A Harry Charles Pb-Philip 5.36 Teles of the 1990 LA CLASSIC REGIONAL COMPANY 18th November 2022 16:52:47.893

Monolithic sensors in ALICE

Magnus Mager (CERN) DRD7 — 15.03.2023

REAL PROPERTY

The Company Pb-Ph^b 5.36 Tel. LA CARA SAN DE LA CARA 18th November 2022 16:52:47.893

Monolithic sensors in ALICE

Magnus Mager (CERN) DRD7 — 15.03.2023

Executive summary

- **ITS2+MFT** (LHC LS2, 2021): new 10 m2 7-layer monolithic Inner Tracking System and Forward Muon Tracker

- ‣ **ALICE** is pushing **MAPS** technology since some 10 years:
	- **expertise** in design, characterisation, integration is built up at several institutes within the collaboration
	- **large workforce** >100 people, >20 institutes participate
	- long-standing **relation** with the foundry
- Driven by clear goals and timelines:
	- Tower Semiconductor 180 nm CIS (ALPIDE)
	- **ITS3** (LHC LS3, 2028): new inner-most 3 layers, wafer-scale, bent, stitched sensors Tower Partner Semiconductor 65 nm CIS
	- **ALICE 3** (LHC LS4, 2034): 60 m2 silicon-only vertexer and tracker Tower Partner Semiconductor 65 nm CIS (baseline, tbc)
- ► R&D is exploring the technology far beyond the strict ALICE needs:
	- e.g. using process options to improve on radiation hardness and timing performance
	- paves the way for the **future** ALICE plans
- ‣ Developed technology is used for several **off-spring** experiments (HEP, medical, …)
	- several (smaller, but not necessarily small) experiments have adopted ALPIDE
	- 180 nm technology is now widely used

- gives a lot of **confidence** for the concrete ALICE application, **serves** the community as a whole, and also

ITS2+MFT ALICE LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

6 layers:

2 hybrid silicon pixel

 \sqrt{N}

- 2 silicon drift
- 2 silicon strip

Inner-most layer:

 radial distance: 39 mm material: $X/X_0 = 1.14\%$ pitch: 50 \times 425 μ m² **rate capability:** 1 kHz

7 layers: all MAPS 10 m2, 24k chips, 12.5 Giga-Pixels

 $I\Lambda Z$

Inner-most layer:

 radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: 29 \times 27 μ m² **rate capability:** 100 kHz (Pb-Pb)

LS2

Inner Tracking System

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

MFT

27

ERN-LHCC-2012-013 September 12, 2012

Upgrade of the System Inner Tracking System

 $Bean$

Total:

- 24k chips

 -12.5 GPixel -12.5

- 10 m2

Juter Barrel

ALICE September
Layon September

27 cm

Total:

- 24k chips

 -12.5 GPixel -12.5

- 10 m2

Beam

il

147 cm

Upgrade of the
Inner Tracking

CERN-LHCC-2012-013 ALICE September
Layon September

27 cm

Outer Barrel (OB)

147 cm

Upgrade of the
Inner Tracking S

(Middle and Outer Layers are A CERN for climate change

96 Modules to be produced

(including one spare barrel)

2007

(including spares)

1880 Modules to be produced a second produced by the produced of the produced and

Type and Contact of the United States of the United States and Type Action

9 sensors

Cold Plate

Space Frame

PIXEL PERFECT

Total:

- 24k chips

 -12.5 GPixel -12.5

- 10 m2

Beam

il

ITS2: sensor development R&D path $\overline{\mathbf{C}}$ ϵ

- 2012 Explorer
- 2013 pALPIDEss
- May 2014 pALPIDE-1
- Apr 2015 pALPIDE-2
- Oct 2015 pALPIDE-3
- Aug 2016 **ALPIDE**
- study of technology
- detection diode geometry
- starting materials
- radiation hardness
- digital front-end
- priority-encoder readout
- full-scale sensor
- simplified interface
-
- module integration
- *• slow-speed serial link*
-
- last optimisation of pixel
-
- final chip

 $\overline{}$

1.8mm

1.8mm

multiple-hit memory, final interfaces *• high-speed serial link (jitters)*

11 mm

 \mathcal{O} pALPIDEss Ω **PDE** JAC

• chip-chip communication interface

3cm

Carpeter

524 288 pixels

1.5cm

ITS2: ALPIDE

3cm

EXAMPLE PRODUCED and tested

524 288 pixels

ITS2: ALPIDE

1.5cm

24k in continuous operation on ITS2 14 K IIT $^{\circ}$. $^{\circ}$ other applications

Cape of the Company of the

‣ **Fully integrated:**

- next active circuit ≈ 8 m away offdetector

- global shutter
- either triggered or in continuous sequence

‣ **Strobing:**

‣ **Data interface:**

-
- high-speed serial link using copper cables

A general block diagram of the ALPIDE chip is given in Fig. 2.1.

Figure 2.1: ALPIDE chip block diagram.

ITS2 R&D: process modification full depletion as "side development"

- ‣ Addition of a **low-dose n-implant**
	- developed together with foundry
- ‣ Opens up new applications
	- higher radiation hardness
	- faster charge collection
- Now crucial for the 65 nm development (it paid off also for ALICE!)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 8

nwell collection electrode **NMOS PMOS** pwell nwel pwell deep pwell deep pwell low dose n-type implant **Developed and** depletion boundary **Fully depleted epitaxial layer within ALPIDE Charge collection time < 1 ns after further improvements (outside ALICE): operational up to 1015 1 MeV neq/cm2 →** recent R&D (MALTA, CLICpix, Monopix, 65nm)

[[doi:10.3390/s8095336\]](https://doi.org/10.3390/s8095336)

^a CERN, CH-1211 Geneva 23, Switzerland

^b TowerJazz Semiconductor, Migdal Haemek, 23105, Israel

W. Snoeys^{a,*}, G. Aglieri Rinella^a, H. Hillemanns^a, T. Kugathasan^a, M. Mager^a, L. Musa^a, P. Riedler^a, F. Reidt^a, J. Van Hoorne^a, A. Fenigstein^b, T. Leitner^b

ITS2 → ITS3 the concept

- ‣ Replacing the barrels by real half-cylinders (of **bent, thin** silicon)
- ‣ Rely on **wafer-scale sensors** (1 sensor per half-layer)
- ‣ Minimised material budget and distance to interaction point → large improvement of vertexing precision and physics yield ("**ideal detector**")

Relies on the development of wafer-scale sensors

ITS3: 180 nm → 65 nm qualifying the TPSCo 65 nm CMOS Imaging Technology

‣ **Key benefits**

- smaller features/transistors: higher integration density
- smaller pitches
- lower power consumption
- **larger wafers** (200→300 mm)
- ‣ **Similar R&D plan as for 180 nm:**
	- small prototypes to characterise technology
	- then larger chips
	- **BUT:** technology node is more advanced, "larger" is larger by 1-2 orders of magnitude (stitching)
- ‣ **MLR1:** concentrated effort **ALICE ITS3** together with **CERN EP R&D**
	- leverages on experience with 180 nm (ALPIDE)
	- excellent links to foundry
	- large support form **CERN** (EP department and EP/ESE group)
	- Comprehensive *first* submission: **55** prototype chips
	- goal: qualify the technology (achieved)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 10

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 11

ITS3: pixel prototype chips (selection) APTS CE65

- ‣ **readout:** direct analog readout of central 4x4
- ‣ **pitch:** 10, 15, 20, 25 μ^m
- ‣ **total:** 34 dies

- ‣ **matrix:** 64x32, 48x32 pixels
- ‣ **readout:** rolling shutter analog
- ‣ **pitch:** 15, 25 μ^m
- ‣ **total:** 4 dies

DPTS

- ‣ **matrix:** 32x32 pixels
- readout: async. digital with ToT
- ‣ **pitch:** 15 μ^m
- ‣ **total:** 3 dies

Comprehensive set of (small) prototypes and variants to explore the technology for particle detection

ITS3: sensor characterisation example: test beams

- ‣ Large effort by several ALICE groups
	- groups/links/education
- ‣ Test beams with a cadence of > 1/month
	- several facilities
	- several groups
	- unified test system (in-house, targeted development)
- ‣ comprehensive datasets
	- including less standard configurations (e.g. beam energies)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 12

ITS3: DPTS paper (65 nm) highlights

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 13

First comprehensive paper on 65 nm — summarises 1 year of mesaurements

[\[doi:10.48550/arXiv.2212.08621\]](https://doi.org/10.48550/arXiv.2212.08621)(CERN)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 13

ITS3: DPTS paper (65 nm) highlights [\[doi:10.48550/arXiv.2212.08621\]](https://doi.org/10.48550/arXiv.2212.08621)(CERN)

First comprehensive paper on 65 nm — summarises 1 year of mesaurements

ITS3: Wafer-scale sensors Engineering Run 1 (ER1)

- ▶ Submitted in Dec'22
	- pad wafers: beg. Mar
	- processed wafers: end Mar (tbc)
- ‣ "**MOSS**": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm2)
	- conservative design, different pitches
- ‣ "**MOST**": 2.5 x 259 mm, 0.9 MPixel (18 x 18 μm2)
	- more dense design
- ‣ Plenty of small chips (like MLR1)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 14

ITS3: ER1 testing preparation MOSS test system

- ‣ In-house development
	- tailored to MOSS chip
- ‣ Based on:
	- carrier card (passive; custom made)
	- 5x proximity card (active; custom made)
	- 5x FPGA board (commercial: enclustra Mercury+ AA1+PE1)
- ‣ Crucial activity involving quite a number of people

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 15

ALICE 3 outlook

‣ ALICE 3 is centred around a 60 m2 MAPS tracker

- innermost layers will be based on wafer-scale Silicon sensors "iris tracker", similar to ITS3 (but in vacuum)
- outer tracker will be based on modules like ITS2 (but order of magnitude larger)
- ‣ Also TOF and RICH based on CMOS technology (baseline)
- *‣ This is the next big and concrete step for this technology*

ALICE 3 Outer tracker

- ‣ **60 m2** silicon pixel detector
	- large coverage: ±4η
	- high-spatial resolution: ≈ 5 μm
	- very low material budget: X/X_0 (total) $\leq 10\%$
	- $-$ low power: ≈ 20 mW/cm²
- ‣ module (O(10 x 10 cm2)) concept based on industry-standard processes for assembly and testing

ALICE 3 Vertex detector

- ‣ Based on wafer-scale, ultra-thin, curved MAPS
	- radial distance from interaction point: 5 mm (inside beampipe, retractable configuration)
	- unprecedented spatial resolution: ≈ 2.5 µm
	- … and material budget: $\approx 0.1\%$ X₀/layer
- ‣ Unprecedented performance figures
	- largely leverages on the ITS3 developments
	- pushes improvements on a number of fronts

ALICE 3 PID detectors TOF + RICH

‣ **TOF**

-
- surface: $O(45 \text{ m}^2)$ - pitch: 1-5mm pitch - time resolution: <20 ps
-
- CMOS LGADs

‣ **RICH**

- $-$ O(50m²)
- granularity: 3x3 mm
- digital SiPM (hybrid as fallback)
- ‣ Main benefits in going integrated CMOS:
	- cost reduction
	- facilitation of system-level integration

ARCADIA MAPS

Executive summary

- several (smaller, but not necessarily small) experiments have adopted ALPIDE
- 180 nm technology is now widely used

- ‣ **ALICE** is pushing **MAPS** technology since some 10 years:
	- **expertise** in design, characterisation, integration is built up at several institutes within the collaboration
	- **large workforce** >100 people, >20 institutes participate
	- long-standing **relation** with the foundry
- Driven by clear goals and timelines:
	- **ITS2+MFT** (LHC LS2, 2021): new 10 m2 7-layer monolithic Inner Tracking System and Forward Muon Tracker Tower Semiconductor 180 nm CIS (ALPIDE)
	- **ITS3** (LHC LS3, 2028): new inner-most 3 layers, wafer-scale, bent, stitched sensors Tower Partner Semiconductor 65 nm CIS
	- **ALICE 3** (LHC LS4, 2034): 60 m2 silicon-only vertexer and tracker Tower Partner Semiconductor 65 nm CIS (baseline, tbc)
- ‣ R&D is exploring the technology far beyond the strict ALICE needs:
	- e.g. using process options to improve on radiation hardness and timing performance
	- gives a lot of **confidence** for the concrete ALICE application, **serves** the community as a whole, and also paves the way for the **future** ALICE plans
	- ALICE follows an inclusive approach (open non-ALICE members welcome) significant support from CERN EP department and EP-ESE group!

‣ Developed technology is used for several **off-spring** experiments (HEP, medical, …)

Magnus Mager (CERN) | ALICE CMOS | DRD7 | 15.03.2023 | 20

Th*ank you!*

→ now Frederic's talk for technical details!