

The physical implementation of MAPS

Context

- Importance of hierarchical design
- Large design challenges
- Emerging needs
- Conclusion

2

- Goal: Less material means better physics
- How is it achieved?
 - □ Lower power consumption allows for air cooling
 - On chip data transfer allows no flex
 - Bent Si wafers allow stable mechanical structure
 - Proposal: Wafer-scale stitched particle detectors

Dummy silicon model

- Stitching: technique that allows some parts of the reticule to be repeated across a wafer to create a unique circuit
- MOSS (Monolithic Stitched Sensor) prototype is a proof-of-concept of stitched MAPS
 - □ 1.4 by 26 cm wide
 - □ 1.67 million pixels
 - 736.3 million transistors
- How to achieved the design of such sensors?

14 mm 1 2 3 4 5 6 7 8 9 1000 25890 25.9 cm

15/03/2023

Implementing DRD7 - frederic.morel@iphc.cnrs.fr

There are 4 aspects to master: Hierarchy, Granularity, Timing, and Power

□ The Learning Map @ C4Pi

- Large and complex designs need a hierarchy to keep the submission on schedule
- 2 well known approaches:
 - Bottom-up
 - The design of each block is "independent"
 - All the constraints are seen at the top, at the end of the flow
 - □ Top-down
 - The top constraints of the system are pushed down to the blocks
 - Need a dedicated flow
 - Works at early stage with partially defined blocks
- Hierarchical flow helps the designers with
 - Partitioning
 - Push floorplan constraints into blocks
 - Time budgeting
 - The timing constraints are allocated between top and partitions
- Hierarchy could be nested

- Digital flow is based on abstraction of cells
 - □ Liberty file: timing and power model
 - □ Abstract: physical view
 - □ Power Grid View (PGV): extracted power network
- Granularity is related to the size of the blocks in the hierarchy
 - □ Which is the best: Pixel, column, sub-array or matrix level?
 - □ Need to be in phase with functional verifications
- Runtime of the flow and verification accuracy are correlated to the granularity
 - □ Need to be flexible during the flow (place and route stages vs signoff stage)
- Generating the abstraction for coarse-grained blocks could be difficult
 - On a huge block it could take days or did not converge at all
 - □ It is much easier for the blocks that come from Innovus than for those that come from Virtuoso

- Need to model the timing of digital hierarchical blocks at high level to reduce the runtime
- 2 types of modelling: ETM (Extracted Timing Model) and ILM (Interface Logic Model)
 - □ ETM generates a liberty file of the block
 - □ ILM works on a reduced netlist
- ETM can be long and difficult to generate and has many drawbacks
- ILM is more efficient but still has some limitations

- A full flat signoff analysis is required to avoid missing failed paths with hierarchical timing
 - Not all corners are used during place and route steps
 - Problems with interactions between blocks and top
- Knowledge of the tools is essential for success in a reasonable time
 - □ Flatten the design using advanced capability of Tempus
 - Distributed timing verification
 - Careful tuning between corners and remote hosts is needed to get the best performance
 - Use hierarchical ECO flow to fix remaining fall paths
- Similar techniques are available for power verifications

MIMOSIS2 full flat timing analysis Reticule size chip in 0.18 μm		Local hierarchical 1 CPU	Local no physical 16 CPU	Local physical 16 CPU	Distributed physical 4 hosts with 4 CPU
	Total Time (h)	0.3	4	4.2	4.5
	CPU Time (h)	0.3	32.5	32.75	52
	Peak Memory (GB)	20	110	120	47 for each host

Implementing DRD7 - frederic.morel@iphc.cnrs.fr

Convergence between digital and analogue world

- Signal Integrity glitch analysis for analogue nets
 - □ Estimation of the injection peak on an analogue net and make the corrections on violated nets
 - □ High-precision simulations (spectre)
- Dynamic Rail Analysis for On-Chip Voltage Regulators with Voltus
 - □ Simulate a reduced circuit with spectre
 - Inject the simulated voltage waveforms into Voltus rail solver

To further improve the quality of design: new tools are needed

- Need to use new tools to ensure good yield of stitched sensors
 - DRC clean and traditional filling is not sufficient (recommended rules and smart filling)
 - Yield dominated by a few hotspots
- Calibre DFM provides access to a set of analyses
 - □ For some analyses, foundry rules are mandatory
 - □ For some analyses, some basic self check could be performed to identify the weakest points

Figure 11-1. Manufacturing Defects

ry 🔴 Cell Summary 🔴 Window Summary 🖨 Drill Down Avg Quality poly.OPEN 0.94347 poly.SHORT 0.950443 6921.78 netal1 OPEN 0.860505 19483 2 0.925032 1 88042 16701.3 Window Summary 0 954673 6330.96 0.894509 14734.3 Browse Hierarchy Errors 0.968548 4393.00 962319 5263.07 08551_deta .80 Highlight Flat Errors m Extent (0.0 Histogram Hierarchy Cel Enable Autoran ap Flat Erro 0.959156 0.918312 Critical Area - 0.043 0.87746 Critical Area: 0.09 ritical Area 0.15 0.836623 Critical_Area : 0.525 Critical_Area : 0.738

Another particles detector

Implementing DRD7 - frederic.morel@iphc.cnrs.fr

- Design methodologies are essential to produce high quality sensors on time
- The sensor is part of an overall system → Do we need to go for digital twins?
- Relationships with foundries and EDA vendors are critical
- Potential bottleneck in computing infrastructure