

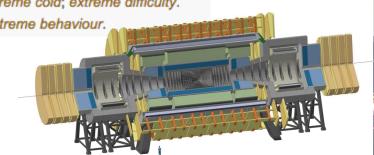
WG3: Radiation Damage & Extreme Fluences

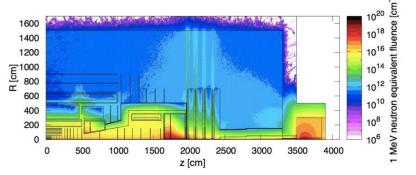
Extreme Fluences

Marko Mikuž

Univ. Ljubljana & J. Stefan Institute, Ljubljana, Slovenia

on behalf of the DRD3 proposal writing team


Extreme fluences?


What is extreme ? extreme (xk'stri:m)

ad

- 1. being of a high or of the highest degree or intensity: extreme cold; extreme difficulty.
- 2. exceeding what is usual or reasonable; immoderate: extreme behaviour.
- A rather subjective measure
 - for *LHC* 10¹⁵ n_{eq}/cm² was considered extreme
 - design was 730/fb @14TeV...
 - HL-LHC takes it to nx10¹⁶ (vertex) or even 10¹⁷ (FW calo)
 - 4000/fb @14TeV
 - FCC-hh is specifying towards 10¹⁸ for the tracker (FCC-hh CDR)
 - 30/ab @100TeV
 - 300 MGy TID in addition
 - Ratio 1:20:600!
 - well, you need ~7²≈50 in HL/FCC lumi...
- What is the limit of tracking sensors?
 - TRIGA, NPP and ITER are $10^{21} \leftrightarrow 10^{24}$

First tracking layer:

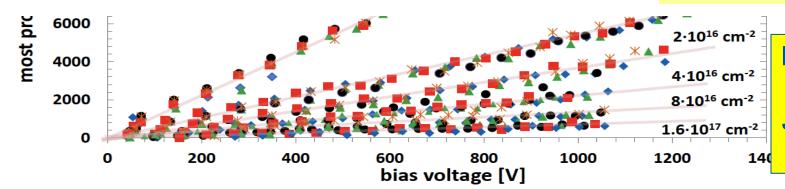
- 10 GHz/cm² charged particles
- 10¹⁸ hadrons/cm² for 30/ab

Expectations for 10¹⁷ n_{eq}/cm²

- For a ~yearly replacement of FCC-hh inner tracker!
 - Or a 2-stage operation 5->30/ab
- Linear extrapolation from low fluence data
 - Current: $I_{leak} = 4 \text{ A/cm}^3 @20^{\circ}\text{C}$
 - 2 mA/cm² (2W @ 1 kV) for 300 µm thick detector @ -20°C
 - Depletion: $N_{eff} \approx 1.5 \times 10^{15} \text{ cm}^{-3}$
 - FDV≈ 100 kV
 - Trapping $\tau_{eff} \approx 1/40 \text{ ns} = 25 \text{ ps}$
 - $Q \approx Q_0/d v_{sat} \tau_{eff} \approx 80 \text{ e/µm } 200 \text{ µm/ns } 1/40 \text{ ns} = 400 \text{ e} \text{ in very high electric field (>>1 V/µm)}$
- But what about data?
 - Unfortunately, very little experimental data exist beyond 10¹⁷ n_{eq}/cm²...



CCE measurements up to 1.6x10¹⁷ n_{eq}/cm²


- *n*+*p* "spaghetti" strips, 300 μm
- Observed signal not at all compatible with expectations
 - Above 3x10¹⁵ linear CCE(V_{bias})
 - Power law scaling with fluence, $b \approx -\frac{2}{3}$
 - Leakage current "saturating"

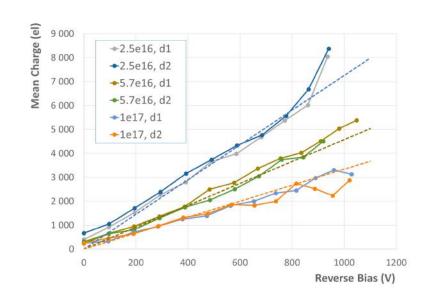
$$Q_{MPV}(V, F) = k \times (F/10^{15} \, n_{eq}/cm^2)^b \times V$$

$$k = 26.4 \, e_0 / V$$

From:

G. Kramberger et al., *JINST 8 P08004 (2013)*.

More measurements on thin detectors


- 75 µm epi detectors from CNM on lowresistivity substrate
- Irradiated to 0.25, 0.57 and 1.0x10¹⁷ n_{eq}/cm²
- CCE in reverse and FW
- Annealing 1200 min @ 60°C

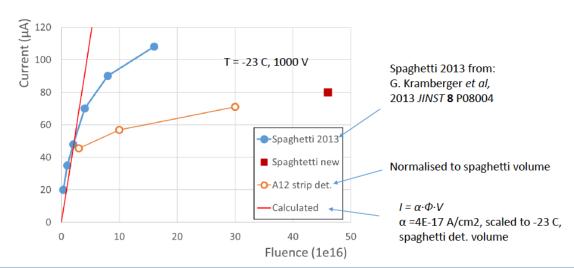
From:

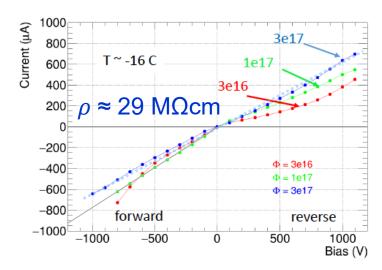
I.Mandić et al.,

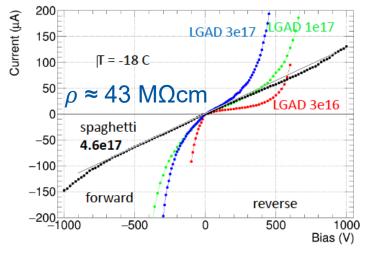
JINST 15 P11018 (2020).

$$Q_{mean} = k \cdot \phi^b \cdot V$$

 $k_{75} = 44 e_0/V$
 $b_{75} = -0.56$
Thinner is better!



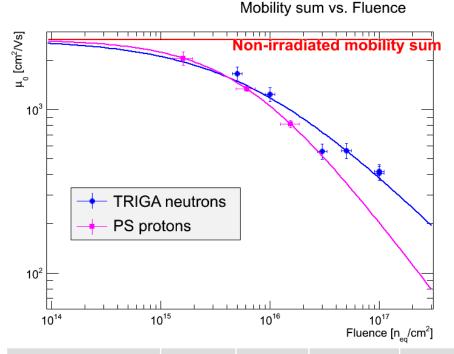

Basic Measurements above 10¹⁷ n_{eq}/cm²



- *I-V* for 3&4.6e17 looks very linear with little difference between reverse/FW bias
 - No breakdown, as observed in LGAD's
- I @1000 V does not scale linearly with fluence!
 - Not governed by generation current?
- Tried to measure 4.6e17 spaghetti CCE with 90Sr
 - No signal above background observed up to 320 V
 - Magic formula predicts 120e for 4.6e17 @320 V

Current at 1000 V, 300 um thick detectors

Mobility Analysis


 Mobility governed by hard scattering on acoustic phonons and traps

$$\frac{1}{t} = \frac{1}{t_{ph}} + \frac{1}{t_{trap}}$$

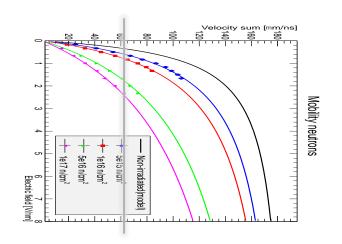
• Fit mobility dependence on fluence with a power law

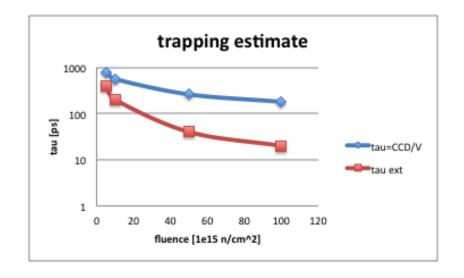
$$M_{0,sum}(F) = \frac{M_{0,sum,phonon}}{1 + (\frac{F}{F_{\frac{1}{2}}})^a}$$

- Fits perfectly, value of a close to linear
 - 10% error assumed for all neutron data
- At same NIEL, mobility decrease worse for protons
 - NIEL violation ? Large errors ?

Irradiation particle	a	σ_a	Φ _½ /10 ¹⁵	$\sigma_{oldsymbol{\phi}_{22}}$ /10 15
Reactor neutrons	-0.68	0.08	6.9	1.7
PS protons	-0.90	0.19	6.1	1.0

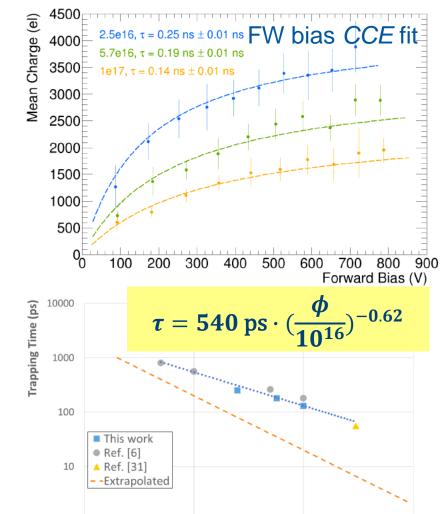
Trapping analysis




- Take v_{sum} at average $E = 3.3 \text{ V/}\mu\text{m}$
- Calculate CCD from "magic formula"

Φ [1e15]	5	10	50	100
<i>ν_{sum}</i> (3.3 V/μm)	137	126	90	77
CCD _{1000 V} [µm]	110	70	23	14
<i>τ</i> ≈ <i>CCD/v</i> [ps]	800	560	260	180
τ _{ext} [ps]	400	200	40	20

- lowest fluence still x2 from extrapolation
- weak dependence on fluence as anticipated
- CM would effectively shorten trapping times
- not good when large E variations (v(E) saturates)
- not good when CCD ≈ thickness (less signal at same τ)


Trapping revisited

- From I.Mandić et al., JINST 15 P11018 (2020)
 - FW bias CCE estimated by

$$Q = \frac{\Delta Q}{\Delta x} \cdot v \cdot \tau$$

- v(E) with fluence dependent μ
- constant E=V/D (FW)
- Order of magnitude smaller than extrapolated!
- Agrees with estimates from reverse bias CCE
- Trapping independent of bias, seen in wave-forms

0.1

10 Fluence (1e16 n/cm²)

State of the Art at Extreme Fluences

- Measurements performed on Si detectors irradiated to extreme fluences
 - Neutrons from 10^{15} to $4.6x10^{17}$ n_{eq} /cm², PS protons from $5x10^{14}$ to $3x10^{16}$ p/cm²
 - Velocity vs. electric field radiation impact observed and interpreted as reduction of zero field mobility
 - Zero field mobility follows power law with $|a| \le 1$, $\Phi_{1/2} \approx 10^{16}$ n/cm²
 - Protons degrade mobility more than neutrons
 - Induces resistivity increase in-line with measured I-V
 - Exhibits adverse effect on charge multiplication!
 - Simple field profile for very high neutron fluences
 - Diminishing SCR and highly resistive ENB
 - Effective acceptor introduction rates reduced by factor ~100 wrt low fluences
 - Current much lower than anticipated. Generated in SCR only? Ohmic at highest fluences...
 - Trapping estimates for very high neutron fluences
 - from charge collection in FW and reverse bias
 - from waveforms
 - All estimates point to severe non-linearity of trapping with fluence, 10x lower at 10¹⁷
 - Trapping appears independent of electric field
- Conclusion: Low fluence extrapolations do not work at all!
 - ... go out and *measure* to get anything working at *extreme* fluences !!!

Implications for WG3 of DRD3

- Basic bulk silicon properties in the fluence range to master are the prerequisite to any inner tracking detector design for FCC-hh
- They need to be measured
 - Only pioneering consistency checks done so far
- Need resources far beyond current ones
 - Facilities (EURO-LABS, LDG/ECFA WG...)
 - There are 4 slots with up to 10¹⁸ secured within EURO-LABS at JSI!
 - Measurement techniques
 - People
 - at least for the first ~5 of the 20++ years
- WG3 within DRD3 Collaboration essential for achieving the goal
 - Nice to observe big interest for working on the subject!
 - EU funding should help to rise funds at national level

