ECFA R&D electronics DRDT 7.7 Technologies & Tools

15/3/2023 CERN

Conveners:

Mark Willoughby¹ Xavi Llopart²

Kostas Kloukinas²

¹RAL, STFC, UK ²CERN

•	Introducing the challenges of collaborative work at HEP <i>Kostas Kloukinas, CERN</i>	10'
1	Access to advanced silicon technologies for the HEP community via EUROPRACTICE Paul Malisse, EUROPRACTICE IC service, IMEC IC-link, BE.	20'
•	Access to modern EDA tools and IP block sharing in HEP community via EUROPRACTICE Mark Willoughby, EUROPRACTICE design tools service, RAL, STFC, UK	20'
•	 Challenges in designing ASICs for HEP Experiments Adithya Pulli, CERN 	20'
•	Open Discussion	20'

ASIC Design Support for HEP

15/3/2023

ASIC Design Platforms for HEP

- "Common ASIC design platforms" for HEP community Foundry Digital **Design Kits** libraries Develop and Provide: **Design kits** that support analog and digital designs EDA¹ Design Workflows that are standardized and validated workflows using selected EDA tools **Compatible Design Workflows** across multiple silicon foundries **Rad-Tol IP blocks** Maintenance Rad-Tol **CERN Technical Support** IP blocks **Common Design** Training Platform Timeline 1997 IBM 250nm 2009 IBM 130nm 2014 TSMC 65nm & 130nm
 - 2020 TSMC 28nm

Foundry Access Services

- Organize prototyping Multi Project Wafer runs, for sharing fabrication costs
- Coordinate Engineering & Production runs

Kostas.Kloukinas@CERN.ch

Technology evolution and HEP

15/3/2023

Kostas.Kloukinas@CERN.ch

Design Challenges **EDA** software Tools Design **Methodologies** 90 nm 45 nm 14 nm 130 nm 65 nm 28 nm Technology scaling 130 nm 90 nm 65 nm 45 nm 32 nm <u>22 nm</u> 2003 2005 2007 2009 2011

Challenges in ASIC design @ HEP

Technology Challenges

- Complex deep-submicron silicon manufacturing processes
- Powerful, Flexible but highly Complex EDA Tools

- Designs of increasing complexity and size
- Novel designs for scientific instrumentation
- **Radiation Tolerance**
- **Productivity Requirements**
 - Large, fragmented, multinational design teams
 - Designers with different levels of expertise
 - Work on common design projects
 - Costly technologies
 - Importance of 'first-time-right' designs !

ASIC development costs

- Steep investment for node sizes <16nm. But combine strong performance with lower power consumption
- Design verification skills and effort are increasingly more important
- Cost per transistor continues to fall even at 5nm, but this is relegated to those who have large wafer volume

1	Access to advanced silicon technologies for the HEP community via EUROPRACTICE Paul Malisse, EUROPRACTICE IC service, IMEC IC-link, BE.	20'
1	Access to modern EDA tools and IP block sharing in HEP community via EUROPRACTICE Mark Willoughby, EUROPRACTICE design tools service, RAL, STFC, UK	20'
	Challenges in designing ASICs for HEP Experiments	20'

- Technology Challenges
 - Augment EDA Tools -> EUROPRACTICE
 - Access to Advanced technologies -> EUROPRACTICE
 - Integrate support for "More than Moore" technologies
 - 3D Interconnect & Advanced Packaging
 - SiPh
 - CMOS Imaging (monolithic sencors)
 - Specialty embedded devices

Design Challenges

- System Architect role
- System Level Modeling and Simulations
- Design Verification at System Level and component level
- Establish & Conform to a Rad-Tol SoC infrastructure

Productivity Requirements

Establish a Collaborative Work structure

Enablers for Collaborative Work

Technical Framework

- Comprehensive "common design platforms"
 - Foundry PDKs & Foundry IP blocks
 - Rad-Tol IP blocks and IP block repository
 - Rad-Tol SoC infrastructure
 - Design & Verification methodologies
- Access to common EDA tools
- Maintenance, Training & Support services

Legal Framework

- 3-way NDAs with Foundries permitting technology data exchange
- Commercial Contracts with Foundries
- EULAs of EDA tool providers permitting IP block sharing
- IP block sharing agreements among design teams
- Export Control regulations