

DRD3 kickoff workshop

Interconnect and device fabrication technologies

G. Calderini (LPNHE Paris), D. Dannheim (CERN), F. Huegging (Bonn)

Todays' session

11:00

Three short talks

Introduction and analysis of interests

In-house interconnection technologies

Interconnection technologies via specialized vendors

Discussion

Keycode:

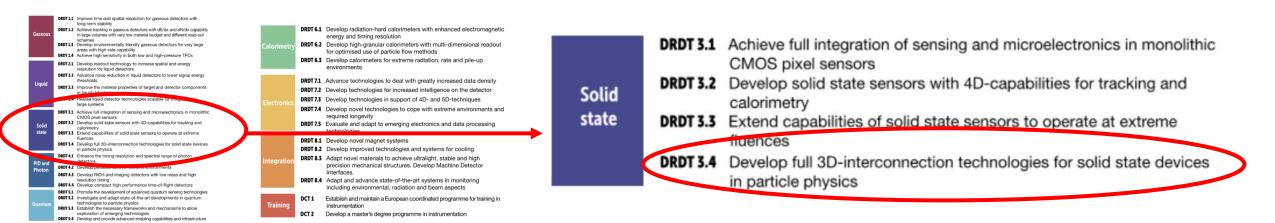
Milestones / Deliverables

S = short term (3 years)

M = medium term (6 years)

L = long term (>> 6 years)

	Introduction and analysis	Giovanni Calderini
	222/R-001, CERN	11:30 - 11:40
	In-house interconnection technologies	Dominik Dannheim
	222/R-001, CERN	11:40 - 11:50
	Interconnection technologies via specialised vendors	Fabian Huegging et al.
	222/R-001, CERN	11:50 - 12:00
L2:00	Discussion	All
	222/R-001, CERN	12:00 - 12:30



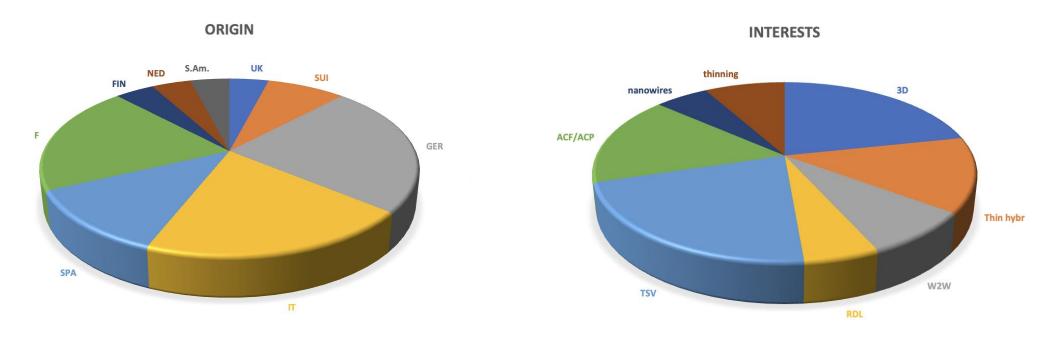
Interconnection task

Interconnections are a strong point of future detector and electronics development

They have a critical role in the development of detectors and electronics

Sensor-FE, Tier to tier, multiple stacks

Interconnections for modules, interconnection for characterization



Interest in the community

- In questionnaire: 35 groups / 85 questionnaires already interested and planning to have resources
- Among them 25 gave some specific information
- 15-20 FTE already declared

Strong interplay with DRD7

TSV, RDL 3D, direct wafer bonding ACF/ACP

- -> 6 institutes
- -> 3 institutes
- -> 2 institutes

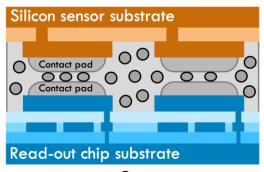
Statistics from interconnection interests inside the "Emerging technologies, DRD7.5"

Interconnection technologies

Different stages and technology levels

I – Maskless connections

Testing and fast connections: not only to have a cheap way to test objects but also for fast prototyping


Application possible even for temporary connection

Permanent maskless connections (for example ACF/ACP)

Maskless, in house technology

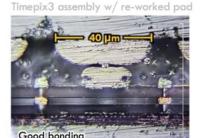
Allows for cheap interconnection Quick turnaround time

Wafer and device level connection

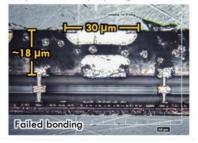
Conductive micro-particles

Milestones: M3.7.1.1: consolidate yield (>>99%) (S)

M3.7.1.2: proof of small pitch (below 30um) (S)


D3.7.1.1: reliability of connections / rad hardness demonstration (M)

(Temporary connections already widely used in testing / characterization)



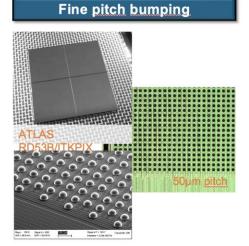
ATLAS AM chips test setup

Timepix3 assembly w/original ENEPIG

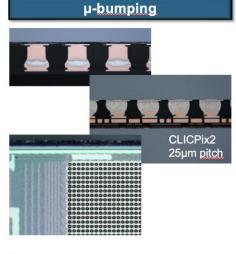
II - More advanced bumping / bonding interconnections

Different technological level

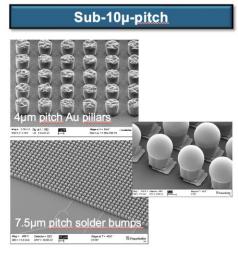
This needs today RTO or industry


Vendors busy with upgrade productions

Move part of process to laboratories


Different features from different technologies can address specific complex issues

- small pitch
- process-temperature constraint
- electrical properties (current, C)
- connection flow (wafer-wafer, device-wafer)


Examples of interconnection technologies provided by IZM

- Pitch 100...50µm
- Bump size: 50...25μm
- Material: Solder bumps, pillar bumps with solder cap

- Pitch 50...20µm
- Bump size: 25...12μm
- Material: Solder bumps, pillar bumps

- Pitch 10...2 µm
- Bump size: 6...1µm
- Material: pillar bumps, metal pins

© Fraunhofer IZM

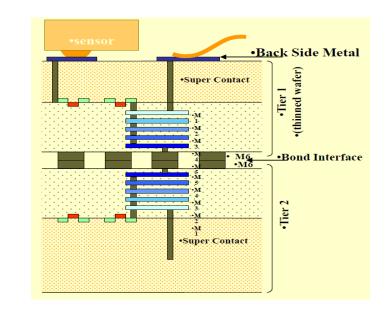
Milestones: M3.7.2.1: develop maskless post-processing (S)

M3.7.2.2: make basic processes accessible to selected laboratories (M)

M3.7.2.3: develop device-wafer approach (necessary for prototypes) (M)

III - 3D and vertical integration

Via industry


it will profit of commercial drive

Stack to match digital/analog many reasons to do so

Could allow complex communication between different connected devices

Allow to contact/power/read a lower layer through an upper one

Multi-tier, mixed-technology

Milestones: M3.7.3.1: demonstrate the w2w process for FE-sensor connection (S)

M3.7.3.2: use TSV to access lower tiers through sensors (S)

M3.7.3.3: connection made possible for post-processed devices (M-L)

See next talks for more details on the different technologies

Interconnections are essential point of all hybrid sensor-FE technologies

Different levels:

- Cheap temporary (for test) or permanent connections
- Fast connections for prototyping: short turn-around
- More advanced partially in-house process to address specific constraints (small pitch, temperature)
- Complex interconnection process via RTOs/industries

For monolithic technologies, interconnections are necessary for multi-tier extensions

Strong link with electronics (DRD7)

It is critical now to get organized: community feedback is needed

DRD3

Strong interplay with DRD7

3D integration & high density interc. (5)

DRDT 7.5
Emerging Technologies

Please describe the topics you (and/or your group) would like to participate in?

- Integration of single photon sensor and readout chip (*UniBarcelona*)
- Characterisation of 3D stacks, with focus on irradiation studies (CERN)
- Power consumption, heat, combine analogue, digital and photonic functions (CERN,

Test and characterization

Developments of TSV, TGV, RDL and 3D ICs

- Edgeless IC design (FNAL, KIT)
- High-density integration sensor, electronic & photonic ICs (KIT, DESY)
- 3D integration of silicon photonics and Electronic IC using TGV and TSV (CERN, KIT)
- Development of detector modules concepts for 3D stacked MAPS with redistribution layers (CERN)
- Design and prototyping of chip/sensor/interconnect assemblies focusing on low mass, powering, heat dissipation, signal integrity, and electromagnetic compatibility (EMC) (ITTAINOVA)
- 3D Tools for LVS and DRC; partitioning of functions across layer stack (FNAL)

