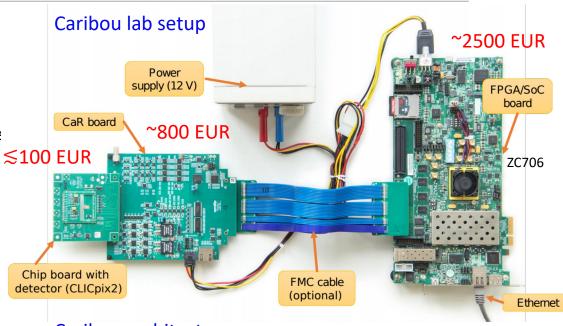


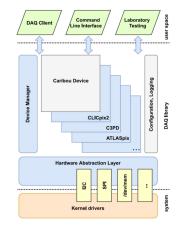
Caribou DAQ

M. Benoit (ORNL), E. Buschmann (CERN), Hucheng Chen (BNL), <u>D. Dannheim</u> (CERN), M. Pijacki (Carleton), Simon Spannagel (DESY), T. Vanat (DESY)

Caribou DAQ System



Caribou versatile open-source DAQ system


- Re-usable hardware, firmware and software
 - System-on-Chip (SoC) board
 - Embedded CPU for Linux operating system, DAQ software (Peary), user interface
 - FPGA for detector control and data processing, TDC
 - Common Carboard interface board
 - Physical interface from SoC board to detector
 - Provides resources (voltage regulators, ADCs, pulse/clock generator)
 - Application-specific chip carrier boards
 - Detector and passive components

Target applications:

- Lab and beam tests of silicon-detectors
- Optimised for R&D support, easy integration of new prototypes
- Not targeting project-specific DAQ in large experiments

Caribou architecture

https://gitlab.cern.ch/Caribou/

http://dx.doi.org/10.1088/1748-

0221/12/01/P01008

http://dx.doi.org/10.22323/1.370.0100

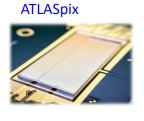
https://doi.org/10.1088/1748-0221/18/02/C02005

Application examples

Caribou integration of many detectors

Profit from re-usable firmware and software
 → largely reduced integration time for new devices

Support for various readout schemes:

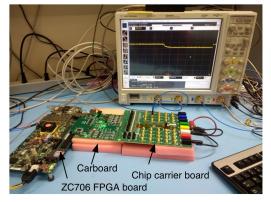

- digital interface via GTx or LVDS
- analogue waveforms (sampling ADCs or external oscilloscope)
- TDC in FPGA (<10ps resolution)

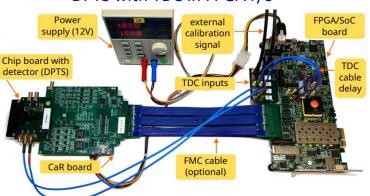
Integration in beam-telescope setups

FEI4, Timepix3, Mimosa, ALPIDE

Caribou chip-board examples

FEI4+H35Demo

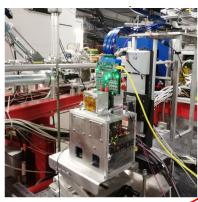



APTS (65 nm)

DPTS (65 nm)

FASTpix with oscilloscope r/o

DPTS with TDC in FPGA r/o


CLICdp Timepix3 @ CERN

Telescope integration Mimosa @ DESY

ALPIDE @ MAMI

Development and support

BNL OMEGA group, Carleton University, ORNL

Design of Common Hardware (Carboard)

CERN / EP R&D

Coordination of common hardware production, firmware development, user support

DESY / Tangerine:

Coordination of common Peary Software, test-beam integration

AIDAinnova, RD50

Funding for development and hardware production

Caribou in RD50

- Caribou used in 10 RD50 member institutes, mostly for HV-CMOS DMAPS prototype development and related radiation-hardness studies
- RD50 common project since 2021
- Support from RD50 for production of batch of 20 Carboards v1.4
 - ~50% of the production cost from RD50 common fund (10k EUR)
 - Design, prototyping and validation of the new Carboard v1.4 provided by BNL, with support from CERN
 - Purchase order, testing, rework, shipment + invoicing provided by CERN
- Significant benefits with modest amount of funding:
 - Coordinated purchase reduced price and overhead for institutes
 - Project gained visibility and approval status
 → important to secure additional resources
 - Incentive for institutes to "get things started" and deliver testing results

RD50 Caribou participant	contact
CERN	D. Dannheim
BNL	H. Chen
DESY	S. Spannagel
Univ. Liverpool	E. Vilella
IFIC Valencia	R.M. Hernandez
HEPHY Vienna	T. Bergauer
Jožef Stefan Inst. Ljubljana	I. Mandic
Uni. Sevilla	R. Palomo
NIKHEF	J. Sonneveld
Lancaster Univ.	D. Münstermann

Ongoing developments and future plans

Caribou 2.0:

- Carboard 2.0 currently under development
 - System-on-Module (SoM) platform based on Zynq UltraScale+
 - Replace combination of Xilinx evaluation board + Carboard with a single custom carrier board housing the SoM
 - → Reduced cost and improved performance
- Ongoing hardware design effort by Carleton University / BNL / ORNL
 - Pre-prototype carrier board tests at BNL using XU1 SoM validated the digital design successfully (M. Benoit and D. Matakias)
 - List of resources and design features iterated in Caribou user meetings
 - Carboard 2.0 design in progress (M. Pijacki)
 - Aim for first prototypes by mid 2023

Future Caribou extension:

- Caribou version geared towards operating several already characterized detector modules in parallel
 - e.g. as a flexible DAQ system for a future beam telescope

Enclustra Mercury+ XU1 SoM

Pre-prototype for Caribou 2.0 @ BNL

Caribou in DRD3

Caribou has proven beneficial for RD50 institutes

- Profit from existing re-usable hardware, firmware and software
- Community / best-effort support for integration of new detectors
- Financial support for hardware investments enables pooling of common DAQ infrastructure
- Visibility / approval status

We propose to include Caribou as common project in DRD3

- Open to new contributors and use cases
- Gives visibility to project and to groups active in DAQ for detector testing
- Facilitates securing external resources
- Common-fund support helps to accelerate common investments,
 e.g. participation in cost for Carboard 2.0 production, contribution to future multi-plane Caribou version