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Pl R definition (Wikipedia) e
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Machine learning (ML) 1s the scientific study of algorithms and
statistical models that computer systems use to progressively
improve their performance on a specific task. Machine learning
algorithms build a mathematical model of sample data, known as
"training data’, 1n order to make predictions or decisions
without being exp77C7t7y'programmed to perform the task.
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The name of the game 1is
finding the algorithm
setting (i1ts parameter
values) that minimise
the loss, 1.e. the
error made 1n
prediction

TRAINING DATA
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Ol Many flavors of ML sweme

@ D-i 'IC'ICe ren t ML Hidden layer
algorithms had their
moment of glory

® (Shallow) neural
networks dominated
1n the 80’s

@Alternatives emerged
1n the 90°’s

® Support vector

machine

® Boosting of
decision trees X
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https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf

Gl A two-steps process sweme:

@ Learning: train the algorithm on a Supervised learning
provided dataset

® Supervised: the dataset X comes %
with the right answer y (right X X
class 1h a classification X2 o X
problem). The algorithm learns the ® IO,
function O

® Unsupervised: the dataset X comes X,
with no label. The algorithm
learns structures 1n the data

Unsupervised learning

(e.g., alike events 1n a | cletstars
clustering algorithm) O
O O
. O
2
@ ... ooo
® Inference: once trained, the model O OOO
can be applied to other datasets | > e}_ e Eimopesn
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35.9 fb' (13 TeV)
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Machine Learning in HEP swarmner
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@® Long standing tradition
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® Neural networks used at LEP and the
Tevatron

—
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® Boosted Decision Trees i1ntroduced by
Mi1niNooNE and heavy used at BaBar

4 Data

lation:
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I total background+stat.uncert.
R
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@ BDTs ported to LHC and

very useful on Higgs 5 ool —
discovery g 2
S _
@ Now Deep Learning 1s i
opening up many new ol
possibilities ot
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@ Classification: associate a
given element of a dataset to
one of N exclusive classes

® Regression: determine a
continuous value y from a set
of Tnputs X

@ Clustering: group elements of
a dataset because of their
similarity according to some
learned metric

@ Dimensionality reduction:
find the k quantities of the
N 1nputs (with k<N) that
1ncorporate the relevant
information (e.g., principal
component analysis)
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A simple example: S vs B selectionsmartter -

@ Define a selection to separate the signal from the
background

With rectangular X1 With a linear X With a non linear X1
cuts discrimininat discrimininat




A simple example: S vs B selectionsmartter -

® For any Ilinear boundary, the
quant-ity h(X‘W)=W1x1 WzXz -iS

@ =0 along the boundary h(X|W) > ()

@® >0 above the boundary, the
larger the distance, the
bigger h(x|w)

@® <0 below the boundary, the
larger the distance the bigger
—h(x| W)

@® In other words, the larger
(smaller) 1s h(x|w), the larger

is the probability for a given With a linear discrimininat X1
point to be blue (signal) or o
orange (background) erc
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ISTIC ReqressiOom swaerer

@ We can model the probability of being a signal
with a logistic model

ply =1[x) =

® Th1s definition has the desired properties: 1 4 e—h(x\w)
® The larger (and positive) h(x|w), the closer p
to 1 ] —
® The larger (and negative) h(x|w), the closer p
to 0
® The optimal boundary (1.e., the optimal choice 0.5

of wi and wz2) 1s such that we maximise
probability for signal points and minimise that
of background points

@ To do so, we need

@A set of points for which we have a ground —6 —4 -2 0 2 4 6
truth x, e R" and y,={0,1}

@®A loss function to minimise L | European

et te N Research
| -::::'.erc Council
.:.:o:....:: .,
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@ Inference: we could also just ask what 1s the value of A
more compatible with the observation (trivial question 1n
this case - right? - but not 1n general). This 1s a
typical application of maximum likelihood fits and a
regression problem 1n Machine Learning (not much to say
about this today) [ sowen

12




Maximum Likellnood estimation smartHer -

@ We are given a li1keli1hood model £ (D|w) and some data D
@D 1s known, w are unknown

@ We want to find the w values that would make our data D
the most probable outcome of the experiment

@ IT we knew these w values, the probability of
observing D 1s maximal (here D 1s unknown and w 1s
known)

® You can convince yourselves that

w = argmax £ (D | w)

13
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Bernoullls process s

@ Bernoull1’s process (Y/N question):

@ probability of a Y 1s p
@ probability of a N 1s (1-p)

@ If we assign labels (Y -> 1 and N -> 0) we can write the
probability for a i-th event as p%(1 —-p)!™, where x, is the

label for the 1-th event

@ The l1kel1hood 1s then written as

Zulp) =[]/ = p)=»

14



Cross Entropy as a MUE swasmer

@ We can make our

probabili1ty model more = =1l = —
complicated pi=p0, %) 1 + e—hxlw)
@p could be a
function of a set of
quantities x that we - -
know about our data dIg Idx ZL = dl'g IIllIl[—lOg fZ]
W W
® for 1nstance, this : . 1—v.
could be our = aIg mln[_ng(I Ipiyl(l _pi) i) ]
logistic regression W :
problem |
®@Minimizing the -TogL = arg min [— Z (xl- logp, + (1 —x;)log(1 —pi))]
corresponds to W ;
minimizing the binary
cross entropy _ HerC




Linear reqgression

@ Given a set of points, find the
curve that goes through them

@ Can be a l1near model

y. =ax;+ b

@ Can be a linear function of
non-1li1near kernel of the x.
For 1nstance, a polynomial
basis

yi==a1ﬂninykl>

New feature, “engineered” from

the input features S

\ /
REAL-TIME ANALYSIS FOR
SCIENCE AND INDUSTRY / )
\

ooooo



Example: regression & MSE s

® Take some model h(xi la, b) = ax; + b
(e.g., linear)

@ Consider the case 2
of a Gaussian 1 _ S
dispersion of y y, = h(x;) + e, p(ei) — —F— €
around the expected \/ 270
value

@ Assume that the 1 2 1 O = h(x)?
resolution o 1s P = H e 22 — H e 22
fixed and write . \/2][0 : \/27[0
down the Tikelihood | | B




Example: regression & MSE e

® The maximisation of this li1kelihood corresponds to the
minimisation of the mean square error (MSE)

1 (= hep)?
e

arg min[—2 log £| = arg min [— 210g[H

2o

hx)?
|

O

= arg min [Z Oi = arg min [Z (v; = h(xl-))z] = MSE

@ MSE 1s the most popular loss function when dealing with
continuous outputs. We will use 1t a few times 1n the next days

@ BE AWARE OF THE UNDERLYING ASSUMPTION: 1f you are using MSE,
you are 1mplicitly assuming that your y are Gaussian
distributed, with fixed RMS

@ What i1f the RMS is not a constant? erc e
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https://arxiv.org/pdf/2010.05531.pdf
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TRAINING DATA

@A training dataset x
@A target y
@A model to go from x to y

@A loss function quantifying how wrong the model 1s

®A minimisation algorithm to find the model h that corresponds to

. AT European

the minimal loss rare e
19 '




Traunnunn

@Split your sample 1n three:

\ /
I SCIENCE AND INDUSTRY / \

@ ITraining: the biggest chunk, where you learn from

@ Validation: an auxiliary dataset to verify
generalization and prevent overtraining

@ Test: the dataset for the final 1ndependent check

=0

LR
.........



Gradient Descent s

® Gradient Descent 1s a popular Wa A
minimisation algorithm

@ Start from a random point

@® Compute the gradient wrt the model 6‘L(W)
parameters
OwW

@® Make a step of size n (the learning
rate) towards the gradient direction

® Update the parameters of the mode
accordingly

@ Effective, but computationally ' aL(W)
expensive (gradient over entire .
dataset) e ree

=1
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Stochastic Gradient Descentsmarrer

@ Make the minimisation more
computationally efficient

@® Compute gradient on a small batch
of events (faster &
parallelizable, but noisy)

® Average over the batches to
reduce noise

@ BEWARE: better scalability come
at the cost of (sometimes) not
converging

® Many recipes exist to help
convergence, by playing with the
algorithm setup (e.g., adapting
learning rate)

2

sgd
momentum |
nag

adagrad
adadelta
rmsprop

1///{///1

Y
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SMARTHEP -
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Ol Traning i ractic

@ ITrain across multiple epochs

ANAL
DIN

Validation
Training

Loss

@ 1 epoch = going once through
the full dataset

@ Use small batches (64, 128, etc)
® Check your training history

@ on the training data (training
loss)

@ and the validation ones
(validation loss)

@® Use an object-i ve a ]gor--,' thm to EARLY TOPPING: stop the train if the

t ( T - . ) validation loss didn’t change more than 6 European
>top (e.g., early stopping in the last n epochs (patience) EATC comen

=3



UJhat can go wrong: underfittingsma

@ If your model has
not enough
flexibi1lity, 1t will
not be able to
describe the data

® The training and
validation loss will
be close, but their
value will not
decrease

® The model 1s said to
be underfitting, or
being biased

Degree 1

Degree 4

ANAL
D IN

'S L (

—  Model
——  True function
e*e Samples

Loss

=24

—  Model

e*e Samples

——  True function

Validation
Training

A
.....
......

k-3
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® Your model can learn too much Degree 4 Degree 15
of your training dataset — Model — Model

——  True function ——  True function
eee Samples e* e Samples

@e.g., 1ts statistical

fluctuations > >
® Such an overfitted model :
would not generalise
® So, 1ts description of the 0 A\ o
validation dataset will be O Validation
Training

bad (1.e., the mode doesn’t
generalise)

@ This 1s typically highlighted
by a divergence of the
training and validation loss

=5




he Bias vs Variance tradeoff smarmer

Degree 15

@A model would underfit i1f too o Model
S-imp7e: -it W-i77 I’IO'L' be ab7e 'L'O i *e Samples
model the mean value

@A model would overfit i1f too
complex: 1t will reproduce the

mean value, but 1t wi1ll x
underestimate the variance of the Degree 1
data —  Model

——  True function
e®e Samples

® The generalization error 1s the
error made going from the
training sample to another sample
(e.g., the test sample)

26
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® Generalization error can be written as the sum of three
terms:

@ The 1ntrinsic statistical noise 1n the data
@ the bias wrt the mean
® the variance of the prediction around the mean

Noise Bias Variance
Squared

=2/



The Bias vs Variance tradeoff smasrer -

Total Error

Variance

Optimum Model Complexily

Error

Model Complexity LEEEED | Europesn

=8
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] 8
Reqularization sweme
@® Model complexity can be “optimized” —_— p=2 —_— p=1
when minimizing the loss 4 4

@A modified loss 1s 1ntroduced, with

>
a penalty term attache to each model ®© 2 2
parameter Q \/
L.,=L+ Q(w) : o

-2 0 2 -2 0 2
® For 1nstance, Lp regularisation 0 0
— p=05 — p=0
— P — P 4 4
L,=|w|" = Z,\W,-\
l
@ The minimisation 1s a tradeoff between: 2 2

@ pushing down the 1st term by taking ; \/ : ‘

advantage of the parameters

@ pushing down the 2nd term by L | European
switching off the parameters HIGTC| coman
29 https://openreview.net/pdf?2id=H1Y8hhg0Ob %



https://openreview.net/pdf?id=H1Y8hhg0b
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Wl MNeural Networks in a Nnutshell smarter

SCIENCE AND INDUSTRY /

A mostly complete chart of

O Backfed Input Cell N e u ra l N EtWO rks Deep Feed Forward (DFF)

~ Input Cell

©2016 Fjodor van Veen - asimovinstitute.org

A Noisy Inpat Cel Perceptran (P) Feed Forward (FF)  Radial Basis Network (RBF)

. G Gy S8, e
® NINs are (as of today) the best ML solution on the g & ¢ ~

. Qutput Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o () () . () () . () ()

i (n\.ln\'l - ln\.ln"/ I\

I I I a r I(et . Match Input Output Cell - "’\"',\\" - "’\""\"' A%
AR e e AR
_ ‘ll"\ll"‘ ~ \‘."“."\ o \‘."\‘."\

. Recurrent Cell

. Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

® NNs are usually structured in nodes connected by ¢ .

o
- .\')’l “\’I‘f
: 10:{‘ 400

\Yem Yl
p— - “\'Q "l‘\"
QO Convolution or Pool AANIEOAN

g Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
o - o - - - ‘\ . - s o

® cach node performs a math operation on the

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwaork (DCIGN)
. - - . - - ~
INput X 0 X

P 53 AYAY S S

e UMD S0 S o

X S e o <

. QL ».

X o7 X

® edges determine the flow of neuron’s inputs &

outputs @ | @

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)

VaVaWaW
AW WA
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REAL-TIME ANALYS

SCIENCE AND INDUSTRY /

Hidden layer 1  Hidden layer 2  Hidden layer 3
Input layer

® Deep neural networks are
those with >1 1nner layer

Output layer

2

/A
%

"
!.'.‘l’ e

%
4

)
T//’/

*
W)
%
@

o

A

.a Lk g
» LN, v
'.‘ 'C.' ~ ‘l. .0 .

@ Thanks to GPUs, 1t 15 now s - =R D
; - Z N s
possible to train them 7 YO

i..

I\
.5 \\}.n
b

5

$

efficiently, which boosted
the revival of neural
networks 1n the years 2000

i \\\‘ " V)
| S
R

Large-scale Deep Unsupervised Learning using Graphics Processors

@ In addition, new
architectures emerged, A o
W h .I' C h b e t t e r, e X p 7 O _I' t t h e Computer Science Department, Stanford University, Stanford CA 94305 USA
new computing power
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http://www.machinelearning.org/archive/icml2009/papers/218.pdf
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UJhat is DU used for swene

Image processing

text/sound processing

s A : ”' ! W F- -7\‘ -
: | PN \
,,',« l LEFT REARWARD VEHICLE CAMERA
< % E
( T
4 |

N
‘ MEDIUM RANGE UEHICLE CAMERA
, —

p—

l’ 1
EHT .?_ AMERA

Everything is a Recommendation

— T Ranking
Lo ! :N;";-j — - -—— «sB-
| Over 75% of what
people watch
@ /.ruso ,\ — comes from our
00:08:32 . s LEE SEDOL .
b : . 00:00:27 _ o recommendations
s B <
N -, 2 :
, Yoo o - ‘ Recommendations
e Eﬁuﬁlénﬁ* oo
I }l" e 3 ' Machine Learning

. . NETFLIX i uropean
Reinforcement Learning Clustering are resere
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S DL, HEP, and New opportunities swarmer

i
u

@ Anomaly Detection to search ., — _
for new Physics -

GEANT

® Event Generation with
generative models

GAN

........

@ Adversarial training for g
systematics
® Reinforcement learning for
jet grooming ;
@... .EQE C) e*
O T] | :.ér C| comei
sS4 s


https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf
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Feed-Forward NN S smarmier

® Feed-forward neural networks
have hierarchical structures:

® inputs enter from the left and
flow to the right

® no closed loops or circularities

® Deep neural networks are FF-NN
with more than one hidden layer

® Out of this “classic idea, new
architectures emerge, optimised
for computing vision, language
processing, etc

35

input layer

——

hidden layer 1 hidden layer 2 hidden layer 3

output layer
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® [he weighted values are summed
® A bias is added

® [he result is passed to an
activation function

36

input layer

——

hidden layer 1 hidden layer 2 hidden layer 3

output layer

ooooo

The role of 8 Nnetwork Node smartee -

® Each input is multiplied by a weight



® Each input is multiplied by a weight

® A bias is added

® [he result is passed to an
activation function

3/

® The weighted values are summed

input layer

——

hidden layer 1 hidden layer 2 hidden layer 3

output layer

ooooo

The role of 8 Nnetwork Node smartee -
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The role of 3 network nocde sk

® Each input is multiplied by a weight
® [he weighted values are summed
® A bias is added -

_——Fd-

—

hidden layer 1 hidden layer 2 hidden layer 3

——

® [he result is passed to an Qi I
activation function

;..-;-..o Europ
esees Res
-,:..'.erc Council
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The role of a network Nnode smarmier -

® Each input is multiplied by a weight
® [he weighted values are summed

® A bias is added

® The result is passed to an
activation function

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

Activation Functions

39

Sigmoid Leaky RelLU ) -
O'(LU) _ 1+i—m max(O.l:U,a:)

5 0 To Er—y 10
tanh Maxout
tanh(x) e . max(w{x+b1,wgaﬁ+bg) y f( E : W x | b )
ReLU m ELU m / L J Y] !
max(0, z) {Z<ew-1> 20 [/

European
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@ In a feed-forward chain,
each node processes what
comes from the previous
layer

@ The final result (depending
on the network geometry) 1s
K outputs, given N 1nputs

T he full

ICture

\
' /
REAL-TIME ANALYSIS FOR
SCIENCE AND INDUSTRY /
\

input layer

hidden layer

1 hidden

layer 2 hidden layer 3

output layer

— f(3)(21v‘{].(l3) f(2)(2 W(Z) f(l)(Z W(l)x 4 b,fl)) 4 bl(Z)) 4 bj(3))

RN—=RK functions

40

® One can show that such a mechanism allows to learn gener7c
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@Activation functions are an
example of network hyper
parameters

® they come from architecture
choice, rather than from the
training itself

@ Activation output of the
output layer play a special
role:

@ 1t needs to return the
output 1n the right domain

@ 1t needs to preserve the
wanted features of the
output (e.g., periodic,
positive defined, etc.)

Hame Plot Equation
Tdentity / flz)==x
, | 0 for <0
Binary step | J f(z)= { 1 for >0
Logistic (a.k. a — N 1
Soft step) — f(l)'_ ] +e*
=T 2
Tark / f(z) = tanh(z) = 7—— 1
AdrcTan / f(.l‘) = t.an_l(.l‘)
Rectified / 0 for = <0
Linear Unit f(z) = { | -
e x for >0
Parameteric
Rectified e ar for x<0
Linear Unit o x for >0
(PReL) (2]
Exponential

Linear Unit
(ELY) (3]

/ f(z) = { afe* —1) for <0

x for >0

/ f(z) =log.(1+ €)

SoftPlus

4]

Derivative

fi@)=1

oy ) 0 for x#0
f(.z:)%@{ 7 for x=0

f'(z) = f(z)(1 - f(x))

=:172+1

i v ) 0 for <0
f(“")_{l for >0

iy ) a for <0
f(I)_{lfor x>0

oy | flx)+a for <0
f(r)—{ 1 for >0

Activation FunNctions swemes
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@®A special kind of
layer, 1ntroduced for
regularisation purpose

® Randomly drop 11nks
between neurons, with
probability p

. Standard N 1 Net
® The connections are (@) Standard Reural Ne

re-established during
the validation and

; 2 /N 2N
1nference steps 27 Validation S
= Training

Validation
— Training

@ Typical sign of 1t:
1nvert hierarchy
between training and poch. | ..

Va 7 -i da t -i On 7 OS S .:.:.::.:::e‘:'r c gziiac::h
A= RES
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BatchlMorm L3 SMARTHEF
® It is good practice to give normalized inputs to ©riginaldata
a layer

@ With all 1nputs having the same order of
magnitude, all weights are equal 1mportant 1n :
the gradient

® Prevents explosion of the loss function "

19

zero-centered data normalized data

10 - 10

® This can be done automatically
with BatchNormalization

@ nhon-learnable shift and scale - o
parameters, adjusted batch by
batch K

uropean

-10 L -10 - rch
-10 -5 0 5 1g -10 -5 0 5 10 esea ,c
R —ouncil
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@® Dense NN architectures can be made
more comp lex

@Multiple 1nputs
@eMultiple outputs
@ D1fferent networks branches

@ This 1s possible thanks to layer-
manipulation layers

@ Add, Subtract, etc.
@ Concatenation
@ Flattening

@®All these operations are usually
provided with NN training libraries

ava
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_Training LIBraries s

@® Many solutions exist. Most popular
softwares live 1n a python
ecosystem

" OPyTorch

® Google’s TensorFlow TensorFlow

® Facebook’s Pytorch
® Apache MXnet

@All of them 1ntegrated 1n a data
science ecosystem

@ wWith numpy, scikit, etc.

@® Convenient Ilibraries built on top,
with pre-coded 1ngredients

@ Keras for TF (this 1s what we
will be using)
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GCPUsSs & TPUS  swarmer

@All codes come with GPU support, through CUDA

<A NVIDIA.

® They work on nVidia GPUs

CUDA.

® GPUs are very suitable to train neural networks

@ dedicated VRAM provides large memory to load
datasets
3500 3242
@ architecture i1deal to run vectorised 3000
operations on tensors
. . 1943 1984
@ can also paralyse training tasks (e.g.,
processing 1n parallel multiple batches)

1169

images / second

. . . . . 1000 819
@A single-precision gaming card 1s good enough 486 505
for standalone studies (200-1000 $, depending on °00 | 292
mode ) 0 L
ResNet-50 Inception-V3
@ Large tasks require access to clusters (with 1XV100 W1xTPU m4xV100 m4xTPU (Cloud TPU)

libraries for distributed training)

@ Dedicated architectures (e.g., Google TPU) now LIS | Europesn
emerging. Essentially, Deep Learning ASICs erc ——
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Example: |Iet tagqinq e

® You have a jet at LHC: spray of
hadrons coming from a “shower”
Tnitiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

Q/9

® You have a set of jet features
whose distribution depends on the
nature of the 1nitial particle

@ You can train a network to start
from the values of these
quantities and guess the nature
of your jet

@ 1o do this you need a sample for
which you know the answer
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Example: |et tagglng swemee

® You have a jet at LHC: spray of
hadrons coming from a “shower”
Tnitiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

® You have a set of jet features

whose distribution depends on the

nature of the 1nitial particle

@ You can train a network to start

from the values of these
quantities and guess the nature
of your jet

@ 1o do this you need a sample for

which you know the answer
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activation: ReLLU
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activation: SoftMax 0.00
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Classifler metric

@A given threefold defines the following qualities
® True-positives: (Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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Classifler metric

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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Classifler metrics sweme

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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Classifler metrics smarmer

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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® Consider a binary classifier

@ Its output y 1s a number 1n

[0,1]

@If well trained, value
should be close to 0 (1) for
class-0 (class-1) examples

® One usually defines a
threshold y+ such that:

@y>yt —-> (Class 1

@ y<yt —> (Class 0

Probability

53
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Classifler metrics smarmer

@ Starting 1ngredients are true positive (TP) and true
negative (TN) rates

@ Accuracy: (TP+TN)/Total

® The fraction of events correctly classified
@ Sensitivity: TP/(Total positive)

@® AKA signal efficiency 1n HEP
® Specificity: TN/(Total negative)

@® AKA mistag rate 1n HEP

=41




@M Receiver operating characteristic swarmier

probability gen
AUC = 0.99 s o
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Jet tagging ROC curve swermee

1-specificity = false positive rate

bkg. mistag rate

100 -

-

-
o
|

-

o
N
|

j_ g tagger, auc = 91.6%
j g tagger, auc = 88.8%
j_ w tagger, auc = 92.1%
j_ z tagger, auc = 91.4%
j ttagger, auc = 93.7%

/

//

/

Ketter

HLS4ML Preliminary

103

0.0

0.2 0.4

0.6 0.8 1.0

sig. efficiency
Sensitivity = True Positive Rate
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SuMmManr

@ ML models are adaptable algorithms that are trained
(and not programmed) to accomplish a task

® The training happens minimizing a loss function on a
given sample

@ The loss function has a direct connection to the
statistical properties of the problem

@ Deep Learning 1s the most powerful class of ML
algorithms nowadays

@It could be relevant to the future of HEP, e.g., to
face the big-data challenge of the High-Luminosity LH
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References SMARTHEP -

@ Michael Kagan, CERN Openlab classes on Machine Learning

® Source of 1nspiration for this first lesson
@ Pattern Recognition and Machine learning (Bishop)

@ I. Goodfellow and Y. Bengio and A. Courville, “Deep Learning” MIT press

@Main reference for tutorial exercise: https://arxiv.orqg/abs/1908.05318

@®All notebooks and classes are/will be on GitHub: https://qgithub.com/
pierinim/tutorials/tree/master/SMARTHEP

@ Full dataset available at: https://zenodo.org/record/3602260
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Running Tutorial
[(lotebooks INn Colab

Maurizio Plerint
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Ol Stepl: Open Notebook on Colab

@ Go to https://colab.research.google.com

() Notebook3_JetID_CNN2D-checkpoint.ipynb B > SHARE @
File Edit View Insert Runtime Tools Help
. . RAM 1| .
View on GitHub °Y TO DRIVE Vv Disk 1 v # EDITING A
New Python 3 notebook
Tc New Python 2 notebook nd line with !
0 tebook...
[3 Pen NOIE500 3/Ctri+0 m/tutorials.git
Upload notebook...
) 1e.
30), done.
»7/27), done.
Save a copy in Drive... '3 (delta 3), pack-reused 0
e.
Save a copy as a GitHub Gist... mne.
Save a copy in GitHub...
N¢ te through it :
— Save 38 /Ctrl+S
[
« ‘mage_7_100p 50000 60000.h5
) . ‘mage_7 100p 60000 70000.h5
Download .ipynb ‘mage_7 100p_70000 80000.h5
Download .py ‘mage 7 100p 80000 90000.h5
[
) we just take a few files
Print &8 /Ctrl+P ta/jetImage 7 100p 30000 40000.h5', :
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https://colab.research.google.com/

Stepe: import the Tutorial from gltlab

@ Click on the GITHUB tab
® Specify the repository pierinim/tutorials/SMARTHEP

@ Click on the notebook

EXAMPLES RECENT GOOGLE DRIVE GITHUB UPLOAD

Enter a GitHub URL or search by organization or user Include private repos

pierinim Q

Repository: [/] Branch: [/]

pierinim/tutorials : master §

Path

0 HiggsSchool/.ipynb_checkpoints/Notebook1_ExploreDataset-checkpoi... R 2

0 HiggsSchool/.ipynb_checkpoints/Notebook2_JetID_DNN-checkpoint.ip... R 2

O HiggsSchool/.ipynb_checkpoints/Notebook3_JetID_CNN2D-checkpoint... R 2

O HiggsSchool/Notebook1_ExploreDataset.ipynb R 2 ,.'._l.'-.‘.f,:-'.:.'-.’.:..’ g:::::
E':':erc Council
:.:. * .'.o:: o
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et your resources to use GPUs

() Notebook3_JetID_CNN2D-checkpoint.ipynb & > SHARE @
File Edit View Insert Runtime Tools Help
CODE E§ TEXT 4 |  Runall 98 /Ctrl+F9 v M v J EDTING A
e |oad the h5 tiles In the Run before 98 /Ctrl+F8
’ « extract the data we n¢
To type shell commands in ( .
Run selection 38 /Ctrl+Shift+Enter
9 0 e el L Run after 38 /Ctrl+F10 L+
Cloning into 'tu Interrupt execution 38/Ctrl+M |
remote: Enumerat. Restart runtime... 38 /Ctrl+M .
remote: Counting
remote: Compress. Restart and run all...

remote: Total 30 pack-reused 0
Unpacking object:

Checking out fil:

Reset all runtimes...

Change runtime type

Now that the gitub repositor

Manage sessions

View runtime logs
[ 1] ! 1ls tutorials/Hi _

jetImage 7 100p 0 10000.h5 jetImage 7 100p 50000 _60000.h5
jetImage 7 100p 10000 20000.h5 jetImage 7 100p 60000 70000.h5
jetImage 7 100p 30000 40000.h5 jetImage 7 100p 70000 80000.h5
jetImage 7 100p 40000 50000.h5 jetImage 7 100p 80000 90000.h5

[ ] target = np.array([])
jetImage = np.array([])
# we cannot load all data on Colab. So we just take a few files
datafiles = ['tutorials/HiggsSchool/data/jetImage 7 100p 30000 40000.h5"',

e . segess. European
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Set your resources to use GPUS

Notebook settings

Runtime type

Python 3

Hardware accelerator

GPU - ®

[ ] Omit code cell output when saving this notebook

CANCEL SAVE
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