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What is Machine Learning ?



Machine learning (ML) is the scientific study of algorithms and 
statistical models that computer systems use to progressively 
improve their performance on a specific task. Machine learning 
algorithms build a mathematical model of sample data, known as 
"training data", in order to make predictions or decisions 
without being explicitly programmed to perform the task.

A definition (Wikipedia)
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training data

True Answer

Algorithm

Prediction

Loss

Functions

The name of the game is 
finding the algorithm 
setting (its parameter 
values) that minimise 
the loss, i.e. the 

error made in 
prediction



๏Different ML 
algorithms had their 
moment of glory


๏(Shallow) neural 
networks dominated 
in the 80’s 


๏Alternatives emerged 
in the 90’s


๏Support vector 
machine


๏Boosting of 
decision trees

Many flavors of ML
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https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf


๏Learning: train the algorithm on a 
provided dataset


๏Supervised: the dataset X comes 
with the right answer y (right 
class in a classification 
problem). The algorithm learns the 
function 


๏Unsupervised: the dataset X comes 
with no label. The algorithm 
learns structures in the data 
(e.g., alike events in a 
clustering algorithm)


๏…


๏Inference: once trained, the model 
can be applied to other datasets

A two-steps process
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๏BDTs ported to LHC and 
very useful on Higgs 
discovery


๏Now Deep Learning is 
opening up many new 
possibilities
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Machine Learning in HEP
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๏Long standing tradition


๏Neural networks used at LEP and the 
Tevatron


๏Boosted Decision Trees introduced by 
MiniNooNE and heavy used at BaBar



๏Classification: associate a 
given element of a dataset to 
one of N exclusive classes


๏Regression: determine a 
continuous value y from a set 
of inputs x


๏Clustering: group elements of 
a dataset because of their 
similarity according to some 
learned metric


๏Dimensionality reduction: 
find the k quantities of the 
N inputs (with k<N) that 
incorporate the relevant 
information (e.g., principal 
component analysis)

Typical problems
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Supervised Learning



A simple example: S vs B selection
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x1

x2

x1

x2

x1

x2

๏Define a selection to separate the signal from the 
background

With rectangular 
cuts

With a linear 
discrimininat

With a non linear 
discrimininat
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๏For any linear boundary, the 
quantity  is


๏=0 along the boundary


๏>0 above the boundary, the 
larger the distance, the 
bigger 


๏<0 below the boundary, the 
larger the distance the bigger 




๏In other words, the larger 
(smaller) is , the larger 
is the probability for a given 
point to be blue (signal) or 
orange (background) 

h(x |w) = w1x1 + w2x2

h(x |w)

−h(x |w)

h(x |w)
x1

x2

With a linear discrimininat

h(x |w) > 0

h(x |w) < 0 h(x |w) = 0

A simple example: S vs B selection



๏We can model the probability of being a signal 
with a logistic model


๏This definition has the desired properties:


๏The larger (and positive) , the closer p 
to 1


๏The larger (and negative) , the closer p 
to 0 


๏The optimal boundary (i.e., the optimal choice 
of w1 and w2) is such that we maximise 
probability for signal points and minimise that 
of background points


๏To do so, we need 


๏A set of points for which we have a ground 
truth  and 


๏A loss function to minimise 

h(x |w)

h(x |w)

xi ∈ ℝn yi = {0,1}

Logistic Regression
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p(y = 1 |x) =
1

1 + e−h(x|w)



๏Probability: When we introduced distributions, we started 
from known distributions (e.g., a  Poisson on known λ) and 
we tried to characterize a typical experiment outcome 


๏Hypothesis Testing: Now we inverted the problem: we know 
the experiment outcome (e.g., we counted events above 
threshold during a one-year run) and we ask ourselves 
which of two λ values (bkg-only or sig+bkg) they come from


๏Inference: we could also just ask what is the value of λ 
more compatible with the observation (trivial question in 
this case - right? - but not in general). This is a 
typical application of maximum likelihood fits and a 
regression problem in Machine Learning (not much to say 
about this today) 

Which is the unknown?
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Back to our statistics lecture



๏We are given a likelihood model  and some data D


๏D is known,  are unknown


๏We want to find the  values that would make our data D 
the most probable outcome of the experiment


๏If we knew these  values, the probability of 
observing D is maximal (here D is unknown and  is 
known)


๏ You can convince yourselves that 

ℒ(D |w)

w

ŵ

ŵ
ŵ

Maximum Likelihood estimation
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ŵ = arg max
w

ℒ(D |w)



Bernoulli’s process
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๏Bernoulli’s process (Y/N question):


๏probability of a Y is p


๏probability of a N is (1-p)


๏If we assign labels (Y -> 1 and N -> 0) we can write the 
probability for a i-th event as , where  is the 
label for the i-th event


๏The likelihood is then written as  

pxi(1 − p)1−xi xi

ℒ(y |p) = ∏
i

py
i (1 − p)(1−yi)



๏We can make our 
probability model more 
complicated


๏p could be a 
function of a set of 
quantities x that we 
know about our data


๏for instance, this 
could be our 
logistic regression 
problem


๏Minimizing the -logL 
corresponds to 
minimizing the binary 
cross entropy

Cross Entropy as a MLE

15

arg max
w

ℒ = arg min
w

[−log ℒ]

= arg min
w

[− ∑
i

(xi log pi + (1 − xi)log(1 − pi))]

pi = p(yi = 1 |xi) =
1

1 + e−h(xi|w)

= arg min
w

[−log(∏
i

pyi
i (1 − pi)1−yi)]



๏Given a set of points, find the 
curve that goes through them


๏Can be a linear model


๏Can be a linear function of 
non-linear kernel of the x. 
For instance, a polynomial 
basis 
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yi = axi + b

yi = a ϕ(xi) + b
New feature, “engineered” from 

the input features

x

y

x

y

Linear regression



๏Take some model 
(e.g., linear)


๏Consider the case 
of a Gaussian 
dispersion of y 
around the expected 
value


๏Assume that the 
resolution σ is 
fixed and write 
down the likelihood 
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h(xi |a, b) = axi + b

yi = h(xi) + ei p(ei) =
1

2πσ
e− e2

i
2σ2

ℒ = ∏
i

1

2πσ
e− e2

i
2σ2 = ∏

i

1

2πσ
e− (yi − h(xi))

2

2σ2

Example: regression & MSE



๏The maximisation of this likelihood corresponds to the 
minimisation of the mean square error (MSE)


๏MSE is the most popular loss function when dealing with 
continuous outputs. We will use it a few times in the next days


๏BE AWARE OF THE UNDERLYING ASSUMPTION: if you are using MSE, 
you are implicitly assuming that your y are Gaussian 
distributed, with fixed RMS


๏What if the RMS is not a constant?
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arg min[−2 log ℒ] = arg min [− 2 log[∏
i

1

2πσ
e− (yi − h(xi))

2

2σ2 ]]

= arg min [∑
i

(yi − h(xi))2

σ2 ] = arg min [∑
i

(yi − h(xi))2] = MSE

Example: regression & MSE

https://arxiv.org/pdf/2010.05531.pdf


Supervised Learning in a nutshell
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training data

True Answer

Model

Prediction

LoSS

๏A training dataset x 


๏A target y


๏A model to go from x to y


๏A loss function quantifying how wrong the model is


๏A minimisation algorithm to find the model h that corresponds to 
the minimal loss



๏Split your sample in three:


๏Training: the biggest chunk, where you learn from


๏Validation: an auxiliary dataset to verify 
generalization and prevent overtraining


๏Test: the dataset for the final independent check

Training in practice
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Training Validation Test



Gradient Descent

• Many methods to solve, lets use Gradient Descent

• Minimize loss by repeated gradient steps (when no closed 
form)

– Compute gradient w.r.t. parameters:

– Update parameters

– h is called the learning rate, controls
how big of  a gradient step to take

73
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Gradient Descent
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how big of  a gradient step to take
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๏Gradient Descent is a popular 
minimisation algorithm


๏Start from a random point


๏Compute the gradient wrt the model 
parameters


๏Make a step of size η (the learning 
rate) towards the gradient direction


๏Update the parameters of the mode 
accordingly


๏Effective, but computationally 
expensive (gradient over entire 
dataset)

Gradient Descent
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w1

w2



๏Make the minimisation more 
computationally efficient


๏Compute gradient on a small batch 
of events (faster & 
parallelizable, but noisy)


๏Average over the batches to 
reduce noise


๏BEWARE: better scalability come 
at the cost of (sometimes) not 
converging


๏Many recipes exist to help 
convergence, by playing with the 
algorithm setup (e.g., adapting 
learning rate)

Stochastic Gradient Descent
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Stochastic Gradient Descent and Variants 
• Gradient descent is computationally 

costly (since we compute gradient 
over full training set)

• Stochastic gradient descent
– Compute gradient on one event at a 

time (in practice a small batch)
– Noisy estimates average out
– Stochastic behavior can allow “jumping” 

out of  bad critical points

– Scales well with dataset and model size
– But can have some convergence 

difficulties

– Improvements include:
Momentum, RMSprop, AdaGrad, …

74

w2

w1

w2

w1http://danielnouri.org/notes/category/deep-learning/
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๏Train across multiple epochs


๏1 epoch = going once through 
the full dataset


๏Use small batches (64, 128, etc)


๏Check your training history


๏on the training data (training 
loss)


๏and the validation ones 
(validation loss)


๏Use an objective algorithm to 
stop (e.g., early stopping)
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Epoch

Lo
ss Validation 

Training

EARLY TOPPING: stop the train if the 
validation loss didn’t change more than δ 
in the last n epochs (patience)

δ
patience

Training in practice



๏If your model has 
not enough 
flexibility, it will 
not be able to 
describe the data


๏The training and 
validation loss will 
be close, but their 
value will not 
decrease


๏The model is said to 
be underfitting, or 
being biased

What can go wrong: underfitting
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What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/

Epoch

Lo
ss

Validation 
Training



๏Your model can learn too much 
of your training dataset


๏e.g., its statistical 
fluctuations


๏Such an overfitted model 
would not generalise


๏So, its description of the 
validation dataset will be 
bad (i.e., the mode doesn’t 
generalise)


๏This is typically highlighted 
by a divergence of the 
training and validation loss

What can go wrong: overfitting
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Epoch

Lo
ss Validation 

Training

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways

45

http://scikit-learn.org/



The Bias vs Variance tradeoff
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๏A model would underfit if too 
simple: it will not be able to 
model the mean value


๏A model would overfit if too 
complex: it will reproduce the 
mean value, but it will 
underestimate the variance of the 
data


๏The generalization error is the 
error made going from the 
training sample to another sample 
(e.g., the test sample)

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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http://scikit-learn.org/

What is Overfitting

• What models allow us to do is generalize from data

• Different models generalize in different ways
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http://scikit-learn.org/



๏Generalization error can be written as the sum of three 
terms:


๏The intrinsic statistical noise in the data


๏the bias wrt the mean


๏the variance of the prediction around the mean

The Bias vs Variance tradeoff
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E[(y − h(x))2] = E[(y − ȳ)2] + (ȳ − h̄(x))2 + E[(h(x) − h̄(x))2]

Noise Bias 
Squared

Variance



The Bias vs Variance tradeoff
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Bias Variance Tradeoff 54



Regularization
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๏Model complexity can be “optimized” 
when minimizing the loss


๏A modified loss is introduced, with 
a penalty term attache to each model 
parameter


๏For instance, Lp regularisation


๏The minimisation is a tradeoff between:


๏pushing down the 1st term by taking 
advantage of the parameters


๏pushing down the 2nd term by 
switching off  the parameters

Lreg = L + Ω(w)

https://openreview.net/pdf?id=H1Y8hhg0b

Published as a conference paper at ICLR 2018

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

hard-sigmoid. We further propose and employ a novel distribution obtained by this procedure; the
hard concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al.,
2016; Jang et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the
effectiveness of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN )} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓)1:

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

1This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.
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Lp = ∥w∥p = ∑
i

|wi |
p

https://openreview.net/pdf?id=H1Y8hhg0b


Deep Learning



Neural Networks in a nutshell
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• NNs are (as of today) the best ML solution on the 
market

• NNs are usually structured in nodes connected by 
edges

• each node performs a math operation on the 
input

• edges determine the flow of neuron’s  inputs & 
outputs



Deep Neural Networks
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๏Deep neural networks are 
those with >1 inner layer


๏Thanks to GPUs, it is now 
possible to train them 
efficiently, which boosted 
the revival of neural 
networks in the years 2000


๏In addition, new 
architectures emerged, 
which better exploit the 
new computing power

http://www.machinelearning.org/archive/icml2009/papers/218.pdf


What is DL used for
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Image processing

Clustering

text/sound processing

Reinforcement Learning



๏Event Generation with 
generative models


๏Anomaly Detection to search 
for new Physics


๏Adversarial training for 
systematics


๏Reinforcement learning for 
jet grooming


๏…

DL, HEP, and new opportunities
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https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf


Feed-Forward NNs
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• Feed-forward neural networks 
have hierarchical structures: 

• inputs enter from the left and 
flow to the right

•  no closed loops or circularities  

• Deep neural networks are FF-NN 
with more than one hidden layer

• Out of this “classic idea, new 
architectures emerge, optimised 
for computing vision, language 
processing, etc



The role of a network node
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wijxj

•Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

• The result is passed to an              
activation function
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Σjwijxj

• Each input is multiplied by a weight

•The weighted values are summed

• A bias is added

• The result is passed to an              
activation function

The role of a network node
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Σjwijxj + bi

• Each input is multiplied by a weight

• The weighted values are summed

•A bias is added

• The result is passed to an              
activation function

The role of a network node
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yi = f(Σjwijxj + bi)

• Each input is multiplied by a weight

• The weighted values are summed

• A bias is added

•The result is passed to an 
activation function

The role of a network node



๏In a feed-forward chain, 
each node processes what 
comes from the previous 
layer


๏The final result (depending 
on the network geometry) is 
K outputs, given N inputs

The full picture
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yj = f (3)(Σlw(3)
jl f (2)(Σkw(2)

lk f (1)(Σiw(1)
ki xi + b(1)

k ) + b(2)
l ) + b(3)

j )

๏One can show that such a mechanism allows to learn generic 
ℝN→ℝK functions



๏Activation functions are an 
example of network hyper 
parameters 


๏they come from architecture 
choice, rather than from the 
training itself


๏Activation output of the 
output layer play a special 
role:


๏it needs to return the 
output in the right domain


๏it needs to preserve the 
wanted features of the 
output (e.g., periodic, 
positive defined, etc.)

Activation Functions

41



๏A special kind of 
layer, introduced for 
regularisation purpose


๏Randomly drop links 
between neurons, with 
probability p


๏The connections are 
re-established during 
the validation  and 
inference steps


๏Typical sign of it: 
invert hierarchy 
between training and 
validation loss

Dropout Layer
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๏ This can be done automatically 
with BatchNormalization


๏ non-learnable shift and scale 
parameters, adjusted batch by 
batch

BatchNorm Layer
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๏ It is good practice to give normalized inputs to 
a layer


๏ With all inputs having the same order of 
magnitude, all weights are equal important in 
the gradient


๏ Prevents explosion of the loss function



๏Dense NN architectures can be made 
more complex


๏Multiple inputs 


๏Multiple outputs


๏Different networks branches


๏This is possible thanks to layer-
manipulation layers


๏Add, Subtract, etc.


๏Concatenation


๏Flattening


๏All these operations are usually 
provided with NN training libraries

More operations
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8 0 4 7 6 8 0
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Flattening

8 0 4 7 6 8 0

8 0 4 7 6 8 0 8 3 4 5 5 3 4 7 9 4 6 5 2 6

7 9 4 6 5 2 6 8 3 4 5 5 3 4

Concatenation



๏Many solutions exist. Most popular 
softwares live in a python 
ecosystem


๏Google’s TensorFlow


๏Facebook’s Pytorch


๏Apache MXnet


๏All of them integrated in a data 
science ecosystem


๏with numpy, scikit, etc.


๏Convenient libraries built on top, 
with pre-coded ingredients


๏ Keras for TF (this is what we 
will be using)

Training Libraries

45



๏All codes come with GPU support, through CUDA


๏They work on nVidia GPUs


๏GPUs are very suitable to train neural networks


๏dedicated VRAM provides large memory to load 
datasets


๏architecture ideal to run vectorised 
operations on tensors


๏can also paralyse training tasks (e.g., 
processing in parallel multiple batches)


๏A single-precision gaming card is good enough 
for standalone studies (200-1000 $, depending on 
model)


๏Large tasks require access to clusters (with 
libraries for distributed training)


๏Dedicated architectures (e.g., Google TPU) now 
emerging. Essentially, Deep Learning ASICs

GPUs & TPUs

46



๏You have a jet at LHC: spray of 
hadrons coming from a “shower” 
initiated by a fundamental 
particle of some kind (quark, 
gluon, W/Z/H bosons, top quark)


๏You have a set of jet features 
whose distribution depends on the 
nature of the initial particle


๏You can train a network to start 
from the values of these 
quantities and guess the nature 
of your jet


๏To do this you need a sample for 
which you know the answer 

Example: jet tagging
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CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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๏You have a jet at LHC: spray of 
hadrons coming from a “shower” 
initiated by a fundamental 
particle of some kind (quark, 
gluon, W/Z/H bosons, top quark)


๏You have a set of jet features 
whose distribution depends on the 
nature of the initial particle


๏You can train a network to start 
from the values of these 
quantities and guess the nature 
of your jet


๏To do this you need a sample for 
which you know the answer 
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Jet substructure features

 21

Jet substructure observables provide large discrimination 
power between these types of jets


mass, multipliticity, energy correlation functions, … 
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

    M. Cacciari et al, Eur. Phys. J.C72(2012)1896 

These are expert-level features

Not necessarily realistic for L1 trigger 
“Raw” particle candidates more suitable (to be studied next) 
But lessons here are generic 

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for 
b-tagging information
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CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Example: jet tagging



๏A given threefold defines the following qualities


๏True-positives: Class-1 events above the threshold


๏True-negatives: Class-0 events below the threshold


๏False-positives: Class-0 events above the threshold


๏False-negatives: Class-1 events below the threshold

Classifier metrics
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๏Consider a binary classifier


๏Its output ŷ is a number in 
[0,1]


๏If well trained, value 
should be close to 0 (1) for 
class-0 (class-1) examples


๏One usually defines a 
threshold yt such that:


๏ŷ>yt -> Class 1


๏ŷ<yt -> Class 0

Classifier metrics

53

score

Pr
ob

ab
ili

ty

score
Pr

ob
ab

ili
ty

ŷ>yt -> 
Class 1

ŷ<yt -> 
Class 1



๏Starting ingredients are true positive (TP) and true 
negative (TN) rates


๏Accuracy: (TP+TN)/Total


๏The fraction of events correctly classified


๏Sensitivity: TP/(Total positive)


๏AKA signal efficiency in HEP


๏Specificity: TN/(Total negative)


๏AKA mistag rate in HEP

Classifier metrics
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Receiver operating characteristic



EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

Sensitivity = True Positive Rate

1-
sp

ec
ifi

ci
ty

  =
 fa

ls
e 

po
si

tiv
e 

ra
te

Better
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Jet tagging ROC curve



๏ML models are adaptable algorithms that are trained 
(and not programmed) to accomplish a task


๏The training happens minimizing a loss function on a 
given sample


๏The loss function has a direct connection to the 
statistical properties of the problem


๏Deep Learning is the most powerful class of ML 
algorithms nowadays


๏It could be relevant to the future of HEP, e.g., to 
face the big-data challenge of the High-Luminosity LHC

Summary
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๏Michael Kagan, CERN OpenLab classes on Machine Learning


๏Source of inspiration for this first lesson


๏Pattern Recognition and Machine learning (Bishop) 


๏I. Goodfellow and Y. Bengio and A. Courville, “Deep Learning” MIT press


๏Main reference for tutorial exercise: https://arxiv.org/abs/1908.05318


๏All notebooks and classes are/will be on GitHub: https://github.com/
pierinim/tutorials/tree/master/SMARTHEP


๏Full dataset available at: https://zenodo.org/record/3602260

References
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Maurizio Pierini

Running Tutorial 
Notebooks in Colab



๏Go to https://colab.research.google.com

Step1: Open Notebook on Colab 
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https://colab.research.google.com/


Step2: import the Tutorial from gitlab
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๏Click on the GITHUB tab


๏Specify the repository pierinim/tutorials/SMARTHEP


๏Click on the notebook



Set your resources to use GPUs
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Set your resources to use GPUs

63


