
DRDT 7.2: Front-end programmability

Marco Andorno (marco.andorno@cern.ch)

2023/03/14

mailto:marco.andorno@cern.ch

1. Introduction

• Motivations and benefits

• Implementing programmability

2. Main challenge: radiation tolerance

• Processor core

• Interconnect bus

• Memories

3. Additional challenges

• Data processing

• Verification

4. Wrap-up

Outline

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 2/19

Introduction

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 3/19

Motivations and benefits

The increase in design complexity and cost in advanced nodes calls for a more efficient
resource utilization and an abstract design methodology that employs programmability and
modularity.

The benefits are:

• Smaller number of more flexible and capable ASICs.

• Data reduction

• Power reduction

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 4/19

Standard interconnect bus

Promotes collaborative

work

Ensures compatibility of

blocks designed by

different teams

IP blocks library

Enables modularity with

self-contained building

blocks

Helps design reusability

Three main ingredients:

Implementing programmability

An SoC platform provides all this, leading to

Shift from design for an application to design for resources

Faster turnaround time, both for design and verification

Software programmability

Allows retargeting an

ASIC for a different

application

Can change the

algorithm within the

same application

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 5/19

Main challenge: radiation tolerance

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 6/19

The most robust approach to harden a processor is Triple Modular Redundancy (TMR):
combinational logic, registers and clocks are triplicated and majority voted at the output.

Processor core (1/3)

Simple to understand

Maximum SEU

protection

Can be automatized

Very large area and power

overhead (> 3x)

Can be difficult to implement

correctly (depending on RTL

and physical constraints)

Examples of works using TMR:

• A. Walsemann et al., STRV — a radiation hard RISC-V microprocessor for high-energy
physics applications, 2023, JINST 18

• M. Andorno et al., Rad-hard RISC-V SoC and ASIP ecosystems studies for high-energy
physics applications, 2023, JINST 18

• A. E. Wilson and M. Wirthlin, Neutron Radiation Testing of Fault Tolerant RISC-V Soft
Processor on Xilinx SRAM-based FPGAs, 2019, IEEE SCC

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 7/19

https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02032
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01018/meta
https://ieeexplore.ieee.org/document/8853676

Full TMR is not the only option:

• D. A. Santos et al., Neutron Irradiation Testing and Analysis of a Fault-Tolerant RISC-V System-on-Chip,
2022, IEEE DFT

• J. Li et al., DuckCore: A Fault-Tolerant Processor Core Architecture Based on the RISC-V ISA, 2021,
Electronics vol. 11

Processor core (2/3)

▪ Selective triplication

▪ ECC on registers

▪ Watchdog for critical failures

▪ Pipeline register encoding/decoding

▪ Pipeline rollback in case of error

▪ An arbiter decides the rollback strategy

Less area overhead

Can accumulate errors

Small area

overhead

Complex

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 8/19

https://ieeexplore.ieee.org/document/9962335
https://www.mdpi.com/2079-9292/11/1/122

• M. Barbirotta, Evaluation of Dynamic Triple Modular Redundancy in an Interleaved-Multi-Threading RISC-V
Core, 2022, Journal of Low Power Electronics and Applications

Processor core (3/3)

▪ Dynamic TMR: interleaved multi-threading

(temporal + spatial redundancy) with voters

▪ Third thread loaded in case of error to repeat

execution of a stage

Smaller area and power footprint w.r.t TMR

Can be generalized to more complex

architectures

Complex to implement

Works well only for low SEU rate (e.g. in space)

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 9/19

https://www.mdpi.com/2079-9268/13/1/2

• The need is to prevent SETs (Single Event Transients) from being sampled by the registers.

• The decision to harden or not the interconnect depends on the clock frequency and the
expected SET rate.

• Little to no literature on the topic, space probably doesn’t need this. Are high-energy physics
requirements unique in this sense?

Possible approaches:

Interconnect bus

Full TMR

Still possible and used.

Encoding

Commonly used to reduce the number of wires.

Simple to implement

The number of wires could lead to unroutable

designs

Significant routing resource saving (46% less

wires for each 32-bit bus with Hamming(13,8) as

in our work with APB-RT)

Area penalty for encoders/decoders

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 10/19

https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02032
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01018/meta

• “Brute force” approach: make a flip-flop memory with full TMR.

• Error correction comes automatically with the voted output.

• If the voters provide an “error” signal, the memory can be clock gated.

Suitable only for small configuration or instruction memories.

Memories (1/2)

Most protection

Simple to implement

Technology independent

Very large area overhead (~250k gates

for 2 kB memory, 32-bit word voting)

mainly due to voters and error signal

generation (latches wouldn’t help)

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 11/19

• Another option is to use an SRAM block and harden it with either:

• In any case, a refreshing algorithm is needed to correct errors. It needs to be fast enough in
relation with clock frequency and expected SEU rate.

• Different techniques for program/data memory (e.g. one might accept corrupted data but not
instructions).

Memories (2/2)

Triplication

A. Walsemann et al.

Encoding

R. C. Goerl, An efficient EDAC approach for handling

multiple bit upsets in memory array, 2018,

Microelectronics Reliability

Best protection also against multi-bit upsets

More than 3x area penalty

Small area penalty (just few bits per word)

Susceptible to multi-bit upsets (encoding can

usually only fix 1 bit per word)

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 12/19

https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02032
https://www.sciencedirect.com/science/article/pii/S0026271418306103?via%3Dihub

Additional challenges

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 13/19

A general-purpose microprocessor is good for control applications and light computing loads.
But what about heavy data-processing tasks?

Data processing

Specialized hardware accelerators
help offload the CPU.

This approach comes with its own challenges:

• Dependence on the application: hard to

reuse on very different applications

• Need for architectural study: will the data

processing take place in the pixel array, in the

periphery, in a separate chip?

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 14/19

• Application-Specific Instruction set
Processors (ASIP): tradeoff between flexibility
of general-purpose and performance of custom
logic.

A workflow has been demonstrated implementing a
clustering algorithm in: M. Andorno et al., Rad-hard
RISC-V SoC and ASIP ecosystems studies for high-
energy physics applications, 2023, JINST 18

• Machine learning accelerators, as shown in
the work of F. Fahim et al. presented at the last 28
nm Forum, can be used to implement data
reduction, filtering and processing on-chip. A high-
level synthesis and ASIC implementation has been
presented, using a multi-classifier to cluster and filter
hit data.

Data processing approaches

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 15/19

https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01018/meta
https://indico.cern.ch/event/1207114/

• Verification of SoCs and programmable hardware blocks is a challenge: it’s impossible to
cover 100% of possible combinations of instructions/data/memory usage.

• Verification is a must and needs to go alongside design during the project timeline (not after).

• More information will be given in tomorrow’s presentation by Adithya Pulli

Verification

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 16/19

https://indico.cern.ch/event/1214423/contributions/5184105/

Wrap-up

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 17/19

• On-chip programmability will provide more flexible, powerful and cost effective ASICs.

• Many challenges to be faced concerning radiation tolerance:

• What’s the best strategy to harden a processor?

• Do you need to harden the interconnect? How?

• What memory architectures are the most suitable? How do you protect the memory?

• How to tackle heavy data-processing requirements?

• What’s the best strategy for SoC verification?

Many open points, lots of interesting work to be done to get an optimal solution.

Summary and open points

DRDT 7.2: Front-end programmabilityMarco Andorno | 2023/03/14 18/19

Thank you!

home.cern

https://home.cern/

	Slide 1: DRDT 7.2: Front-end programmability
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Motivations and benefits
	Slide 5: Implementing programmability
	Slide 6: Main challenge: radiation tolerance
	Slide 7: Processor core (1/3)
	Slide 8: Processor core (2/3)
	Slide 9: Processor core (3/3)
	Slide 10: Interconnect bus
	Slide 11: Memories (1/2)
	Slide 12: Memories (2/2)
	Slide 13: Additional challenges
	Slide 14: Data processing
	Slide 15: Data processing approaches
	Slide 16: Verification
	Slide 17: Wrap-up
	Slide 18: Summary and open points
	Slide 19

