

DRD3 WG1 Monolithic CMOS sensors DRD3

Community interests

Eva Vilella

University of Liverpool

on behalf of the DRD3 proposal writing team

Community composition

56 institutes expressed interest in contributing to the monolithic CMOS sensors R&D

(increase with respect to RD50 CMOS Working Group – 17 institutes)

Questionnaire inputs

Diversity

- Some questionnaires were very detailed and specific
- Some questionnaires were more generic
- This is ok

Questionnaire analysis

- The goal is to get an idea about the research interests of the community
- Also to understand if these agree with the 'strategic R&D that needs to be done'
- We have extracted the information as best as we could
- Things are not written in stone at this point

The challenges of radiation tolerance and timing resolution attract most of the interest

The development of monolithic 4D tracking sensors is a 'hot topic' too

Strong relationships with DRD3 WG2 (next session)

Milestones, as in previous talk

1st R&D phase, up to 2028-29

- Milestone 1 Highest position precision at lowest power dissipation up to large wafersize
- Milestone 2 Implementation of precision timing
- Milestone 3 High density and rate readout architecture
- Milestone 4 High radiation tolerance

2nd R&D phase, up to 2034-35

- **Milestone 5** Further improvement of position precision
- Milestone 6 Further improvement of timing resolution and steps toward 4D-tracking
- Milestone 7 Extend performance capabilities at very high rates
- Milestone 8 Extreme radiation tolerance

M1 Position precision, lowest power, pitch > 10 μ m, thickness, timing

M5 Extend M1 with pitch $< 10 \mu m$

M2 Precision timingM6 Extend M2

M3 High density rate and readout architecture

M4 High radiation toleranceM8 Extend M1

Projects of interest R&D

Strategic programme, as in previous talk **DRD3**

1st R&D phase, up to 2028-29

- Milestone 1 ALICE-3, LHCb-2, Belle-3, EIC
- Milestone 2 ALICE-3, LHCb-2, Belle-3, EIC, ATLAS/CMS Timing Layers, Calorimeters
- **Milestone 3** LHCb-2, ATLAS/CMS Timing Layers
- Milestone 4 LHCb-2, ATLAS/CMS Timing Layers

2nd R&D phase, up to 2034-35

- Milestone 5 ILC, CLIC, FCCee, MC
- Milestone 6 ILC, CLIC, FCCee, MC, FCChh
- Milestone 7 CLIC, MC, FCChh
- Milestone 8 MC, FCChh

Projects of interest R&D

Necessary tasks with support

- Chip design
- TCAD simulations (and also Geant4 simulations)
- DAQ development

Necessary task with lots of support

Evaluation

