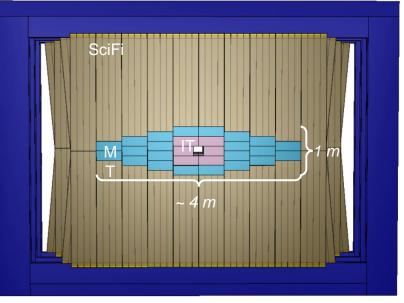


MightyPix

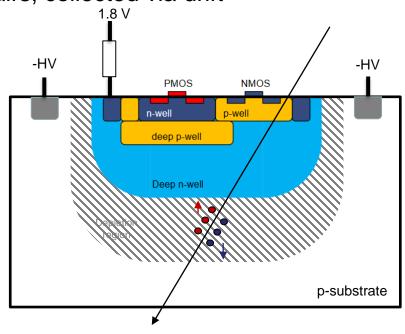
Ivan Peric and MightyPix team


Mighty Tracker

- Mighty Tracker
- SciFi Tracker

KIT

- Scintillating fibres with SiPM readout
- Inner Tracker and Middle Tracker
 - Silicon sensors meet requirements of radiation hardness and granularity
 - Baseline technology:
 HV-CMOS pixel chip MightyPix
 - In total over 46000 silicon sensors to cover area of 18 m² (minus beam-pipe hole)



Schematic of one layer of the Mighty Tracker. [1]

- HV-CMOS sensor
- Sensing element and readout circuit on same chip
- n-well/p-substrate diode acts as sensor
- Readout electronics isolated from high voltage by deep n-well
- High reverse bias creates thick depletion region between deep n-well and p-substrate
- Ionising particles create electron/hole pairs, collected via drift

- MightyPix is based on knowledge from ATLASPix¹ and MuPix²
- Final design parameters and requirements:
- First prototype: MightyPix1

Parameter	Required Value	Notes
Chip size	\sim 2 cm \times 2 cm	
Pixel size	~ 50 µm × 150 µm	
Time resolution	< 3 ns	Hit assigned to right BX
Power consumption	$< 0.15 W/cm^2$	
NIEL ³	$6 \times 10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2$	Includes safety factor of 2
Cooling	< 0°C	Test beam studies

¹ HV-CMOS pixel chip for the ATLAS experiment at

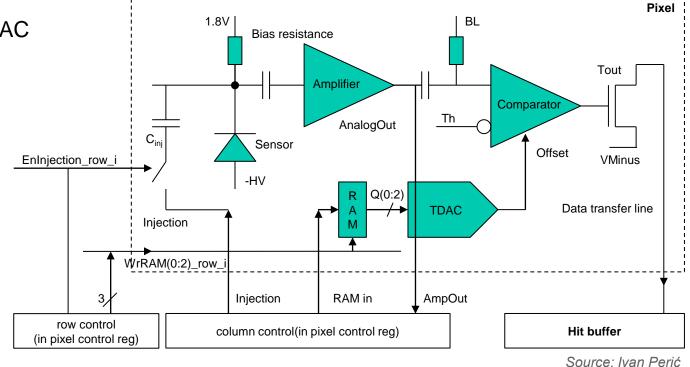
CERN

² HV-CMOS pixel chip for the Mu3e experiment at PSI ³Non Ionising Energy Loss

- Implemented in TSI 180 nm process
- Submitted in May 2022
- Chip size: ~ 2 cm × 0.5 cm \rightarrow full column length, ¼ width
- Pixel matrix: 29 columns, 320 rows
- Pixel:
 - 🔹 165 μm × 55 μm
 - CMOS amplifier and CMOS comparator
- Data format: 2 × 32 bit words per hit trasmitted
- Data output rate: 1.28 Gbit/s going to lpGBT

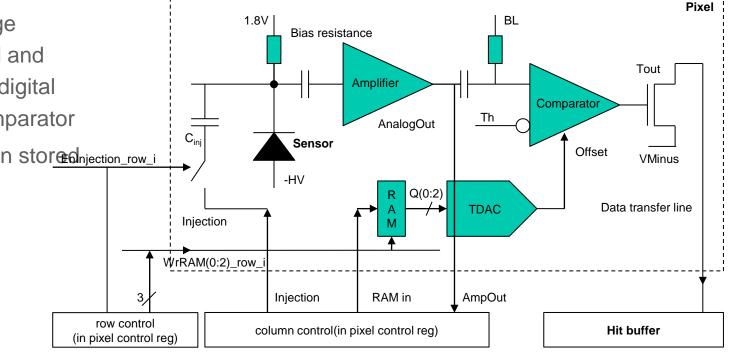
The first prototype: MightyPix1

- Digital interfaces:
 - Timing and Fast Control (TFC)
 - Slow Control (I2C)
 - Configuration shift register (SR) interface
- Clock generation:
 - External: 40 MHz and 640 MHz coming from lpGBT
 - Internal: CML and CMOS PLL with 40 MHz reference clock
- Bias voltages:
 - Integrated 10 bit voltage DACs
 - Can be supplied externally

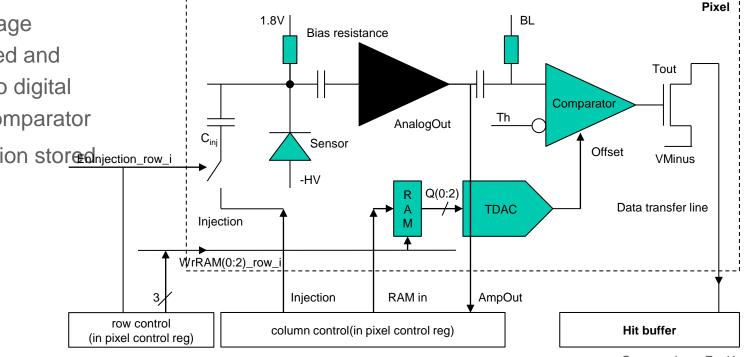


The first prototype: MightyPix1

Pixel contains:

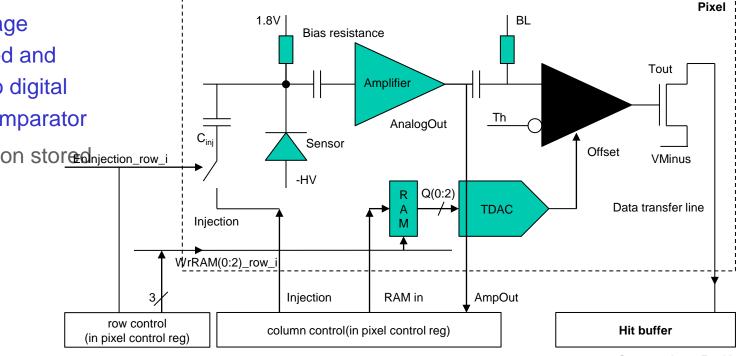

- Sensor diode
- Charge Sensitive Amplifier (CSA)
- Comparator
- Threshold tune DAC
- RAM for tune bits

- 1. Charge collected by pixel n-well
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- Analog voltage pulse shaped and converted to digital signal by comparator
- 4. Hit information stored_{njection_row_i} in hit buffer



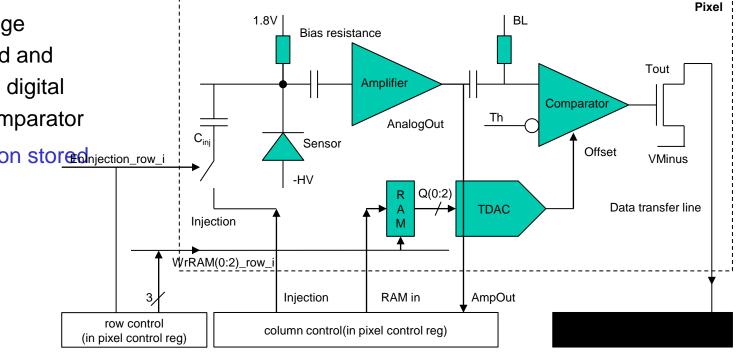
Source: Ivan Perić

- **1.** Charge collected by pixel n-well
- 2. Converted to voltage signal by **Charge Sensitive Amplifier**
- **3.** Analog voltage pulse shaped and converted to digital signal by comparator
- 4. Hit information stored njection_row_i in hit buffer



Source: Ivan Perić

- **1.** Charge collected by pixel n-well
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- **3.** Analog voltage pulse shaped and converted to digital signal by comparator
- 4. Hit information stored njection_row_i in hit buffer



Source: Ivan Perić

- **1.** Charge collected by pixel n-well
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- **3.** Analog voltage pulse shaped and converted to digital signal by comparator
- 4. Hit information stored njection_row_i in hit buffer

Source: Ivan Perić

• MightyPix1 has been produced – first results soon