

European Committee for

WG3: Radiation Damage & Extreme Fluences

Extreme Fluences

Marko Mikuž

Univ. Ljubljana & J. Stefan Institute, Ljubljana, Slovenia

on behalf of the DRD3 proposal writing team

Extreme fluences ?

• What is extreme ? extreme (Ik'stri:m)

adj

- 1. being of a high or of the highest degree or intensity: extreme cold; extreme difficulty.
- 2. exceeding what is usual or reasonable; immoderate: extreme behaviour.
- A rather subjective measure
 - for LHC $10^{15} n_{eq}/cm^2$ was considered extreme
 - design was 730/fb @14TeV...
 - HL-LHC takes it to nx10¹⁶ (vertex) or even 10¹⁷ (FW calo)
 - 4000/fb @14TeV
 - FCC-hh is specifying towards 10¹⁸ for the tracker (FCC-hh CDR)
 - 30/ab @100TeV
 - 300 MGy TID in addition
 - Ratio 1:20:600 !
 - well, you *need* ~7²≈50 in HL/FCC lumi…
- What is the limit of tracking sensors ?
 - TRIGA, NPP and ITER are $10^{21} \leftrightarrow 10^{24}$

First tracking layer:

- 10 GHz/cm² charged particles
- 10¹⁸ hadrons/cm² for 30/ab

European Committee for

- For a ~yearly replacement of FCC-hh inner tracker !
 - Or a 2-stage operation 5->30/ab
- Linear extrapolation from low fluence data
 - Current: $I_{leak} = 4 \text{ A/cm}^3 @20^{\circ}\text{C}$
 - + 2 mA/cm² (2W @ 1 kV) for 300 μm thick detector @ -20°C
 - Depletion: $N_{eff} \approx 1.5 \times 10^{15} \text{ cm}^{-3}$
 - *FDV* ≈ 100 kV
 - Trapping $\tau_{eff} \approx 1/40 \text{ ns} = 25 \text{ ps}$
 - $Q \approx Q_0/d v_{sat} \tau_{eff} \approx 80 \text{ e/}\mu\text{m} 200 \ \mu\text{m/ns} 1/40 \text{ ns} = 400 \text{ e}$ in very high electric field (>>1 V/ μ m)
- But what about data ?
 - Unfortunately, very little experimental data exist beyond $10^{17} n_{eq}/cm^2...$

European Committee for

More measurements on thin detectors

- 75 µm epi detectors from CNM on lowresistivity substrate
- Irradiated to 0.25, 0.57 and 1.0x10¹⁷ n_{eq}/cm^2
- CCE in reverse and FW
- Annealing 1200 min @ 60°C

From: I.Mandić et al., JINST 15 P11018 (2020).

DRD3

European Committee for

- I-V for 3&4.6e17 looks very linear with little difference between reverse/FW bias
 - No breakdown, as observed in LGAD's
- I @1000 V does not scale linearly with fluence !
 - Not governed by generation current ?
- Tried to measure 4.6e17 spaghetti CCE with ⁹⁰Sr
 - No signal above background observed up to 320 V
 - Magic formula predicts 120e for 4.6e17 @320 V

Mobility Analysis

• Fit mobility dependence on fluence with a power law

- Fits perfectly, value of a close to linear
 - 10% error assumed for all neutron data
- At same NIEL, mobility decrease worse for protons
 - NIEL violation ? Large errors ?

Trapping analysis

Take *v_{sum}* at average *E* = 3.3 V/μm
Calculate *CCD* from "magic formula"

Ф [1е15]	5	10	50	100
<i>v_{sum}(3.3</i> V/μm)	137	126	90	77
<i>CCD</i> _{1000 V} [µm]	110	70	23	14
<i>τ</i> ≈ <i>CCD/v</i> [ps]	800	560	260	180
τ _{ext} [ps]	400	200	40	20

Implies factor of 6-9 less trapping at highest fluences

- lowest fluence still x2 from extrapolation
- · weak dependence on fluence as anticipated
- CM would effectively shorten trapping times
- not good when large *E* variations (v(E) saturates)
- not good when $CCD \approx$ thickness (less signal at same τ)

European Committee for

Trapping revisited

- From *I.Mandić et al., JINST 15 P11018* (2020)
 - FW bias CCE estimated by

$$Q = \frac{\Delta Q}{\Delta x} \cdot v \cdot \tau$$

- v(E) with fluence dependent μ
- constant E=V/D (FW)
- Order of magnitude smaller than extrapolated !
- Agrees with estimates from reverse bias CCE
- Trapping independent of bias, seen in wave-forms

State of the Art at Extreme Fluences

- Measurements performed on Si detectors irradiated to extreme fluences
 - Neutrons from 10^{15} to $4.6x10^{17}$ n_{eq}/cm², PS protons from $5x10^{14}$ to $3x10^{16}$ p/cm²
 - Velocity vs. electric field radiation impact observed and interpreted as reduction of zero field mobility
 - Zero field mobility follows power law with $|a| \le 1$, $\Phi_{\gamma_2} \approx 10^{16} \text{ n/cm}^2$
 - Protons degrade mobility more than neutrons
 - Induces resistivity increase in-line with measured I-V
 - Exhibits adverse effect on charge multiplication !
 - Simple field profile for very high neutron fluences
 - Diminishing SCR and highly resistive ENB
 - Effective acceptor introduction rates reduced by factor ~100 wrt low fluences
 - Current much lower than anticipated. Generated in SCR only ? Ohmic at highest fluences...
 - Trapping estimates for very high neutron fluences
 - from charge collection in FW and reverse bias
 - from waveforms
 - All estimates point to severe non-linearity of trapping with fluence, 10x lower at 10¹⁷
 - Trapping appears independent of electric field
- Conclusion: Low fluence extrapolations do not work at all !
 - ... go out and *measure* to get anything working at *extreme* fluences !!!

- Basic bulk silicon properties in the fluence range to master are the prerequisite to any inner tracking detector design for *FCC-hh*
- They need to be *measured*
 - Only pioneering consistency checks done so far
- Need resources far beyond current ones
 - Facilities (EURO-LABS, LDG/ECFA WG...)
 - There are 4 slots with up to 10¹⁸ secured within EURO-LABS at JSI !
 - Measurement techniques
 - People

European Committee for

- at least for the first ~5 of the 20++ years
- WG3 within DRD3 Collaboration essential for achieving the goal
 - Nice to observe big interest for working on the subject !
 - EU funding should help to rise funds at national level