
Lecture 2: Introduction
to Machine Learning

 Maurizio Pierini

What is Machine Learning ?

Machine learning (ML) is the scientific study of algorithms and
statistical models that computer systems use to progressively
improve their performance on a specific task. Machine learning
algorithms build a mathematical model of sample data, known as
"training data", in order to make predictions or decisions
without being explicitly programmed to perform the task.

A definition (Wikipedia)

3

training data

True Answer

Algorithm

Prediction

Loss

Functions

The name of the game is
finding the algorithm
setting (its parameter
values) that minimise
the loss, i.e. the

error made in
prediction

๏Different ML
algorithms had their
moment of glory

๏(Shallow) neural
networks dominated
in the 80’s

๏Alternatives emerged
in the 90’s

๏Support vector
machine

๏Boosting of
decision trees

Many flavors of ML

4

https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf

๏Learning: train the algorithm on a
provided dataset

๏Supervised: the dataset X comes
with the right answer y (right
class in a classification
problem). The algorithm learns the
function

๏Unsupervised: the dataset X comes
with no label. The algorithm
learns structures in the data
(e.g., alike events in a
clustering algorithm)

๏…

๏Inference: once trained, the model
can be applied to other datasets

A two-steps process

5

๏BDTs ported to LHC and
very useful on Higgs
discovery

๏Now Deep Learning is
opening up many new
possibilities

6

Machine Learning in HEP

BDT score of the photon ID
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
/0

.0
4

310

410

510

610

710

810
Data
Simulation:

4 = 125 GeV)x10
H

 (mγγ→H
total background+stat.uncert.
γ-γ

-jetγ
jet-jet

 (13 TeV)-135.9 fbCMS Preliminary

๏Long standing tradition

๏Neural networks used at LEP and the
Tevatron

๏Boosted Decision Trees introduced by
MiniNooNE and heavy used at BaBar

๏Classification: associate a
given element of a dataset to
one of N exclusive classes

๏Regression: determine a
continuous value y from a set
of inputs x

๏Clustering: group elements of
a dataset because of their
similarity according to some
learned metric

๏Dimensionality reduction:
find the k quantities of the
N inputs (with k<N) that
incorporate the relevant
information (e.g., principal
component analysis)

Typical problems

7

Supervised Learning

A simple example: S vs B selection

9

x1

x2

x1

x2

x1

x2

๏Define a selection to separate the signal from the
background

With rectangular
cuts

With a linear
discrimininat

With a non linear
discrimininat

10

๏For any linear boundary, the
quantity is

๏=0 along the boundary

๏>0 above the boundary, the
larger the distance, the
bigger

๏<0 below the boundary, the
larger the distance the bigger

๏In other words, the larger
(smaller) is , the larger
is the probability for a given
point to be blue (signal) or
orange (background)

h(x |w) = w1x1 + w2x2

h(x |w)

−h(x |w)

h(x |w)
x1

x2

With a linear discrimininat

h(x |w) > 0

h(x |w) < 0 h(x |w) = 0

A simple example: S vs B selection

๏We can model the probability of being a signal
with a logistic model

๏This definition has the desired properties:

๏The larger (and positive) , the closer p
to 1

๏The larger (and negative) , the closer p
to 0

๏The optimal boundary (i.e., the optimal choice
of w1 and w2) is such that we maximise
probability for signal points and minimise that
of background points

๏To do so, we need

๏A set of points for which we have a ground
truth and

๏A loss function to minimise

h(x |w)

h(x |w)

xi ∈ ℝn yi = {0,1}

Logistic Regression

11

p(y = 1 |x) =
1

1 + e−h(x|w)

๏Probability: When we introduced distributions, we started
from known distributions (e.g., a Poisson on known λ) and
we tried to characterize a typical experiment outcome

๏Hypothesis Testing: Now we inverted the problem: we know
the experiment outcome (e.g., we counted events above
threshold during a one-year run) and we ask ourselves
which of two λ values (bkg-only or sig+bkg) they come from

๏Inference: we could also just ask what is the value of λ
more compatible with the observation (trivial question in
this case - right? - but not in general). This is a
typical application of maximum likelihood fits and a
regression problem in Machine Learning (not much to say
about this today)

Which is the unknown?

12

Back to our statistics lecture

๏We are given a likelihood model and some data D

๏D is known, are unknown

๏We want to find the values that would make our data D
the most probable outcome of the experiment

๏If we knew these values, the probability of
observing D is maximal (here D is unknown and is
known)

๏ You can convince yourselves that

ℒ(D |w)

w

ŵ

ŵ
ŵ

Maximum Likelihood estimation

13

ŵ = arg max
w

ℒ(D |w)

Bernoulli’s process

14

๏Bernoulli’s process (Y/N question):

๏probability of a Y is p

๏probability of a N is (1-p)

๏If we assign labels (Y -> 1 and N -> 0) we can write the
probability for a i-th event as , where is the
label for the i-th event

๏The likelihood is then written as

pxi(1 − p)1−xi xi

ℒ(y |p) = ∏
i

py
i (1 − p)(1−yi)

๏We can make our
probability model more
complicated

๏p could be a
function of a set of
quantities x that we
know about our data

๏for instance, this
could be our
logistic regression
problem

๏Minimizing the -logL
corresponds to
minimizing the binary
cross entropy

Cross Entropy as a MLE

15

arg max
w

ℒ = arg min
w

[−log ℒ]

= arg min
w

[− ∑
i

(xi log pi + (1 − xi)log(1 − pi))]

pi = p(yi = 1 |xi) =
1

1 + e−h(xi|w)

= arg min
w

[−log(∏
i

pyi
i (1 − pi)1−yi)]

๏Given a set of points, find the
curve that goes through them

๏Can be a linear model

๏Can be a linear function of
non-linear kernel of the x.
For instance, a polynomial
basis

16

yi = axi + b

yi = a ϕ(xi) + b
New feature, “engineered” from

the input features

x

y

x

y

Linear regression

๏Take some model
(e.g., linear)

๏Consider the case
of a Gaussian
dispersion of y
around the expected
value

๏Assume that the
resolution σ is
fixed and write
down the likelihood

17

h(xi |a, b) = axi + b

yi = h(xi) + ei p(ei) =
1

2πσ
e− e2

i
2σ2

ℒ = ∏
i

1

2πσ
e− e2

i
2σ2 = ∏

i

1

2πσ
e− (yi − h(xi))

2

2σ2

Example: regression & MSE

๏The maximisation of this likelihood corresponds to the
minimisation of the mean square error (MSE)

๏MSE is the most popular loss function when dealing with
continuous outputs. We will use it a few times in the next days

๏BE AWARE OF THE UNDERLYING ASSUMPTION: if you are using MSE,
you are implicitly assuming that your y are Gaussian
distributed, with fixed RMS

๏What if the RMS is not a constant?
18

arg min[−2 log ℒ] = arg min [− 2 log[∏
i

1

2πσ
e− (yi − h(xi))

2

2σ2]]

= arg min [∑
i

(yi − h(xi))2

σ2] = arg min [∑
i

(yi − h(xi))2] = MSE

Example: regression & MSE

https://arxiv.org/pdf/2010.05531.pdf

Supervised Learning in a nutshell

19

training data

True Answer

Model

Prediction

LoSS

๏A training dataset x

๏A target y

๏A model to go from x to y

๏A loss function quantifying how wrong the model is

๏A minimisation algorithm to find the model h that corresponds to
the minimal loss

๏Split your sample in three:

๏Training: the biggest chunk, where you learn from

๏Validation: an auxiliary dataset to verify
generalization and prevent overtraining

๏Test: the dataset for the final independent check

Training in practice

20

Training Validation Test

Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of a gradient step to take

73

w0 w� ⌘
@L(w)

@w

@L(w)

@w

w1

w2

Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of a gradient step to take

73

w0 w� ⌘
@L(w)

@w

@L(w)

@w

w1

w2

๏Gradient Descent is a popular
minimisation algorithm

๏Start from a random point

๏Compute the gradient wrt the model
parameters

๏Make a step of size η (the learning
rate) towards the gradient direction

๏Update the parameters of the mode
accordingly

๏Effective, but computationally
expensive (gradient over entire
dataset)

Gradient Descent

21

w1

w2

๏Make the minimisation more
computationally efficient

๏Compute gradient on a small batch
of events (faster &
parallelizable, but noisy)

๏Average over the batches to
reduce noise

๏BEWARE: better scalability come
at the cost of (sometimes) not
converging

๏Many recipes exist to help
convergence, by playing with the
algorithm setup (e.g., adapting
learning rate)

Stochastic Gradient Descent

22

Stochastic Gradient Descent and Variants
• Gradient descent is computationally

costly (since we compute gradient
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping”

out of bad critical points

– Scales well with dataset and model size
– But can have some convergence

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …

74

w2

w1

w2

w1http://danielnouri.org/notes/category/deep-learning/

Stochastic Gradient Descent and Variants
• Gradient descent is computationally

costly (since we compute gradient
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping”

out of bad critical points

– Scales well with dataset and model size
– But can have some convergence

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …

74

w2

w1

w2

w1http://danielnouri.org/notes/category/deep-learning/

๏Train across multiple epochs

๏1 epoch = going once through
the full dataset

๏Use small batches (64, 128, etc)

๏Check your training history

๏on the training data (training
loss)

๏and the validation ones
(validation loss)

๏Use an objective algorithm to
stop (e.g., early stopping)

23

Epoch

Lo
ss Validation

Training

EARLY TOPPING: stop the train if the
validation loss didn’t change more than δ
in the last n epochs (patience)

δ
patience

Training in practice

๏If your model has
not enough
flexibility, it will
not be able to
describe the data

๏The training and
validation loss will
be close, but their
value will not
decrease

๏The model is said to
be underfitting, or
being biased

What can go wrong: underfitting

24

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

Epoch

Lo
ss

Validation
Training

๏Your model can learn too much
of your training dataset

๏e.g., its statistical
fluctuations

๏Such an overfitted model
would not generalise

๏So, its description of the
validation dataset will be
bad (i.e., the mode doesn’t
generalise)

๏This is typically highlighted
by a divergence of the
training and validation loss

What can go wrong: overfitting

25

Epoch

Lo
ss Validation

Training

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

The Bias vs Variance tradeoff

26

๏A model would underfit if too
simple: it will not be able to
model the mean value

๏A model would overfit if too
complex: it will reproduce the
mean value, but it will
underestimate the variance of the
data

๏The generalization error is the
error made going from the
training sample to another sample
(e.g., the test sample)

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

๏Generalization error can be written as the sum of three
terms:

๏The intrinsic statistical noise in the data

๏the bias wrt the mean

๏the variance of the prediction around the mean

The Bias vs Variance tradeoff

27

E[(y − h(x))2] = E[(y − ȳ)2] + (ȳ − h̄(x))2 + E[(h(x) − h̄(x))2]

Noise Bias
Squared

Variance

The Bias vs Variance tradeoff

28

Bias Variance Tradeoff 54

Regularization

29

๏Model complexity can be “optimized”
when minimizing the loss

๏A modified loss is introduced, with
a penalty term attache to each model
parameter

๏For instance, Lp regularisation

๏The minimisation is a tradeoff between:

๏pushing down the 1st term by taking
advantage of the parameters

๏pushing down the 2nd term by
switching off the parameters

Lreg = L + Ω(w)

https://openreview.net/pdf?id=H1Y8hhg0b

Published as a conference paper at ICLR 2018

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

hard-sigmoid. We further propose and employ a novel distribution obtained by this procedure; the
hard concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al.,
2016; Jang et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the
effectiveness of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN)} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓)1:

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

1This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.

2

Published as a conference paper at ICLR 2018

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

hard-sigmoid. We further propose and employ a novel distribution obtained by this procedure; the
hard concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al.,
2016; Jang et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the
effectiveness of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN)} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓)1:

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

1This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.

2

Lp = ∥w∥p = ∑
i

|wi |
p

https://openreview.net/pdf?id=H1Y8hhg0b

Deep Learning

Neural Networks in a nutshell

31

• NNs are (as of today) the best ML solution on the
market

• NNs are usually structured in nodes connected by
edges

• each node performs a math operation on the
input

• edges determine the flow of neuron’s inputs &
outputs

Deep Neural Networks

32

๏Deep neural networks are
those with >1 inner layer

๏Thanks to GPUs, it is now
possible to train them
efficiently, which boosted
the revival of neural
networks in the years 2000

๏In addition, new
architectures emerged,
which better exploit the
new computing power

http://www.machinelearning.org/archive/icml2009/papers/218.pdf

What is DL used for

33

Image processing

Clustering

text/sound processing

Reinforcement Learning

๏Event Generation with
generative models

๏Anomaly Detection to search
for new Physics

๏Adversarial training for
systematics

๏Reinforcement learning for
jet grooming

๏…

DL, HEP, and new opportunities

34

https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf

Feed-Forward NNs

35

• Feed-forward neural networks
have hierarchical structures:

• inputs enter from the left and
flow to the right

• no closed loops or circularities

• Deep neural networks are FF-NN
with more than one hidden layer

• Out of this “classic idea, new
architectures emerge, optimised
for computing vision, language
processing, etc

The role of a network node

36

wijxj

•Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

• The result is passed to an
activation function

37

Σjwijxj

• Each input is multiplied by a weight

•The weighted values are summed

• A bias is added

• The result is passed to an
activation function

The role of a network node

38

Σjwijxj + bi

• Each input is multiplied by a weight

• The weighted values are summed

•A bias is added

• The result is passed to an
activation function

The role of a network node

39

yi = f(Σjwijxj + bi)

• Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

•The result is passed to an
activation function

The role of a network node

๏In a feed-forward chain,
each node processes what
comes from the previous
layer

๏The final result (depending
on the network geometry) is
K outputs, given N inputs

The full picture

40

yj = f (3)(Σlw(3)
jl f (2)(Σkw(2)

lk f (1)(Σiw(1)
ki xi + b(1)

k) + b(2)
l) + b(3)

j)

๏One can show that such a mechanism allows to learn generic
ℝN→ℝK functions

๏Activation functions are an
example of network hyper
parameters

๏they come from architecture
choice, rather than from the
training itself

๏Activation output of the
output layer play a special
role:

๏it needs to return the
output in the right domain

๏it needs to preserve the
wanted features of the
output (e.g., periodic,
positive defined, etc.)

Activation Functions

41

๏A special kind of
layer, introduced for
regularisation purpose

๏Randomly drop links
between neurons, with
probability p

๏The connections are
re-established during
the validation and
inference steps

๏Typical sign of it:
invert hierarchy
between training and
validation loss

Dropout Layer

42

Epoch

Lo
ss

Validation
Training

Epoch

Lo
ss

Validation
Training

๏ This can be done automatically
with BatchNormalization

๏ non-learnable shift and scale
parameters, adjusted batch by
batch

BatchNorm Layer

43

๏ It is good practice to give normalized inputs to
a layer

๏ With all inputs having the same order of
magnitude, all weights are equal important in
the gradient

๏ Prevents explosion of the loss function

๏Dense NN architectures can be made
more complex

๏Multiple inputs

๏Multiple outputs

๏Different networks branches

๏This is possible thanks to layer-
manipulation layers

๏Add, Subtract, etc.

๏Concatenation

๏Flattening

๏All these operations are usually
provided with NN training libraries

More operations

44

8 0 4 7 6 8 0
8 3 4 5 5 3 4
7 9 4 6 5 2 6

8 0 4 7 6 8 0 8 3 4 5 5 3 4 7 9 4 6 5 2 6

Flattening

8 0 4 7 6 8 0

8 0 4 7 6 8 0 8 3 4 5 5 3 4 7 9 4 6 5 2 6

7 9 4 6 5 2 6 8 3 4 5 5 3 4

Concatenation

๏Many solutions exist. Most popular
softwares live in a python
ecosystem

๏Google’s TensorFlow

๏Facebook’s Pytorch

๏Apache MXnet

๏All of them integrated in a data
science ecosystem

๏with numpy, scikit, etc.

๏Convenient libraries built on top,
with pre-coded ingredients

๏ Keras for TF (this is what we
will be using)

Training Libraries

45

๏All codes come with GPU support, through CUDA

๏They work on nVidia GPUs

๏GPUs are very suitable to train neural networks

๏dedicated VRAM provides large memory to load
datasets

๏architecture ideal to run vectorised
operations on tensors

๏can also paralyse training tasks (e.g.,
processing in parallel multiple batches)

๏A single-precision gaming card is good enough
for standalone studies (200-1000 $, depending on
model)

๏Large tasks require access to clusters (with
libraries for distributed training)

๏Dedicated architectures (e.g., Google TPU) now
emerging. Essentially, Deep Learning ASICs

GPUs & TPUs

46

๏You have a jet at LHC: spray of
hadrons coming from a “shower”
initiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

๏You have a set of jet features
whose distribution depends on the
nature of the initial particle

๏You can train a network to start
from the values of these
quantities and guess the nature
of your jet

๏To do this you need a sample for
which you know the answer

Example: jet tagging

47

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.

– 2 –

๏You have a jet at LHC: spray of
hadrons coming from a “shower”
initiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

๏You have a set of jet features
whose distribution depends on the
nature of the initial particle

๏You can train a network to start
from the values of these
quantities and guess the nature
of your jet

๏To do this you need a sample for
which you know the answer

48

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Jet substructure features

 21

Jet substructure observables provide large discrimination
power between these types of jets

mass, multipliticity, energy correlation functions, …
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

 M. Cacciari et al, Eur. Phys. J.C72(2012)1896

These are expert-level features

Not necessarily realistic for L1 trigger
“Raw” particle candidates more suitable (to be studied next)
But lessons here are generic

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for
b-tagging information

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Jet substructure features

 21

Jet substructure observables provide large discrimination
power between these types of jets

mass, multipliticity, energy correlation functions, …
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

 M. Cacciari et al, Eur. Phys. J.C72(2012)1896

These are expert-level features

Not necessarily realistic for L1 trigger
“Raw” particle candidates more suitable (to be studied next)
But lessons here are generic

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for
b-tagging information

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Jet substructure features

 21

Jet substructure observables provide large discrimination
power between these types of jets

mass, multipliticity, energy correlation functions, …
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

 M. Cacciari et al, Eur. Phys. J.C72(2012)1896

These are expert-level features

Not necessarily realistic for L1 trigger
“Raw” particle candidates more suitable (to be studied next)
But lessons here are generic

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for
b-tagging information

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:

Does a jet originate from a quark, gluon, W/Z boson, top quark?

Network architecture
16 expert inputs

jet masses, multiplicity

ECFs (β=0,1,2)

11

• 3-layer model trained
without regularization

• No pruning applied

• Resulting distribution of
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep
neural network

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

Example: jet tagging

๏A given threefold defines the following qualities

๏True-positives: Class-1 events above the threshold

๏True-negatives: Class-0 events below the threshold

๏False-positives: Class-0 events above the threshold

๏False-negatives: Class-1 events below the threshold

Classifier metrics

49
score

Pr
ob

ab
ili

ty

๏A given threefold defines the following qualities

๏True-positives: Class-1 events above the threshold

๏True-negatives: Class-0 events below the threshold

๏False-positives: Class-0 events above the threshold

๏False-negatives: Class-1 events below the threshold

Classifier metrics

50
score

Pr
ob

ab
ili

ty

๏A given threefold defines the following qualities

๏True-positives: Class-1 events above the threshold

๏True-negatives: Class-0 events below the threshold

๏False-positives: Class-0 events above the threshold

๏False-negatives: Class-1 events below the threshold

Classifier metrics

51
score

Pr
ob

ab
ili

ty

๏A given threefold defines the following qualities

๏True-positives: Class-1 events above the threshold

๏True-negatives: Class-0 events below the threshold

๏False-positives: Class-0 events above the threshold

๏False-negatives: Class-1 events below the threshold

Classifier metrics

52
score

Pr
ob

ab
ili

ty

๏Consider a binary classifier

๏Its output ŷ is a number in
[0,1]

๏If well trained, value
should be close to 0 (1) for
class-0 (class-1) examples

๏One usually defines a
threshold yt such that:

๏ŷ>yt -> Class 1

๏ŷ<yt -> Class 0

Classifier metrics

53

score

Pr
ob

ab
ili

ty

score
Pr

ob
ab

ili
ty

ŷ>yt ->
Class 1

ŷ<yt ->
Class 1

๏Starting ingredients are true positive (TP) and true
negative (TN) rates

๏Accuracy: (TP+TN)/Total

๏The fraction of events correctly classified

๏Sensitivity: TP/(Total positive)

๏AKA signal efficiency in HEP

๏Specificity: TN/(Total negative)

๏AKA mistag rate in HEP

Classifier metrics

54

Receiver operating characteristic

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:

Does a jet originate from a quark, gluon, W/Z boson, top quark?

Network architecture
16 expert inputs

jet masses, multiplicity

ECFs (β=0,1,2)

11

• 3-layer model trained
without regularization

• No pruning applied

• Resulting distribution of
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep
neural network

Sensitivity = True Positive Rate

1-
sp

ec
ifi

ci
ty

 =
 fa

ls
e

po
si

tiv
e

ra
te

Better

56

Jet tagging ROC curve

๏ML models are adaptable algorithms that are trained
(and not programmed) to accomplish a task

๏The training happens minimizing a loss function on a
given sample

๏The loss function has a direct connection to the
statistical properties of the problem

๏Deep Learning is the most powerful class of ML
algorithms nowadays

๏It could be relevant to the future of HEP, e.g., to
face the big-data challenge of the High-Luminosity LHC

Summary

57

๏Michael Kagan, CERN OpenLab classes on Machine Learning

๏Source of inspiration for this first lesson

๏Pattern Recognition and Machine learning (Bishop)

๏I. Goodfellow and Y. Bengio and A. Courville, “Deep Learning” MIT press

๏Main reference for tutorial exercise: https://arxiv.org/abs/1908.05318

๏All notebooks and classes are/will be on GitHub: https://github.com/
pierinim/tutorials/tree/master/SMARTHEP

๏Full dataset available at: https://zenodo.org/record/3602260

References

58

https://indico.cern.ch/event/726959/
https://www.deeplearningbook.org
https://arxiv.org/abs/1908.05318
https://zenodo.org/record/3602260

Maurizio Pierini

Running Tutorial
Notebooks in Colab

๏Go to https://colab.research.google.com

Step1: Open Notebook on Colab

60

https://colab.research.google.com/

Step2: import the Tutorial from gitlab

61

๏Click on the GITHUB tab

๏Specify the repository pierinim/tutorials/SMARTHEP

๏Click on the notebook

Set your resources to use GPUs

62

Set your resources to use GPUs

63

