ doublet},\ \kappa_{B} = 0.3 \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	1 γ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass /* mass y* mass		6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	2,3,4 e, μ 2μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS 3 e, μ, τ - -	≥2 j 2 j) various) – – – –	Yes - Yes - - - 3 TeV	139 36.1 139 139 20.3 36.1 34.4	Nº mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass	910 Ge 50 GeV 400 GeV 1.05 1.	3.2 TeV 3 TeV 2.2 TeV 2.37 TeV	$\begin{split} m(\mathcal{W}_{\mathcal{R}}) &= 4.1 \text{ TeV}, g_L = g_{\mathcal{R}} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 1812.03673 1905.10130
	pa	rtial data	full d	ata		10-1		1 10) Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2022

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

	Model	Signature	$\int \mathcal{L} dt$ [fb ⁻¹	¹] Mass limit		Reference
ស្ល	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$	$0 e, \mu$ 2-6 jets H mono-jet 1-3 jets H	$E_T^{ m miss}$ 139 $E_T^{ m miss}$ 139		0 1.85 m($\tilde{\chi}_1^0$)<400 GeV m(\tilde{q})⋅m($\tilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i> 2-6 jets	$E_T^{\rm miss}$ 139	ğ ğ Forbidde	2.3 $m(\tilde{\chi}_1^0)=0$ GeV $m(\tilde{\chi}_1^0)=1000$ GeV	2010.14293 2010.14293
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i> 2-6 jets	139	ĝ	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2101.01629
Ve	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	$ee, \mu\mu$ 2 jets H	E_T^{miss} 139	\tilde{g}	2.2 $m(\tilde{\chi}_1^0)$ <700 GeV	CERN-EP-2022-014
isnic	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$0 e, \mu$ 7-11 jets μ SS e, μ 6 jets	E _T ^{miss} 139 139	Ĩ Ĩ	1.97 m(k̃_1^0) <600 GeV 1.15 m(ĝ)-m(k̃_1^0)=200 GeV	2008.06032 1909.08457
Inc	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} t t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b \\ \text{SS} \ e,\mu & \text{6} \ \text{jets} \end{array}$	E _T ^{miss} 79.8 139	δ δ	2.25 m($\tilde{\chi}_1^0)$ <200 GeV 1.25 m($\tilde{\chi}_1^0)$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
	$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b$	E_T^{miss} 139	${ ilde b_1\ ilde b_1\ ilde b_1}$ 0.68	1.255 $m(\tilde{k}_1^0) < 400 \text{ GeV}$ 10 GeV $<\Delta m(\tilde{b}_1 \tilde{k}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
larks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & h \\ 2 \ \tau & 2 \ b & h \end{array}$	$E_T^{ m miss}$ 139 $E_T^{ m miss}$ 139	δ ₁ Forbidden 0.13-0.85	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1908.03122 2103.08189
nbs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss} 139	ĩı	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
pro	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	$1 e, \mu$ 3 jets/1 b 1	E_T^{miss} 139 E_T^{miss} 130	7 Forbidden 0.65	$m(\tilde{\chi}_1^0) = 500 \text{ GeV}$	2012.03799
¹ ge	$I_1I_1, I_1 \rightarrow \tau_1 DV, \tau_1 \rightarrow \tau G$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{X}^0 / \tilde{c} \tilde{c} \rightarrow c \tilde{X}^0$	$0e.\mu$ 2c	E_T 139 E_T^{miss} 36.1	\tilde{r} 0.85	$m(\tilde{t}) = 0.0 \text{ GeV}$	1805.01649
3 ⁷⁶ dir	$\eta\eta\eta,\eta \rightarrow \alpha\gamma \alpha, \epsilon \rightarrow \alpha\gamma$	$0 e, \mu$ mono-jet	E_T^{fmiss} 139	<i>ĩ</i> ₁ 0.55	$m(\tilde{t}_1,\tilde{c})$ - $m(\tilde{\chi}_1^d)$ =5 GeV	2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	$1-2 e, \mu$ $1-4 b$	E_T^{miss} 139	<i>ĩ</i> ₁ 0.06	7-1.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$	2006.05880
	$t_2 t_2, t_2 \rightarrow t_1 + Z$	$3 e, \mu$ $1 b$ 1	E_T^{miss} 139	t ₂ Forbidden 0.86	$m(\tilde{\chi}_{1}^{o})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{o})=40 \text{ GeV}$	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} \text{Multiple }\ell/\text{jets} & \mu\\ ee, \mu\mu & \geq 1 \text{ jet} & \mu \end{array}$	$E_T^{ m miss}$ 139 $E_T^{ m miss}$ 139	$rac{ ilde{\chi}_{\pm}^{*}/ ilde{\chi}_{0}^{0}}{ ilde{\chi}_{1}^{*}/ ilde{\chi}_{2}^{0}}$ 0.205	$m(\tilde{\chi}_1^{\pm})=0,$ wino-bino $m(\tilde{\chi}_1^{\pm})\cdot m(\tilde{\chi}_1^{0})=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , μ	E_T^{miss} 139	$\tilde{\chi}_{1}^{\pm}$ 0.42	$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh	Multiple <i>l</i> /jets	E_T^{miss} 139 E_T^{miss} 130	χ_1^*/χ_2^* Forbidden 1.	06 $m(\tilde{\chi}_1^0)=70 \text{ GeV}, \text{ wino-bino}$	2004.10894, 2108.07586
W	$\chi_1 \chi_1$ via ℓ_L / ν $\tilde{\tau} \tilde{\tau} \tilde{\tau} \to \tau \tilde{\chi}^0$.	2 e,μ 1 2 τ 1	E_T^{miss} 139 E_T^{miss} 139	$\tilde{\tau}$ [$\tilde{\tau}_{\rm L}, \tilde{\tau}_{\rm R, L}$] 0.16-0.3 0.12-0.39	$m(\ell, \tilde{v}) = 0.5(m(\chi_1) + m(\chi_1))$ $m(\tilde{\chi}^0) = 0$	1908.08215
с Ш	$\tilde{\ell}_{\mathrm{L},\mathrm{R}} \tilde{\ell}_{\mathrm{L},\mathrm{R}}, \tilde{\ell} \to \ell \tilde{\chi}_{1}^{0}$	$2 e, \mu$ 0 jets h	E_T^{miss} 139	<i>ℓ</i> 0.7	$m(\tilde{\chi}_1^0) = 0$	1908.08215
		$ee, \mu\mu \ge 1$ jet	E_T^{fmiss} 139	<i>ĩ</i> 0.256	$m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	1911.12606
	$HH, H \rightarrow hG/ZG$	$0 e, \mu \ge 3 b$ $4 e, \mu$ 0 iets β	E_T^{miss} 36.1 E_T^{miss} 139	<i>H</i> 0.13-0.23 0.29-0.88 <i>H</i> 0.55	$ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $	1806.04030 2103.11684
		$0 \ e, \mu \ge 2$ large jets μ	E_T^{miss} 139	<i>H</i> 0.45-0.93	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2108.07586
	Direct $\tilde{v}^+ \tilde{v}^-$ produlong lived \tilde{v}^\pm	Disapp trk 1 jet 2	Emiss 130	v [±] 0.66	Pure Wino	2201 02472
σ			100	$\hat{\tilde{X}}_{1}^{\perp}$ 0.21	Pure higgsino	2201.02472
live	Stable \tilde{g} R-hadron	pixel dE/dx E	E_T^{miss} 139	[°] gβ	2.05	CERN-EP-2022-029
ng-	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx E	Σ_T^{miss} 139	\tilde{g} [$\tau(\tilde{g})$ =10 ns]	2.2 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	CERN-EP-2022-029
Loi	$\ell\ell, \ell \rightarrow \ell G$	Dispi. lep	E_T^{minss} 139	$\tilde{\tau}$ 0.34 0.7	$ au(\ell) = 0.1 \text{ ns}$ $ au(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812 2011.07812
		pixel dE/dx	E_T^{miss} 139	τ̃ 0.36	$ au(ilde{\ell}) = 10 \text{ ns}$	CERN-EP-2022-029
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 <i>e</i> , <i>µ</i>	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.	05 Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to W W / Z \ell \ell \ell \ell \nu \nu$	4 e, µ 0 jets 1	E_T^{miss} 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.95	1.55 $m(\tilde{\chi}_1^0)$ =200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 large jets	36.1	$\tilde{g} = [m(\tilde{X}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9 Large λ_{112}^{*}	1804.03568
2	$\begin{array}{ccc} it, t \to t \mathcal{X}_1, \mathcal{X}_1 \to t bs \\ \widetilde{\pi}, \widetilde{\tau}, t \widetilde{\tau}^{\pm}, \widetilde{\tau}^{\pm}, \widetilde{\tau}^{\pm}, t b t \end{array}$	Nultiple	36.1	$\begin{bmatrix} 1 \\ 1 \\ 323 \end{bmatrix} = 20 - 4, \ 10 - 2 \end{bmatrix} = \begin{bmatrix} 0.55 \\ 0.55 \end{bmatrix} = 1.$	m(χ_1^2)=200 GeV, bino-like	AI LAS-CONF-2018-003 2010.01015
Ц	$\tilde{t}_1, \tilde{t} \rightarrow b\lambda_1, \lambda_1 \rightarrow bbs$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 b	36.7	\tilde{t}_1 [<i>qq</i> , <i>bs</i>] 0.42 0.61		1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, µ 2 b	36.1	Ĩ,	0.4-1.45 BR(ĩ₁→be/bµ)>20%	1710.05544
	≈± ,≈0 ,≈0 ≈0 · ~+ · ·	1μ DV	136	$l_1 [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9] \qquad 1.$	D 1.6 BR $(\tilde{t}_1 \rightarrow q\mu) = 100\%$, $\cos\theta_t = 1$	2003.11956
	$\chi_1^-/\chi_2^-/\chi_1^-, \bar{\chi}_{1,2}^0 \rightarrow tbs, \chi_1^- \rightarrow bbs$	$1-2 e, \mu \ge 6$ jets	139	X ₁ 0.2-0.32	Pure higgsino	2106.09609
*Only	a selection of the available ma	se limite on now states	or 1	0 ⁻¹	1	
pher	nomena is shown. Many of the	limits are based on		v	wass scale [TeV]	

simplified models, c.f. refs. for the assumptions made.

252

FROM RAW DATA TO PHYSICS INSTEAD OF SUMMARY:

COMPONENTS OF AN ANALYSIS

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

Data-set and Monte Carlo samples

- Trigger
- Object definitions a
- Background determ
 Addressed
 Background determ
 Addressed
 Sed
 Sed
- Systematic uncertai
- Statistical methods
- Results
- Interpretations

The data and simulation samples used in the analysis. Data for the measurement / search, simulation to compare data to predictions.

Data-set specifics:

◎ Data quality ⇒ Good run list.

◎ Luminosity.

Monte Carlo sample specifics: [©] Generator, tunes. [©] Statistics. Obta-set and Monte Carlo samples

- Trigger
- Object def
- Background de
- Systematic uncerta
- Statistical methods
- Results
- © [Interpretations]

The trigger used to collect the data with.

Trigger specifics:

 Prescales; typically unprescaled triggers are used, prescaled triggers for QCD / high stat measurements.
 Trigger (in)efficiencies.

COMPONENTS OF A PHYSICS A

- Data-set and Monte Carlo sa
- Trigger
- Object definitions and event se
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

The exact definition of objects (electrons, muon, jets, ...) and how these are combined in selecting events to be analyzed.

Object definition specifics:

Flavor" of the identification (loose, medium, tight).
Calibrations.

Event selection specifics:

- © Event cleaning (e.g. from noise and cosmics).
- Momentum, geom. acceptance and multiplicity of objects.
- Higher level cuts, such as invariant mass.
- © "Signal regions".

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event y
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

Events that are imitating the signal we are searching for or measuring.

Background determination specifics:

- Can/must be data-driven or simulation-based.
- Validation regions" and
 "control regions" required.
 These can use different
 triggers wrt signal regions.

COMPONENTS OF A PHYSICS ANALYSIS

- Data-set and Monte Carlo sa
- Trigger
- Object definitions and event
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

- Any 'intermediate' measurement we have performed carries uncertainties (statistical and systematic).
- Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.
- Efficiencies, acceptance, number of events, luminosity, cross sections used in Monte Carlo scaling...
- Some of them are "centrally" assessed by the performance groups of an experiment. Some of them are analysisspecific.

261

COMPONENTS OF A PHYSICS ANALYS

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- [Interpretations]

Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method: O a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

Neural nets and other machine learning methods are broadly used, primarily to improve signal over background discrimination!

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- [Interpretations]

Produce the results in tables and plots. These include details of what is found in the signal region.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- [Interpretations]

Put the results into context: interpret them in theoretical models.

263

https://xkcd.com/1838/

EXCITING TIMES COMING UP IN HEP GOOD LUCK IN YOUR RESEARCH!

265

Please get in touch for question, comments, or simply feedback on this lecture anna.sfyrla@unige.ch