Monolithic sensors in ALICE

Pb-Pb530/e LHC22s period 18th November 2022 16:52:47.893

Magnus Mager (CERN) DRD7 — 15.03.2023

Contraction and the section of the s

CER

Monolithic sensors in ALICE

75-2536 LHC22s period 18th November 2022 16:52:47.893

Contraction of the second for a second for the seco

Executive summary

- ALICE is pushing MAPS technology since some 10 years:
 - expertise in design, characterisation, integration is built up at several institutes within the collaboration
 - large workforce >100 people, >20 institutes participate
 - long-standing **relation** with the foundry
- Driven by <u>clear goals and timelines</u>:
 - Tower Semiconductor 180 nm CIS (ALPIDE)
 - **ITS3** (LHC LS3, 2028): new inner-most 3 layers, wafer-scale, bent, stitched sensors Tower Partner Semiconductor 65 nm CIS
 - ALICE 3 (LHC LS4, 2034): 60 m² silicon-only vertexer and tracker Tower Partner Semiconductor 65 nm CIS (baseline, tbc)
- R&D is exploring the technology far beyond the strict ALICE needs:
 - e.g. using process options to improve on radiation hardness and timing performance
 - paves the way for the **future** ALICE plans
- Developed technology is used for several off-spring experiments (HEP, medical, ...)
 - several (smaller, but not necessarily small) experiments have adopted ALPIDE
 - 180 nm technology is now widely used

- ITS2+MFT (LHC LS2, 2021): new 10 m² 7-layer monolithic Inner Tracking System and Forward Muon Tracker

gives a lot of **confidence** for the concrete ALICE application, **serves** the community as a whole, and also

ITS2+MFT **ALICE LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)**

Inner Tracking System

LS2

6 layers:

2 hybrid silicon pixel

- 2 silicon drift
- 2 silicon strip

Inner-most layer:

radial distance: 39 mm material: $X/X_0 = 1.14\%$ pitch: $50 \times 425 \ \mu m^2$ rate capability: 1 kHz

Inner-most layer:

radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: $29 \times 27 \ \mu m^2$ rate capability: 100 kHz (Pb-Pb)

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

ERN-LHCC-2012-013 September 12, 2012 ALICE

Beam

Upgrade of the Inner Tracking System Conceptual Design Report

outer Barrel

CERN-LHCC-2012-013 (LHCC-P-005) ALICE-UG-002 September 12, 2012

ALICE

Beam

ERN-LHCC-2012-013 ALICE mber 12, 2012

Beam

PIXEL PERFECT

A CERN for climate change

ITS2: sensor development R&D path

- 2012 Explorer
- 2013 pALPIDEss
- May 2014 pALPIDE-1
- Apr 2015 pALPIDE-2
- Oct 2015 pALPIDE-3
- Aug 2016 **ALPIDE**

- study of technology
- detection diode geometry
- starting materials
- radiation hardness
- digital front-end
- priority-encoder readout
- full-scale sensor
- simplified interface
- module integration \bullet
- slow-speed serial link •
- last optimisation of pixel ullet
- final chip

chip-chip communication interface

multiple-hit memory, final interfaces high-speed serial link (jitters)

oAL

2 ALPIDE

and a state

524 288 pixels

-5° Слј

Parameter	Req.	AL
Spatial resolution (µm)	≈ 5	~
Integration time (µs)	< 30	<
Fake-hit rate (/pixel/event)	< 10 ⁻⁶	<<
Detection efficiency	> 99%	>>
Power density (mW/cm ²)	< 100	<
TID (krad)	> 270 (IB)	(
NIEL (1 MeV n _{eq} / cm ²)	> 1.7x10 ¹²	(

524 288 pixels

· 5°CM

ZOK CHIPS ZOK CHIPS 4 K in continuous ope 4 K in continuous ope 5 everal other applic

and the second

3cm

oduced and tested

ation on ITS2

ations

Parameter	Req.	AL
Spatial resolution (µm)	≈ 5	Â
Integration time (µs)	< 30	<
Fake-hit rate (/pixel/event)	< 10 ⁻⁶	<<
Detection efficiency	> 99%	>>
Power density (mW/cm ²)	< 100	<
TID (krad)	> 270 (IB)	(
NIEL (1 MeV n _{eq} / cm ²)	> 1.7x10 ¹²	(

Fully integrated:

 next active circuit ≥ 8 m away offdetector

Strobing:

- global shutter
- either triggered or in continuous sequence

Data interface:

 high-speed serial link using copper cables

ITS2 R&D: process modification full depletion as "side development"

- Addition of a low-dose n-implant
 - developed together with foundry
- Opens up new applications
 - higher radiation hardness
 - faster charge collection
- Now crucial for the 65 nm development (it paid off also for ALICE!)

A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance

W. Snoeys^{a,*}, G. Aglieri Rinella^a, H. Hillemanns^a, T. Kugathasan^a, M. Mager^a, L. Musa^a, P. Riedler^a, F. Reidt^a, J. Van Hoorne^a, A. Fenigstein^b, T. Leitner^b

[doi:10.3390/s8095336]

^a CERN, CH-1211 Geneva 23, Switzerland

^b TowerJazz Semiconductor, Migdal Haemek, 23105, Israel

$\mathsf{ITS2} \to \mathsf{ITS3}$ the concept

- Replacing the barrels by real half-cylinders (of bent, thin silicon)
- Rely on wafer-scale sensors (1 sensor per half-layer)
- Minimised material budget and distance to interaction point \rightarrow large improvement of vertexing precision and physics yield ("ideal detector")

Relies on the development of wafer-scale sensors

ITS3: 180 nm → 65 nm qualifying the TPSCo 65 nm CMOS Imaging Technology

Key benefits

- smaller features/transistors: higher integration density
- smaller pitches
- lower power consumption
- larger wafers (200 \rightarrow 300 mm)
- Similar R&D plan as for 180 nm:
 - small prototypes to characterise technology
 - then larger chips
 - **BUT:** technology node is more advanced, "larger" is larger by 1-2 orders of _ magnitude (stitching)
- MLR1: concentrated effort ALICE ITS3 together with CERN EP R&D
 - leverages on experience with 180 nm (ALPIDE)
 - excellent links to foundry
 - large support form **CERN** (EP department and EP/ESE group)
 - Comprehensive *first* submission: **55** prototype chips
 - goal: qualify the technology (achieved)

ITS3: pixel prototype chips (selection) **APTS CE65**

- readout: direct analog readout of central 4x4
- ▶ **pitch:** 10, 15, 20, 25 µm
- total: 34 dies

- matrix: 64x32, 48x32 pixels
- readout: rolling shutter analog
- **pitch:** 15, 25 μm
- total: 4 dies

Comprehensive set of (small) prototypes and variants to explore the technology for particle detection

DPTS

- matrix: 32x32 pixels
- **readout:** async. digital with ΤοΤ
- pitch: 15 µm
- total: 3 dies

ITS3: sensor characterisation example: test beams

- Large effort by several ALICE groups
 - groups/links/education
- Test beams with a cadence of > 1/month
 - several facilities
 - several groups
 - unified test system (in-house, targeted development)
- comprehensive datasets
 - including less standard configurations (e.g. beam energies)

ITS3: DPTS paper (65 nm) highlights

First comprehensive paper on 65 nm — summarises 1 year of mesaurements

1 [doi:10.48550/arXiv.2212.08621]

ITS3: DPTS paper (65 nm) [doi:10.48550/arXiv.2212.08621] (CERN) highlights

First comprehensive paper on 65 nm — summarises 1 year of mesaurements

ITS3: Wafer-scale sensors Engineering Run 1 (ER1)

- Submitted in Dec'22
 - pad wafers: beg. Mar
 - processed wafers: end Mar (tbc) -
- "**MOSS**": 14 x 259 mm, 6.72 MPixel $(22.5 \times 22.5 \text{ and } 18 \times 18 \ \mu \text{m}^2)$
 - conservative design, different pitches
- "MOST": 2.5 x 259 mm, 0.9 MPixel $(18 \times 18 \ \mu m^2)$
 - more dense design
- Plenty of small chips (like MLR1)

ITS3: ER1 testing preparation MOSS test system

- In-house development
 - tailored to MOSS chip
- Based on:
 - carrier card (passive; custom made)
 - 5x proximity card (active; custom made)
 - 5x FPGA board (commercial: enclustra Mercury+ AA1+PE1)
- Crucial activity involving quite a number of people

ALICE 3 outlook

- ALICE 3 is centred around a 60 m² MAPS tracker
 - innermost layers will be based on wafer-scale Silicon sensors "iris tracker", similar to ITS3 (but in vacuum)
 - outer tracker will be based on modules like ITS2 (but order of magnitude larger)
- Also TOF and RICH based on CMOS technology (baseline)
- This is the next big and concrete step for this technology

ALICE 3 **Outer tracker**

- 60 m² silicon pixel detector
 - large coverage: ±4η
 - high-spatial resolution: $\approx 5 \, \mu m$
 - very low material budget: X/X_0 (total) $\leq 10\%$
 - low power: $\approx 20 \text{ mW/cm}^2$
- module (O(10 x 10 cm²)) concept based on industry-standard processes for assembly and testing

ALICE 3 Vertex detector

- Based on wafer-scale, ultra-thin, curved MAPS
 - radial distance from interaction point: 5 mm (inside beampipe, retractable configuration)
 - unprecedented spatial resolution: $\approx 2.5 \ \mu m$
 - ... and material budget: $\approx 0.1\% X_0/layer$
- Unprecedented performance figures
 - largely leverages on the ITS3 developments
 - pushes improvements on a number of fronts

ALICE 3 **PID** detectors **TOF** + **RICH**

► TOF

- pitch: 1-5mm pitch time resolution: <20 ps
- surface: $O(45 \text{ m}^2)$ --
- CMOS LGADs

► RICH

- O(50m²)
- granularity: 3x3 mm
- digital SiPM (hybrid as fallback)
- Main benefits in going integrated CMOS:
 - cost reduction
 - facilitation of system-level integration _

ARCADIA MAPS

Executive summary

- ALICE is pushing MAPS technology since some 10 years:
 - expertise in design, characterisation, integration is built up at several institutes within the collaboration
 - large workforce >100 people, >20 institutes participate
 - long-standing **relation** with the foundry
- Driven by <u>clear goals and timelines</u>:
 - **ITS2+MFT** (LHC LS2, 2021): new 10 m² 7-layer monolithic Inner Tracking System and Forward Muon Tracker -Tower Semiconductor 180 nm CIS (ALPIDE)
 - **ITS3** (LHC LS3, 2028): new inner-most 3 layers, wafer-scale, bent, stitched sensors -Tower Partner Semiconductor 65 nm CIS
 - ALICE 3 (LHC LS4, 2034): 60 m² silicon-only vertexer and tracker Tower Partner Semiconductor 65 nm CIS (baseline, tbc)
- R&D is exploring the technology far beyond the strict ALICE needs:
 - e.g. using process options to improve on radiation hardness and timing performance
 - gives a lot of **confidence** for the concrete ALICE application, **serves** the community as a whole, and also _ paves the way for the **future** ALICE plans
 - ALICE follows an inclusive approach (open non-ALICE members welcome) significant support from CERN EP department and EP-ESE group!

Developed technology is used for several off-spring experiments (HEP, medical, ...)

- several (smaller, but not necessarily small) experiments have adopted ALPIDE
- 180 nm technology is now widely used _

Thank you!

 \rightarrow now Frederic's talk for technical details!

