

DRD3 WG1 Monolithic CMOS

Toward a DRD3 WG1 deliverables/milestones implementation proposal mapping the strategic DRDTs of the ECFA roadmap and the community interests

D. Bortoletto, <u>D.Contardo</u>, H. Pernegger, E. Vilella

Broad brush matrix starting point

Different detector requirements

	<u> </u>						
ints	Strategic Projects	Tracking Vertex Detector (VD) Central Tracker (CT)	Timing Layer (TL) + Calorimeter				
al constraints	Heavy Ion	ALICE-3, EIC	ALICE-3 (LS4+), EIC				
Different environmental	Flavour collider	BELLE-3	BELLE-3				
	Lepton collider	ILC, CLIC FCCee, Muon Collider	ILC, CLIC FCCee, Muon Collider				
	pp collider	LHCb-2, ATLAS, CMS FCC-hh	LHCb-2, ATLAS, CMS FCC-hh				

Note: fixed target experiments in the shadow of colliders, to be consolidated (some high precision timing targets in NA62/Klever by 2025)

Handle mandatory (independant) performance for strategic projects of 1st half of 2030's

Milestones	Tracking VD/CT	Timing Layer + Calorimeter			
Heavy Ion	M1 ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) μs	M2 O(20) ps (TL)			
Flavour collider	ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) ns	O(20) ps in (TL)			
Lepton collider	e-e: ultralight low power tracker pitch down to <10 μ m, @ O(100) MHz/cm² timing driven by power dissipation μ - μ : O(20) ps rates and irradiation tbc	O(10) ps in TL O(< 50) ps in calorimeter driven by power dissipation			
pp collider	M3 HL-LHC: 25-50 μm @ O(5) GHz/cm ² $5x10^{15}$ to $5x10^{16}$ neq/cm ² , 250 - 500 MRad timing $O(<50)$ ps FCC-hh: <10 - 20 μm @ 30 GHz/cm ² 4D tracking $O(<10)$ ps up to $O(10^{18})$ neq/cm ² , up to $O(50)$ GRad	M4 HL-LHC: pitch O(<1) mm O(20) ps in TL, NIEL 5x10 FCC-hh: 5D calorimeter O(<10) ps up to O(10 ¹⁸) neq/cm ² , up to O(50) GRad			

^{*} ranges representative, ex. for VD and CT with more stringent constraints to be achieved in VD

Milestone 1, 2028-2029

strategic programs ALICE-3, LHCb-2, Belle-3, EIC: VD/CT

highest position precision at lowest power dissipation up to large wafersize

- Map of technologies performance versus pitch and thickness in range 10 30 μm
- Readout architecture options for particle rate up to O(100) MHz/cm² and timing down to O(1) ns
 - Deliverables :
 - MPWs* in ≠ nodes/foundries: small/large electrodes, ≠ substrate nature & active thickness
 - with configuration variants in pitch, VD/CT configurations...
 - with readout architecture variants for power consumption
 - 2-3 iterations** with channel matrix scaling up to wafersize***

*** in relation with DRD7

- Narrow down technology options for further R&D steps
- * MPWs could be ER, depending on technology/goals, and cover more than 1 milestone
- ** number of iterations can depend on technology prospect

Milestone 2, 2028-2029

strategic programs ALICE-3, LHCb-2, Belle-3, EIC, ATLAS/CMS Timing Layers, Calorimeters*

implementation of precision timing

- Map of technologies performance in the range 20 50 ps
- Readout architecture options for tolerable power dissipation versus granulairty and rates
 - Deliverables :
 - MPWs in ≠ nodes/foundries: same as M1 plus w/ amplification doping layer
 - with configuration variants pitch up to O(1-10) mm² pads*
 - with readout architecture variants for power consumption**
 - 2-3 iterations
- Narrow down technology options for further R&D steps

* in relation with DRD6

** in relation with DRD7

Milestone 3, 2028-2029 strategic programs LHCb-2 CT, ATLAS/CMS TL

high density and rate readout architecture

- Readout architecture options @ O(5) GHz/cm² and O(1) ns
 - Deliverables :
 - Variants in MPWs* of previous milestones
 - Investigate/prepare 3D integration*

* in relation with DRD7

- 2-3 iterations
- Narrow down technology options for further R&D steps

Milestone 4, 2028-2029 strategic programs LHCb-2 CT, ATLAS/CMS TL

high radiation tolerance

- Assess technologies performance beyond 10¹⁵ neq/cm² and 300 MRad
 - Deliverables :
 - MPWs of previous milestones
 - 2-3 iterations
 - Narrow down technology options for further R&D steps

2nd R&D phase, up to 2034-2035

Integration of 1st R&D phase performance in full 4D devices for stategic progams of the 2040 decade

Ball park generic performance targets* mandatory/desireable	Milestones	Tracking VD/CT	Timing Layer + Calorimeter			
	Heavy Ion	M1 ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) μs	M2 O(20) ps (TL)			
	Flavour collider	ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) ns	O(20) ps in (TL)			
	Lepton collider	M5 e-e: ultralight low power tracker pitch down to <10 μ m, @ O(100) MHz/cm² timing driven by power dissipation μ - μ : O(20) ps rates and irradiation tbc	O(10) ps in TL O(< 50) ps in calorimeter driven by power dissipation			
	pp collider	M3 HL-LHC: 25-50 μm @ O(5) GHz/cm 2 5x10 15 to 5x10 16 neq/cm 2 , 250 - 500 MRad timing O(<50) ps M7 FCC-hh: < 10 - 20 μm @ 30 GHz/cm 2 4D tracking O(<10)ps up to	M4 HL-LHC: pitch O(<1) mm O(20) ps in TL, NIEL 5x10 M8 FCC-hh: 5D calorimeter O(<10)ps up to O(10 ¹⁸) neq/cm ² , up to O(50) GRad			
		$O(10^{18})$ neq/cm ² , up to $O(50)$ GRad	O(30) GNau			

^{*} ranges representative, ex. for VD and CT with more stringent constraints to be achieved in VD

2nd R&D phase, up to 2034-2035

Milestone 5, 2034-2035 strategic programs ILC, CLIC, FCCee, MC: VD/CT

further improvement of position precision

- Extend M1 to pitch < 10 μm in large wafersize
- Deliverables :
 - MPWs with M1-4 selected technologies
 - MPWs in new technology node

Milestone 6, 2034-2035 strategic programs ILC, CLIC, FCCee, MC, FCC-hh

further improvement of timing resolution and steps toward 4D-tracking

- Extend M2 to time precision < 20 ps @ low power dissipation
- Deliverables:
 - MPWs with M1-4 selected technologies
 - MPWs in new technology node
 - 3D wafer size integration

* transitioning time of deliverables for 1st to 2nd R&D phase could defined has milestones

2nd R&D phase, up to 2034-2035

Milestone 7, 2034-2035 strategic programs CLIC, MC, FCC-hh

extend performance capabilities at very high rates

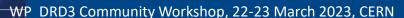
- Extend M3 to higher channel density and improved timing precision
- Deliverables:
 - MPWs with M1-4 selected technologies
 - MPWs in new technology node
 - 3D wafersize integration

Milestone 8, 2034-2035 strategic programs MC, FCC-hh

extreme radiation tolerance

- Extend M4 toward O(10¹⁸) neq/cm² TID O(>30) GRad
- Deliverables :
 - MPWs with M1-4 selected technologies
 - MPWs in new technology node
 - MPWs in new materials

Toward a technical deliverable planning for DRD3 WG1 proposal

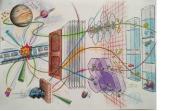



What it could looks like - to be developed with the community inputs

(according to the ECFA roadmap implementation panel guidance)

		U						_		
				2024	2025	2026	2027	2028	2029	>2035
Strategic Project	Requirements	Technology	Institutes interests	Deliverables				Milestones		Milestones
ALICE ITS3 2027	12" stitched sensors, 10 - 20 µm pitch, 10 MHz/cm2, 1 µs ALPIDE-like architecture EM calorimeter FOCAL	TJ 65 nm (thin) 12"								
BELLE-2 2027	4", 10-20, 10-20 μm pitch, 100 MHz, 0.1 μs Monopix-like architecture	TJ 180 nm (thick) 4"								
ALICE-3 ITS4 EIC VD - CT	12" stitched sensors, 10 - 20 µm pitch, 100 MHz/cm2 low power architecture, 25 ns	technologies 1,2		MPWi2, prepare /submit	MPi1 test MPi2 prepare/submit	MPi2 evaluarion prepare wafer-size MPi3	MPi3 evaluation	Mileston 1 - 4		
BELLE-3 VD/CT	12", 10-20 μm pitch, 100 MHz/cm2, <mark>O(ns</mark>)	technologies 1,2		MPWj2, prepare /submit	MPj1 test MPj2	MPj2 evaluarion prepare wafer-size MPj3	MPj3 evaluation			
LHCb-2 CT	12", 10-20 μm pitch, 2 GHz, 25ns , strips, 5x10**15 neq/cm2, 250 MRad	technologies 1,2		MPWk2, prepare /submit	MPk1 test MPk2 prepare/submit	MPk2 evaluarion prepare wafer-size MPk3	MPk3 evaluation	Milestone 1 - 4		
LICE/EIC/ATLAS/CM S TL	12", pads mm pitch, 20 ps, 100 MHz 2x10**15 neq/cm2, 100 Mrad	technologies 1,2 small-large electrodes w/-w/o amplification		MPWI2, prepare /submit	MPWI1 test MPI2 prepare/submit	MPI2 evaluarion prepare wafer-size MPI3	MPI3 evaluation	Milestone 3 - 4		
e-e Collider VD/CT	ILC, FCC-ee	selected from M1-M4		first step of common generic requirements of ALICE-3, EIC VD/CT					one step further in node, 3D, wafersize	
e-e Collider VD/CT	CLIC 5 GHz/cm2, 5 ns CLIC	selected from M1-M4	fin	first step of common generic requirements of Belle-3 + LHCb-2 VD/CT				one step further in node , 3D, wafersize		Milestone 5 - 7
Lepton Collider TL 4D VD/CT/Calorimeter	< 20 ps	selected from M1-M4		first step of common generic requirements ALICE-3, EIC TL				one step further in node , 3D, wafersize		Milestone 5 - 6
Lepton Collider HGCAL/LumiCal	pads/analog - pixels/digital	selected from M1-M4	f	first step of common generic requirements (w/o thikness constraint)				one step further in node , 3D, wafersize		Milestones 5 - 6
Muon Collider	4D <20 ps	selected from M1-M4	first step of common generic requirements ALICE-3, EIC, LHCb, ATLAS/CMS				one step further in node , 3D, wafersize		Milestones 5 - 6	
FCC-hh VD/CT/HGCAL	pitch < 10 μm, 4D <10 ps, 30 GHZ/cm2, 10**18 neq/cm2, 30 Grad	new materials?		Invetigate new materials, 1st set of submissions				Invetigate new materials, 2nd set of submissions		Milestone 5 - 6 - 7

Toward a cost scale exercise


- Foundry costs are relatively confidential and subject to negotiation with some level of volatility observed in recent orders
- Some foundries offer what we usually call MPW
 - eg. minimal area requested with /mm2 cost, allowing relatively cheap solution for small scale studies with reasonable number of samples
- Engineering Runs are more expensive
 - but can be organise as MPWs with several design variants, this is typically already a practice for TJ 180 nm and TJ TPSco 65 nm, (they are needed for large size with stitching)
 - 12 wafers appears to be a reasonable scale for an ER with cost substantially depending on foundries, nodes...
 - There are also costs associated to back-end processing to consider

Assuming (an oversimplified) scheme of 3 ERs x 4 foundry costs of today (about 1.5 year cycle) a ballpark cost* could be O(4-5) Mk (\$/€) over 4-5 years up to 2028 Beyond submission costs environment costs need also to be evaluated

Note: R&D costs could reach production costs for small detector areas, generic R&D can therefore reduce overall experiment-specific costs

Path toward DRD3 WG1 proposal (1st discussions today/tomorrow)

- Completing deliverable technical plan based on current technology developments
 - TSI 180 nm, LFoundry 110/150 nm, TJ 180 nm, TJ TPSco 65 nm, SiGe BiCMOS
 - map technologies to M1 M4 goals (performance, detector type)
 - establish number of MPW* types required to fulfil M1 to M4 (adjusted to goals and each technology)
 - establish an initial number of iterations for different MPW types
 - check generic requirement needs for strategic projects (beyond minimal specifications)
- Consolidate technical plan schedule against Strategic Programs plans
 - considering timeline for experiment-specific engineering and then production
- Establish mapping of technical plan with collaboration interests (see presentation of E. Vilella)
 - 1-2 iterations by DRD3 proposal submission
- Establish cost scale of the technical deliverable plan and assess strategic planning resource needs
 - As defined in the ECFA roadmap panel / DRDC guidance

^{*} MPWs could be ER, depending on technology/goals, and cover more than 1 milestone

