RF Engineering Introduction to the Smith Chart

Christine Völlinger & <u>Manfred Wendt</u> – CERN

Outline and Objectives

- Signals and reflections on transmission-lines
 - Reflections effects of pulse signals on transmission-lines due to characteristic-termination impedance mismatch
 - Standing waves on transmission-lines for continuous wave (CW) sinusoidal signals, definition of the reflection coefficient
 - Relation between reflection coefficient, standing wave ration and return loss
- The Smith chart
 - Refresher: Visualization of a complex impedance in the frequency domain
 - Definition of the Smith chart, mapping the complex impedance / admittance plane with the complex reflection coefficient
 - Basic facts and important points on the Smith chart
 - Examples for a RL and RC series circuit, and for a transmission-line terminated with a RL series circuit.
 - Operation of a $\lambda/4$ transformer based on a transmission-line as a (normalized) impedance inverter
- Smith-chart software demo

TL: Signal visualization in time-domain

- Circuit simulator applet: https://www.falstad.com/circuit/
 - Load file:

IdeaITL_DCswitched_Z050-RL.txt

- > Change the load resistor value: $RL = 50, 100, 25 \Omega$
- Operate the switch and observe the signals at the beginning, and at the end of the transmission-line.
- Load file: IdealTL_pulsed_Z050-RL.txt
 - > Change the load resistor value: $RL = 50, 100, 25 \Omega$
 - Observe the signal waveforms! Can you predict the values?!
 - (Press *Run/STOP* and hover with the mouse over the waveform)

Uas

L. TL: Operating with sinusoidal signals (FD)

JUAS 2023 RF Engineering

SI TL: Voltage Standing Wave Ratio (VSWR)

• The voltage standing wave ratio (VSWR) expresses the ratio between the maximum and minimum voltage of a standing wave along a transmission-line

$$VSWR = \frac{|V_{max}|}{|V_{min}|} = \frac{|a| + |b|}{|a| - |b|} = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \left|\frac{Z_L}{Z_0}\right|$$

- The VSWR is a function of the frequency.
- The generalized standing wave ratio (SWR),
 e.g., expressed as power ratio is less popular

$$SWR = \frac{1 + \sqrt{P^{-}/P^{+}}}{1 - \sqrt{P^{-}/P^{+}}}$$

• The return loss (RL) is another way to express reflection effects

$$RL[dB] = 10 \log_{10} \frac{P^+}{P^-} = -20 \log_{10} |\Gamma|$$

with:
$$\begin{cases} |V_{max}| = |V^+| + |V^-| \\ |V_{min}| = |V^+| - |V^-| \end{cases}$$

symbols: incident (forward) wave: a, X^+ reflected (backward) wave: b, X^-

Г	$VSWR = Z_L/Z_0$	Return Loss [dB]	Refl. Power $ \Gamma ^2$	Inc. Power $1 - \Gamma ^2$
0.0	1.00	œ	0.00	1.00
0.1	1.22	20.0	0.01	0.99
0.2	1.50	14.0	0.04	0.96
0.3	1.87	10.5	0.09	0.91
0.4	2.33	8.0	0.16	0.84
0.5	3.00	6.0	0.25	0.75
0.6	4.00	4.4	0.36	0.64
0.7	5.67	3.1	0.49	0.51
0.8	9.00	1.9	0.64	0.36
0.9	19.00	0.9	0.81	0.19
1.0	œ	0	1.00	0.00

Reminder: The complex *Z***-Plane**

JUAS 2023 RF Engineering

The Smith Chart (1)

- The *Smith* chart is a calculation tool, divided in 2 parts:
 - A transformation of the complex, normalized impedance z and admittance y planes on a circle.
 - A set of "rulers" below, for additional computations
 - > VSWR, return and reflection loss, etc.

- At a 1st look the Smith chart is quite overwhelming
 - In this introduction the focus is on the complex z-plane

The Smith Chart (3)

The impedance Z is usually normalized: $Z = \frac{1}{Z_0}$

to a reference impedance Z_0 ,

typically, to the characteristic impedance of the coaxial cable transmission-lines used in RF / microwave engineering: $Z_0 = 50 \Omega$.

• The normalized form of the transformation follows then as:

$$\Gamma = rac{z-1}{z+1} \Rightarrow rac{Z}{Z_0} = z = rac{1+\Gamma}{1-\Gamma}$$

- The Smith chart is a parametric graph
 - with the frequency f as parameter
 - and the normalized, complex impedance z and complex reflection coefficient Γ as variables
 - > also, the normalized, complex admittance y = 1/z is mapped and can be used as variable.
- In the past
 - The Smith chart was used as a calculation tool for impedance matching, e.g., antennas to transmitters or receivers, amplifier input / output stages, couplers of accelerating cavities, etc.
- At presence, the *Smith* chart is still popular
 - for visualization purposes, e.g., vector network analyzer (VNA) measurement of input / output impedances (display of the *Sii* scattering parameters)
 - for the optimization of the coupling between RF source and a cavity resonator.

- ..

The Smith Chart (4)

In the *Smith* chart, the complex reflection factor

$$\Gamma = |\Gamma|e^{j\varphi} = \frac{b}{a}$$

is expressed in linear polar coordinates, representing the ratio of backward *b* vs. forward *a* traveling waves.

JUas

The Smith Chart – "Important Points"

Important Points:

• Short Circuit $\Gamma = -1, z = 0$

cientific Institute

- Open Circuit $\Gamma = +1, z \rightarrow \infty$
- Matched Load $\Gamma = 0, z = 1$
- On the circle $|\Gamma| = 1$: lossless element
- Upper half: "inductive" = positive imaginary part of Z
- Lower half: "capacitive" = negative imaginary part of Z
 - Outside the circle, $\Gamma > 1$: active element, e.g., tunnel diode reflection amplifier

The Smith Chart – Basic Example (1)

Complex impedance based on lumped element components

- Calculate Z for a given frequency, e.g., f = 50 MHz: $Z = (25 + j6.28) \Omega$
- Calculate the normalized impedance $z = Z/Z_0 = 0.5 + j0.126$
 - Locate z in the Smith chart
 - Retrieve $\Gamma = 0.34 \angle 161^{\circ} = 0.34e^{j2.81}$
- Repeat for other frequencies...

incident wave
$$\Rightarrow$$

reflected wave \Leftarrow
 $Z_0 = 50 \Omega$
 $L = 10 nH$
 $Z = R + jX_L$
with: $X_L = \omega L$

• ...and for different component values and circuit combinations

1. When do no signal reflections occur at the end of a transmission-line?

- $\circ \quad R_{source} = R_{load}$
- $\circ \quad R_{source} = Z_0$
- χ $Z_0 = R_{load}$
- $\mathbf{X} \quad R_{source} = Z_0 = R_{load}$
- 2. The Smith chart transforms onto the complex Gamma (reflection coefficient) plane within the unit circle.

35

Prompts		Possible Answers
A. Point A	1.	$\Gamma = +1, z \rightarrow \infty$
B. Point B	2.	$\Gamma = -j$
C. Point C	3.	$\Gamma = 0, z = 1$, match
D. Point D	4.	Point in the capacitive half plane
E. Point E	5.	$\Gamma = +j$
	6.	$\Gamma = -1, z = 0$
	7.	Point in the inductive half plane

- $\circ \quad f_B > f_A$
- $\boxtimes f_B < f_A$
- There is no frequency f related to points A and B

Quiz (3)

 $\circ \quad f_A = f_B$

The Smith Chart – TL Transformer (1)

• S-parameter of a lossless transmission-line:

backward transmission coefficient S12

$$S = \begin{bmatrix} 0 & e^{-j\beta\ell} \\ e^{-j\beta\ell} & 0 \end{bmatrix}^*$$

forward transmission coefficient S21

Phase delay (electrical length) of

$$\boldsymbol{\beta}\ell=\boldsymbol{\theta}$$

with:
$$\beta = \frac{2\pi}{\lambda_g} = k$$
 (wave number)

The lossless transmission-line adds a phase delay of 2*β* ℓ , seen at its input, Γ_{in}, to the reflection coefficient Γ at its output:

$$\Gamma_{in} = \Gamma e^{-j2\beta\ell}$$

- This results in a transformation of the impedance Z at the end of the line to a different impedance Z_{in} at the input of the line
 - The Smith chart offers an effective, simple graphical way to calculate this transmission-line based impedance transformation

The Smith Chart – TL Transformer (2)

ientific Institute

IUds

The Smith Chart – TL Transformer (3)

• A transmission-line of length

$$\ell = \frac{\lambda}{4} \equiv \beta \ell = \frac{\pi}{2}$$

IUas

transforms a reflection Γ at the end of the line to its input as

$$\Gamma_{in} = \Gamma \ e^{-j2eta \ell} = \Gamma \ e^{-j\pi} = -\Gamma$$

• This results the unitless, normalized impedance *z* at the end of the line to be transformed into:

at the beginning of the line

- $z_{in} = 1/z$
- A short circuit at the end of the $\lambda/4$ -transformer is transformed to an open, and vice versa
 - This is the principle of the $\lambda/4$ -resonator.

Final Remarks

- The *Smith* chart is a special type of a parametric plot for the complex impedance or admittance, mapped to the complex reflection coefficient.
- The use of the Smith chart can be viewed in two ways:
 - As a calculation and impedance matching tool as originally envisioned.
 - However, today this will happen rather rarely!
 - > Please notice: All the examples presented are based on the paper-style *Smith* chart, which is always based on an unitless, normalized impedance $z = Z/Z_0$
 - As a visualization tool for the complex impedance, along with the reflection coefficient
 - > Still very popular and useful for displaying and analyzing S_{ii} on a vector network analyzer, also used in datasheets, and RF simulation and education software.
 - > Here the *Smith* chart utilizes the actual complex impedance Z in units of Ω ! Markers on the parametric trace give all relevant information, including the element values of a selected equivalent circuit.

• Old, but excellent information on transmission-lines and standing waves:

- https://www.youtube.com/watch?v=I9m2w4DgeVk
- <u>https://www.youtube.com/watch?v=DovunOxIY1k&t=38s</u>
- *Smith* chart education software (only for MS-Windows):
 - <u>https://www.fritz.dellsperger.net/smith.html</u>

Navigation in the Smith Chart (1)

This is a "bilinear" transformation with the following properties:

- Generalized circles are transformed into generalized circles
 - circle \rightarrow circle
 - straight line \rightarrow circle
 - circle \rightarrow straight line
 - straight line \rightarrow straight line
- Angles are preserved locally

- > a straight line is equivalent to a circle with infinite radius
- \succ a circle is defined by 3 points
- > a straight line is defined by 2 points

Navigation in the Smith Chart (2)

in red: impedance plane (= z)

in blue: admittance plane (= y)

	<u>Up</u>	Down
Red circles	<u>Series L</u>	Series C
Blue circles	<u>Shunt L</u>	Shunt C

Navigation in the Smith Chart (3)

Red arcs	Resistance R	
Blue arcs	Conductance G	
Con-centric circle	Transmission line going Toward load <u>Toward generator</u>	