

In-house interconnect technologies

G. Calderini¹⁾, F. Dachs²⁾, D. Dannheim²⁾, R. De Oliveira²⁾, P. Riedler²⁾, J. Schmidt^{2,3)}, P. Svihra²⁾, M. Van Rijnbach^{2,4)}, M. Vicente⁵⁾, A. Volker^{2,3)}, J. Weick^{2,6)}

- 1) LPNHE Paris
 - 4) Oslo Univ.
- 2) CERN

- 5) Geneva Univ.
- 3) KIT Karlsruhe
- 6) TU Darmstadt

Motivation

- Advanced plating and interconnection technologies are required for hybridisation and module integration of hybrid and monolithic pixel detectors
- Industrial processes are often costly, limited to wafer-level processing
- Alternative in-house processes offer several advantages:
 - Mask-less single-die processing → important during R&D phase with MPW productions
 - Low cost, fast turnaround times
 - Tuning to specific applications for improved performance (pitch / density, sensor materials, mechanical properties, material budget)
- → R&D on in-house plating and interconnect technologies is performed in the CERN EP R&D programme and the AIDAinnova collaboration, with links to several detector R&D projects

In-house plating

- Maskless in-house single-die post-processing Electroless Nickel Immersion Gold (ENIG) process
 - Developed in CERN micropattern lab
 - Process can be tuned for different applications

Cross-section of plated Timepix3 pad

Pad metallisation basis for most interconnect technologies

ALTIROC2 (ATLAS)

Solder-bump bonding

SPHIRD sensor (ESRF)

Timepix3 ASIC

MALTA (ATLAS)

Hybridisation and integration with anisotropic conductive films and pastes (ACF, ACP)

Ongoing developments and future plans for plating

- Improving plating topology (height, uniformity)
- Adapting for lower pitch down to 25 µm
- Masking with Photoresist (e.g. for active edge sensors)
- Scalability of the process (wafer sized sensors)
- Tests with new devices

Plating process can be adapted to specific needs and transferred to labs in participating institutes

→ opportunities for collaboration within DRD3

ENIG plating setup at CERN

Skipped plating on Timepix3

Interconnection with Adhesives

- Anisotropic Conductive or non-conductive Film / Paste (ACF / ACP / NCF / NCP)
 - Epoxy film / paste with or without conductive particles

Thermocompression bonding process

- Flip-chip bonding machine for precise alignment + parameter control
- Anisotropic/vertical electrical connection is achieved via compressed conductive particles or direct pad-to-pad connection
- Permanent mechanical bonding via cured epoxy film / paste
- Specific pad topology is achieved with ENIG plating

Hybridisation results with ACF/ACP

- Proof-of-concept Timepix3 ACF/ACP assemblies
 - Quality of ENIG plating is crucial
 - Bonding-parameter optimisation is crucial
 - Good interconnect yield for ACF demonstrated in test beam

Timepix3 assembly w/ original ENEPIG

Timepix3 assembly w/re-worked pad

Test-beam efficiency Timepix3 ACF assembly

Ongoing developments and future plans for

hybridisation

Optimisation of bonding parameters

- Use of custom-developed daisy-chains
- Test of different adhesives and micro particles

Reliability tests

- Radiation hardness, electrical properties, mechanical strength, ...
- Further evaluation in test-beam and lab

Daisy-chain structures, FBK

Ongoing / planned trials for multiple projects

• Timepix3, CLICpix2, SPHIRD, XIDER, PicoPix, TimeSpot, HGTD...

Exploration of alternative interconnect technologies

Micro-structured ink-jet printing, AC-coupled devices, ...

Opportunities for collaboration in DRD3: new use cases, production + testing of samples, process optimisation, ...

Module interconnection technologies

Conductive and non-conductive adhesives are also under study for large-pitch / low-density interconnects in modules:

ACF on MALTA pads

NCP for 100µPET

ALPIDE ACF module in DESY TB

- Cost effective
- In house processing
- No mask needed

- Scalable on chip-chip or flex-chip
- Glue support for mechanical stability
- Fast interconnection
- Suitable for large number of pads

Proof-of-concept tests with **ALPIDE**, **MALTA**, **LUXE**, **100**μ**PET**

Ongoing developments and future plans for module integration

Nano wires for chip-to-flex interconnection

Nano wires on MALTA pad

Photolithography opening of pad

MALTA2 Pad

MALTA2 Pad
Flex Pad

Apply nano - Glue addition structure on chip pad process Glue addition possible in flip chip process

Connection through pressure and heat

- Low contact resistance
- Low parasitic
- Chip and wafer level
- Ongoing tests: MALTA on flex PCB
- Scalable on chip-chip or flex-chip
- Glue support for mechanical stability
- Fast interconnection
- Suitable for large number of pads
- Not (yet) fully in-house

Future plans:

- Integrate optical links
- Flex-to-flex interconnection

Open to new collaborators / use-cases within DRD3

Collaborations

- Several groups and projects contribute to the developments
- Support from EP R&D and AlDAinnova
- Still in exploratory phase
 - → new groups and ideas welcome
- Benefits of being part of DRD3:
 - Visibility / approval status
 - Enables additional funding
 - Links to other DRD activities

 (e.g. access to shared sensor productions, links to hybrid and monolithic detector developments)

Current contributors to in-house interconnect studies:

Participant	Current scope of activities / collaboration				
CERN	Plating, hybridisation, module building, testing (EP R&D)				
Geneva Univ.	Flip-chip component placer, hybridisation, module building, testing (EP R&D)				
LPNHE, Paris	Testing of hybrid assemblies (AIDAinnova)				
ESRF, Grenoble	Hybridisation of small-area devices				
FBK, Trento	Design and production of chain devices (AIDAinnova)				
Conpart, Norway	Procurement of conductive particles and films for ACF/ACP (AIDAinnova)				
IFAE, Barcelona	Optimisation of ENIG plating for large-pitch sparse interconnects (AIDAinnova)				
USTC, Hefei	Optimisation of ENIG plating for large-pitch sparse interconnects				
IZM, Berlin	Highly-integrated structure studies (i.e. RDL and encapsulation)				
KIT, Karlsruhe	Micro-structured ink-jet printing for hybridisation				

Backup

Anisotropic Conductive Adhesive (ACA) Bonding

ACA connection done at Geneva University using semi-automatic flip-chip bonder

- Precise temperature, pressure and alignment control
- Heating up to 400 ℃ and force applied by bonding arm up to 100 kgf
- Available for bonding with anisotropic conductive and non-conductive film/paste – ACF/ACP or NCF/NCP

ACF bonding has two steps – lamination and bonding

- Pressure applied to displace and compress particles
- Epoxy cures at 150 °C for a few seconds only

by Mateus Vicente

Improvements Electroless Nickel

- Small pad size, pitch and single-dies are challenging to plate
 - Different plating behaviour near the edge
 - Faster diffusion to small pads
 - Sensitive to parameters and contaminants
- Significant improvements
 - Uniformity (edge pullback, skipping...)
 - Reproducibility
- Wide variety of chips plated

Differently plated Timepix3 chips

Examples of some plated chips

	Pad size	Pitch	ENIG height
Timepix3	12-14 µm	55 µm	3-8 µm
SPHIRD Si sensor	19 µm	50 μm	5-6 μm
MALTA	88 µm	120 µm	3-10µm
ALTIROC2	92 µm	-	5 μm

Daisy-chain devices

Daisy-chain 6" quartz wafer with 625 µm thickness designed and produced at FBK

Study of ACA interconnection properties

- Low-pitch and large-pitch reliability
- Resistance measurements
- Mechanical analysis

Surface properties similar to typical ASICs and sensors

- Al metal pads 2.5 µm thick
- 950 nm thick passivation

	pitch	size in mm	connections	per wafer	type	diceable
160x160 20um	20 um	3.2 x 3.2	25600	36	grid	no
CLICpix2	25 um	3.2 x 3.2	16384	34	grid	no
400x400 25um	25 um	20 x 20	640000	5	grid	yes
Timepix3	55 um	14 x 14	65536	4	grid	no
Timepix3 islands	55 um	14 x 14	65536	4	grid	no
RD53	50 um	20 x 20	160000	4	grid	no
RD53 islands	50 um	20 x 20	160000	2	grid	no
70x70 140um	140 um	20 x 20	2112	3	peripheral	yes
10x10 1000um	1000 um	20 x 20	400	3	grid	yes
3x3 4500um	4500 um	20 x 20	36	1	grid	yes

Single-die small pitch bump-bonding

R&D with Fraunhofer IZM for development of single die bonding process down to 25 µm pixel pitch

- Based on support wafer processing
- Verified for multiple assemblies (50 µm, 100 µm, 130 µm sensor thickness) in lab and beam-test
- Interconnection yield above 99.7% for all devices arxiv:2210.02132 (JINST accepted)

Cross-section of bonded assembly

X ray image of bumps

0.90

x [pixel]

75

100

125

50

25

125

100

x [pixel]

-0.98

0.96 O.94 efficiency

0.92