
WP4 - TCAD simulations

Proposal for workplan and milestones

J. Schwandt, M. Bomben, F. Moscatelli, A. Morozzi,

on behalf of the WP4 preparation/proposal group

Current status I

Technology Computer-Aided Design (TCAD):

- Is a decisive tool for the detector community for the:
 - Sensor designs and optimization
 - Radiation damage understanding and modeling
 - Electrical field calculation for Monte-Carlo tools
 - Is integral part of full detector system simulation (ATLAS,CMS)
- Mainly commercially available (Synopsys TCAD, Silvaco TCAD)

Companies implement device physics in different ways:

Cross calibration required, partially performed for Synopsys and Silvaco TCAD

Protocols to transfer electric field from TCAD to Monte-Carlo tools:

Ready for Allpix2

Current status II

TCAD as part of full detector simulation:

- LHC Run1/2/3 pixel detectors:
 - Both ATLAS and CMS rely on TCAD simulations to include radiation damage effects into their Monte-Carlo simulated events
 - The model used is based on EVL 2 traps one
 - M. Swartz and colleagues expanded it over the years
 - It is now validated on testbeam data till 2.4e15, on collision data till ~ 1e15
- HL-LHC i.e. fluence >~ 3e15:
 - Perugia model (includes surface damage see next talk)
 - HPTM
 - LHCb model (developed on irradiated Velo pixels modules, till 8e15)
- e+e- machines
 - Surface damage -> Perugia model

Outreach/Training:

- Europractice Training Course
- Biannual TCAD school SIMDET

Directions of research

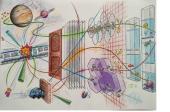
Charge collection time optimization

2D and 3D sensors

Implementation and validation of physics models of non Si materials

Focus on SiC, GaN, diamond (?)

Cluster defect simulation in TCAD


- Occupation-dependent ionization energy
- NIEL scaling

Further development of physics models:

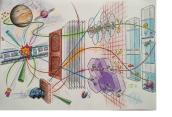
- Fluence dependence of the IR absorption length
- Effects of mobility reduction due to scattering by ionised defects at high fluences
- Impact-ionisation via local-level at high fluences

Cooperation with TCAD companies

Silvaco

- fruitful interaction since years with engineers
- open/eager to discuss new physics models to be implemented
- support for missing/wanted features (e.g. extraction of 3D field)

Synopsys

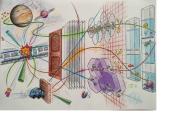

- Synopsys provides a physical model interface allowing to modify generation-recombination, mobility, band structure models etc
- implementation of more sophisticated models need support from the company
- direct contact to software developer/engineers not yet established

Contact other companies e.g. Global TCAD Solutions™?

Whatever the company, build good relations with it!

Milestones & Deliverables

S=short (3 years), M=Medium (6 years), L=Long (>> 6 years) M=milestone D=deliverable


Protocols to transfer electric field from TCAD to Allpix2 (~ ready but need to be validated to all sorts of structures maybe)

SM: Flexible CMOS simulation of 65 nm to test design variations in 1 year?

SM CCE vs fluence vs voltage for HL-LHC (depends on RD53C chip)

SD: Model for 1e17? (includes mobility models and more)

MM: TCAD for different WBS ?

Ressources

FTEs: 5 in ~ 10 institutes

Licenses for this: ~ 50k€/year (+/- 50%)