

WG5: New characterization techniques and facilities of common interest Development of a new tool: Two Photon Absorption - TCT

Marcos Fernández García IFCA-Santander & CERN-SSD guest scientist

The development of new semiconductor characterization techniques is a priority for future detector developments. These techniques should enable high-resolution imaging and defect spectroscopy of semiconductor materials, as well as advanced characterization of charge transport properties.

Two Photon Absorption – TCT is an example of these characterization techniques:

- Benefited from RD50 common fund both during development and measurement campaigns.
- It also received financial support (laser procurement) from CERN Knowledge Transfer fund (2017).

TPA-TCT is now available to the community:

- Used within RD50 and RD42 collaborations.
- Laser is a commercial tool (Si bandgap).
- As a characterization tool, it is transversal to several WGs(1,2,3,4,6,8)
- Expertise in the technique built up by different groups

Development of TCT as characterization tool DRD3

Study of non-equilibrium charge carriers in semiconductors (TCT=Transient Current Technique) started in the **90's** (Fretwurst, Li, Eremin, Verbitskaya...) [1].

2009 G. Kramberger et al. develop **edge** laser illumination -> depth profiling added to TCT [2].

2013 First **T**wo **P**hoton **A**bsorption-TCT measurement in silicon and diamond (IFCA, CERN, UPV, US)

Single Photon-TCT 2D resolution (XY) e-h separation

Single-Photon TCT 2D resolution (ZY) Allows profiling (Q(z), v_{drift}(z),...)

Two Photon TCT True 3D resolution

TCT has been/is a workhorse for characterization of detectors for the RD48-RD50 collaborations.

[1] Review: M. Zavrtanik, 2nd TCT workshop [2] doi: 10.1109/NSSMIC.2009.5402213.

Furopean

Committee

Two Photon Absorption TCT

SPA-TCT: 2D resolution

TPA-TCT:

3D resolution along beam propagation direction (Z).

European Committee

RD50 and CERN-KT support

DRD3

• TPA-TCT developed within RD50. Access to demonstrator fs-laser facility and measurement campaigns supported by RD-50 common fund.

A non-destructive laser application for quality control & radiation studies in semiconductor devices

field profiles within semiconductor devices by non-destructive femtosecond laser induced Two-Photon Absorption. Several fields could benefit from this development, amongst them Quality Control & Assurance of semiconductor devices, E-Field and Charge Collection Efficiency mapping of photosensors, and radiation damage studies for high-energy physics detectors.

This project is a collaboration between CERN and the Instituto de Física de Cantabria (CSIC-UC)

• TPA-TCT laser procurement via **CERN-Knowledge** Transfer contract.

KEY FACTS

CONTACT PERSON

Customized systems built by the community DRD3

PTUCATICLESCOR IS a complete later and intervented by the later PTUCATICLESCOR IS a complete later and interventes. This process advances of the later PTUCATICLESCOR IS a complete later and interventes and interventes and three powers advances on powers advances on

Related Knowledge & Support

ECFA

European Committee for

System flexibility: beyond bulk studies DRD3

400

350

300

250

- 150

100

- 50

∆t^m

[deg]

RD53B: Single Event Effects found during heavy-ion testing on specific transistors. Used TPA-TCT back side injection to find sensitive elements \rightarrow Fixed in new version

J. Lalic, S.Pape

ECFA

High speed optical links (CERN EP-R&D WP6):

Benchmark of carrier recombination lifetime in Si-waveguides. Inject charge using TPA-TCT \rightarrow Free carriers absorb light that passes trough the waveguide \rightarrow Transient behaviour as free carriers recombine:

Furopean

Beyond silicon

TPA-TCT also used to study other materials. It has been demonstrated in **diamond** (RD42) and **SiC** (RD50), using 400 nm fs laser.

2016: proof of principle of TPA-TCT in **diamond** with 400 nm TPA at SGIKER (Bilbao). See as well C. Dorfer, <u>https://doi.org/10.1063/1.5090850</u>

2022: TPA-TCT in **SiC** with 400 nm TPA at SGIKER (UPV, Bilbao). C.Quintana, <u>41st RD50 meeting</u>

Envisaged improvements/updates DRD3

NA=0.5 w_o=1 μm

z_R=7 μm (in Silicon)

Hardware-wise

2

FYLA is working in a fully fibered laser, tunable pulse duration: 100-1000 fs

Their goal is to provide a "turn-key" TPA-TCT solution, including mechanics and software.

ECFA

Radiation hardness demands thin detectors (\leq 50 µm). Longitudinal resolution in TPA is improved using objectives with NA>0.5 (=TPA baseline).

In thick devices (> 70 μ m), very high NA (>0.5) leads to spherical aberration (SA) of the focus, degrading TPA measurement.

This effect can be compensated using Spatial Light Modulators (~25k€).

Timing measurements with TPA can be easily achieved splitting the beam before the objective. An LGAD placed on a monitoring branch can be used as time reference for jitter calculation.

Envisaged updates

Software-wise

0

Analysis package:

ECFA

Committee

- 1) ROOT based (1D, 2D plotting)
- Includes SPA subtraction methods for irradiated detectors

2

TRACS simulation package:

- 1) For diodes and microstrips
- 2) Fast Poisson solver. It accepts arbitrary illumination patterns

B

Online user forum and organization of hands-on workshop on TPA-technique

DRD3

ne-atiet)\0.88/time-atiet()<0.6000000;;**4.12-12.65 (TMath::Abs/Wilas--64.000000);

Milestones & deliverables (2024-26) DRD3

- Deliverable: reduction of excitation "voxel" dimensions (longitudinal \leq 3.5 µm in Si)
 - Using high NA objectives and Spatial Light Modulators (~2 years)
 - Extension of TPA setup with timing reference (this year)
- FYLA:

ECFA

- Step 1: All fiber laser, tunable pulse length (1 year)
- Step 2: Full TPA-TCT system "turn-key" (~2 years)
- Build-up of user community:
 - Organization of tutorials and hands-on workshops (also within WG8).
 - Online User forum (technical support for hw&sw).