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High Precision Timing

To mitigate Pile-Up, improve Vertex location, increase Detector Resolution, improve particle identification. ..
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DRDT <2030 2030-2035 2040 2040-2045 > 2045
High data rate ASICs and systems 71 o . . .* . @
New link technologies (fibre, wireless, wireline) 71 ® O M o 0 O o @
Power and readout efficiency 71 o . . . e 00 0 o .
Front-end programmability, modularity and configurability 1.2 . . .
Intelligent power management 12 . . .* o0 . 0 . .
Advanced data reduction techniques (ML/AI) 12 . . ®
High-performance sampling (TDCs, ADCs) 3 & @ . . o O . o O . '.
High precision timing distribution 3 @& @ . '. @ ® O . 0 .' .
Novel on-chip architectures 3 ® @ . . - . ® O . .
Radiation hardness 4 @ @ o . . o o ¢ & ® O . 9
Cryogenic temperatures 74 L] @ ®
Reliability, fault tolerance, detector control 4 & @ o C . [ ]
. ¥
Cooling 74 . . ® 000 00 . @ .
Novel microelectronic technologies, devices, materials 5 @ @ . [ N N ® O . ® O . .
Silicon photonics 15 @ o e . ® o0 . .
3D-integration and high-density interconnects 15 . . .* . . . . . . . .
Keeping pace with, adapting and interfacing to COTS S & @ @ 00 0o 00 O . ® O . @ .
. Must happen or main physics goals cannot be met @ Important to meet several physics goals Desirable to enhance physics reach  R&D needs being met

* LHCb Velo
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4D-Techniques - Session Structure

Timing Distribution & Simulation
» Timing Metrics (Sophie Baron, CERN)
 Highlight on Detector timing simulation (Louis d’Eramo, CNRS)

4D in trackers / Novel on-chip architectures an

* Main challenges overview (Adriano Lai, INFN)
» The case of the LHCb Velo Upgrade (Martin Van Beuzekom, Nikhef)

4D in calorimeters & PID / High-performance sampling
» Main challenges overview (Marek Idzik, AGH & Patrick Robbe, IN2P3)
» The case of ECAL Upgrade Il of LHCb (Dominique Breton, IN2P3)

Discussion

* identify key challenges and topics to be investigated in the future and potential space for collaborations

* Your inputs will be key!
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Timing Distribution Challenges D)

Detector Performance

“Precision nanosecond-level timing also helps to mitigate pile-up effects”

“achieve a timing performance below the 10 ps level”
“timing precision down ~ 10 ps by 2030”
“Timing resolution per track”

“Timing precision per hit”

“Timing resolution”
“Cluster timing ”

“highly precise timing of order 10 ps is mandatory”

“detection with fast (few tens of ps) timing performance”

“State of the art timing will also be important (O(10 ps) binning)”
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Timing Distribution Challenges

CE/RW
\

Detector Performance

“Precision nanosecond-level timing also helps to mitigate pile-up effects”

“achieve a timing performance below the 10 ps level”

“Timing resolution per track”

“Cluster timing ”

“timing precision down ~ 10 ps by 2030”

“Timing precision per hit”

“Timing resolution”

“highly precise timing of order 10 ps is mandatory”

“detection with fast (few tens of ps) timing performance”

14 March 2023

“State of the art timing will also be important (O(10 ps) binning)”

sophie flaron@cern.ch

Timing Requirements

Jitter
Phase Noise

Wander
Determinism



Timing Metrics @)

LHC Bunch Clock
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Timing Metrics )\

LHC Bunch Clock
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Timing Metrics )\

LHC Bunch Clock

LI L L
Clock
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Time (ps) Frequency (Hz) Time (min)
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Electronics noise Temperature variations Any kind of discrete event
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Timing Distribution @Y

Front-End
Nodes

N

VTRx IpGBT

“ LHC Clock

LML
~40.08 MHz
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Timing Distribution & Metrics @Y

Jitter & Phase Noise

uuuuuuuuuu

“ LHC Clock

14 March 2023

LML

Fast & random effetl

VTRXx IpGBT

~40.08 MHz Currently: o can be maintained below 5ps rms
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Timing Distribution & Metrics @Y

Wander

uuuuuuuuuuuuu

14 March 2023

* LHC Clock

LML

Temperature Induced Continuous effet
T=t,

VTRx IpGBT

VTRx IpGBT

VTRx IpGBT

~40.08 MHz
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Timing Distribution & Metrics @Y

Wander

uuuuuuuuuuuuu
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* LHC Clock

LML

Temperature Induced Continuous effet

T=ty+ ¢

VTRx IpGBT

VTRx IpGBT

VTRx IpGBT

~40.08 MHz
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Timing Distribution & Metrics @Y

Wander

uuuuuuuuuuuuu
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* LHC Clock

LML

Temperature Induced Continuous effet
T=ty+ 2¢

VTRx IpGBT

VTRx IpGBT

VTRx IpGBT

~40.08 MHz
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Timing Distribution & Metrics @Y

Wander

uuuuuuuuuuuuu
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* LHC Clock

LML

Temperature Induced Continuous effet
T=ty+ 3¢

VTRx IpGBT

VTRx IpGBT

VTRx IpGBT

~40.08 MHz
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Timing Distribution & Metrics @Y

Wander

uuuuuuuuuuuuu
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“ LHC Clock

LML

Temperature Induced Continuous effet

T=ty + 4e
L
L
B 1L

Currently: Wander can be compensated in links.
~40.08 MHaz No compensation inside chips (~2ps/C°).
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Timing Distribution & Metrics @Y

DISCRETE effet

Determinism

VTRx ga IpGBT

VTRx IpGBT

VTRXx IpGBT

* LHC Clock

LML
~40.08 MHz
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Timing Distribution & Metrics @Y

DISCRETE effet

Determinism

VTRx ga IpGBT

VTRx IpGBT

VTRXx IpGBT

* LHC Clock

LML
~40.08 MHz
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Timing Distribution & Metrics @Y

DISCRETE effet

Determinism

VTRx ga IpGBT

VTRx IpGBT

VTRXx IpGBT

* LHC Clock

LML
~40.08 MHz
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Timing Distribution & Metrics @Y

Determinism DISCRETE effet

VTRx IpGBT

I
Currently: DeterminisM 1 [ ]
% « COTS/technology dependent,
LHC Clock * Not necessarily going to improve in the future,
4008 MMy proportional to the number of hops,

14 March 2023 wopnie bana&@R, ONly partially be mitigated to ~10-15ps p-p per hop 21



Timing Metrics (as of today) ©)

LHC Bunch Clock

LI L L
Clock
Quality
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as Phise (9 Slow Variations \
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. Ph -
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Noise
o<5psrms A < 2 ps /C°in chips Jumps ~ 30-40 ps pkpk
Electronics noise Temperature variations Any kind of discrete event
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Timing Distribution Challenges D)

Detector Performance Timing Requirements

“Precision nanosecond-level timing also helps to mitigate pile-up effects”

“achieve a timing performance below the 10 ps level”

Jitter
Phase Noise

“timing precision down ~ 10 ps by 2030”
“Timing resolution per track”

“Timing precision per hit”

Wander
Determinism

“Timing resolution”
“Cluster timing ”

“highly precise timing of order 10 ps is mandatory”

“detection with fast (few tens of ps) timing performance”

“State of the art timing will also be important (O(10 ps) binning)”
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Timing Distribution Challenges D) l

Detector Performance Timing Requirements

“Precision nanosecond-level timing also helps to mitigate pile-up effects”

“achieve a timing performance below the 10 ps level”

JI
Phase

“timing precision down ~ 10 ps by 2030”

ISe

“Timing resolution per track”

“Timing precision per hit”

Waiggler
Determinism

“Timing resolution”
“Cluster timing ”

“highly precise timing of order 10 ps is mandatory”

“detection with fast (few tens of ps) timing performance” .
The answer comes in next talk:

“State of the art timing will also be important (O(10 ps) binning)” Louis d’Eramo (CN RS_|N2P3) on
Simulation Challenges

14 March 2023 sophie.baron@cern.ch 24
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