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Motivation

CHAPTER

1

INTRODUCTION AND HISTORY

The Guideline

Our purpose in theoretical physics is not to describe the world as we find it, but to
explain-in terms of a few fundamental principles- why the world is the way it is.

Steven Weinberg

The Standard Model is one of the greatest scientific achievements of all time. It consis-
tently describes all known fundamental particles and their interactions with the exception
of gravity that is still properly described only at low energies. The Standard Model is
the most successful application of quantum field theory when it comes to experimental
verification. It is the final conclusion of many decades of intense research both on the the-
oretical and experimental sides. Its structure was finally completed after the celebrated
discovery of the Higgs particle in 2012. Over the decades since its ingredients were com-
bined, thousands of measurements have been made at energies E Æ 1 TeV, all consistent
with the Standard Model.

The Standard Model describes the physics of the building blocks of all visible matter:
spin 1/2 quarks and leptons interacting via three fundamental forces, each mediated by
spin 1 particles known as gauge bosons. The electromagnetic force is described as elec-
trically charged particles exchanging photons, as in Quantum Electrodynamics (QED).
The electromagnetic interactions are of long range due to the fact that photons are mass-
less. The short range weak force is responsible for certain radioactive decays such as the
neutron —-decay and play a crucial role in the thermonuclear interactions within stars.
The mediators of this interaction are the massive W and Z bosons. Their large mass
is responsible for the short range of the interaction The strong force binds quarks into
nucleons (protons and neutrons) and indirectly nucleons into nuclei; the carriers of the
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Massive particles: (Little group SO(3))
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1. Introduction and Conclusions

String theory, just like standard relativistic quantum field theories, has very few model independent

consequences at low energies. In quantum field theory we can name the existence of anti-particles,

the CPT theorem, the running of couplings in terms of the renormalisation group and the identity

of all particles of the same type. String theory, for vacua with non-compact dimensions, ‘predicts’

gravity and at least one neutral scalar, the dilaton, antisymmetric tensors of different ranks and

usually also charged matter, and supersymmetry (see for instance [1]).

By the same nature of a theory (string theory or otherwise) with a naturally large energy scale

to address the issue of quantum gravity, it is very difficult to identify model independent low-

energy implications subject to experimental verification which can put to test the theory and not

just particular models or scenarios.

The purpose of this note is to make a simple but general remark. We point out a low-energy

consequence of all string constructions, that is the absence of massless continuous spin representa-

tions (CSR) of the Poincaré group [2]. This fact has no straightforward explanation within standard

particle physics field theoretical analysis and is consistent with all experiments so far since parti-

cles fitting into those representations have not been found in nature; see however [3] or a recent

discussion of their phenomenology.

One of the most elegant theoretical developments in particle physics, pioneered by Wigner, is

the description of one-particle states in terms of unitary representations of the four- dimensional

Poincaré group [2] (see also [4]).

One-particle states are classified according to the quantum numbers of the invariant Casimir

operators C1 = PµPµ and C2 = WµWµ with Pµ and Wµ = ϵµνρσPνMρσ the momentum and Pauli-

Ljubansky vectors respectively and Mρσ the Lorentz generators. C1 and C2 label the representation

in terms of their eigenvalues that essentially correspond to mass m and spin J in a representation

with fixed momentum pµ.

The representations differ according to whether C1 is positive, zero or negative. For massive

particles (C1 > 0) the remaining space-time quantum numbers come from the fact that the sta-

bilising or Little Group in four-dimensions is SO(3), the subgroup of the Poincaré group leaving

invariant a state in its rest mass frame described by a four-momentum p = (m, 0, 0, 0). The cor-

responding states are the different spin states of the multiplet. This defines a particle in terms of

quantum numbers |m,J ; pµ, s⟩ with s = −J,−J + 1, · · · , J and p2 = m2.

– 1 –
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Poincaré group [2] (see also [4]).

One-particle states are classified according to the quantum numbers of the invariant Casimir

operators C1 = PµPµ and C2 = WµWµ with Pµ and Wµ = ϵµνρσPνMρσ the momentum and Pauli-

Ljubansky vectors respectively and Mρσ the Lorentz generators. C1 and C2 label the representation

in terms of their eigenvalues that essentially correspond to mass m and spin J in a representation

with fixed momentum pµ.

The representations differ according to whether C1 is positive, zero or negative. For massive

particles (C1 > 0) the remaining space-time quantum numbers come from the fact that the sta-

bilising or Little Group in four-dimensions is SO(3), the subgroup of the Poincaré group leaving

invariant a state in its rest mass frame described by a four-momentum p = (m, 0, 0, 0). The cor-

responding states are the different spin states of the multiplet. This defines a particle in terms of

quantum numbers |m,J ; pµ, s⟩ with s = −J,−J + 1, · · · , J and p2 = m2.

– 1 –
For massless particles (C1 = 0) 1 the momentum can be written p = (E, 0, 0, E) and the

corresponding Little Group is not only the naively guessed SO(2) but actually the whole Euclidean

group in two dimensions E2 or ISO(2). This complicates matters since this group has infinite

dimensional unitary representations, known as continuous spin representations (CSR), that would

correspond to a continuous spin-like label on the elementary particles, something that has not been

observed in nature.

A standard way to proceed is to simply restrict to the finite dimensional representations that

correspond to those of SO(2). This defines helicity λ, as the good quantum number which is

quantised in half integers. Since the two Casimirs vanish in the reference frame defined by p =

(E, 0, 0, E) all observed massless particles 2 are then labelled only by pµ and λ: |pµ,λ⟩ with λ =

0,±1/2,±1, · · · . But there is no satisfactory explanation why to restrict only to representations of

SO(2) instead of the full E2. Contrary to the massive case for which matter fields fit into generic

representations of SO(3), there are massless representations (infinite dimensional) that are allowed

by the basic principles of special relativity and quantum mechanics but do not seem to be realised

in nature. A theoretical understanding of this fact is needed.

Over the years the continuous spin representations have been discussed in several different

contexts (see for instance [6] and references therein) and attempts have been made to describe

them in terms of quantum field theoretical interactions, but without much success. The question of

their relevance becomes even stronger in the description of higher dimensional theories, such as ten

and eleven dimensional supergravities, for which the argument that they have not been observed in

nature does not directly apply. Therefore we may wonder if either these representations exist and

may have an important role to play in a fundamental theory or if the structure of the fundamental

theory may provide a first-principles explanation of why these particles are not observed in nature.

In this note we would like to address the relevance of string theory for the existence or not

of continuous spin representations. One may ask if these states could be present in string theory.

In perturbative string theory we can observe an obstruction since in the standard quantisation,

particles of different masses and spin are in the same multiplet in the sense that upon application of

the creation and annihilation operators one relates particles of different masses. It is then clear that

if the massive representations do not carry a continuous label the massless states should not carry

it either. Then the continuous spin representations are not present in perturbative string construc-

tions. This argument can be turned into a model-independent prediction of string constructions

at the same level as the other two general ‘predictions’ of the theory, the presence of gravity and

supersymmetry. It can be said that if these states are detected experimentally, all string theory

constructions known so far would be ruled out. From the perspective of the CSR’s string theory

provides a straightforward explanation of why the relevant part of the Little group for massless

states is O(D − 2) for a D dimensional theory instead of the full ISO(D − 2).

The fact that these representations are not realised in perturbative string theory does not pre-

1The case C1 < 0 corresponds to tachyonic states that are usually a signature of instability. In supersymmetric

string theories this particle is projected out of the spectrum, although being the ground state of the quantisation it

has played important roles in the understanding of branes and with potential cosmological implications [5].
2Recall that in the standard model all known particles, except the Higgs particle itself, are described by massless

states and the massive ones acquire their mass via the Higgs effect.
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Theories for spins 0,1/2,1:  Quantum Field Theories (QFT)

Massless spins 3/2,2: (super) gravity: Effective Field Theories (EFT)

Wigner 1939



“General Predictions” of QFT

• Identical particles

• Antiparticles

• CPT

• Spin-statistics

• ‘Decoupling’ (physics organised by scales, EFTs)



Chapter 4. Broken Symmetries

Figure 4.2: Symmetric (m2 > 0) and spontaneously broken (m2 < 0) potentials.

is zero. While the system cools down we reach the region for which T > Tc then a phase
transition occurs and the potential is now of the form V≠ exhibiting spontaneous symmetry
breaking. The two possible expectation values then indicate two opposite directions of
the magnets which are then polarised pointing at only one direction in one vacuum and
the opposite direction in the other vacuum (the average value or expectation value is not
zero now). Here an interesting phenomenon takes place. In physical 3-dimensional space
we will find regions in which the system is in vacuum |0+Í and other regions in which the
state is in the second vacuum |0≠Í. Going from a region for which È„Í = +v to he region
for which È„Í = ≠v we need to pass through È„Í = 0. The boundary that separates the
two regions is a 2-dimensional wall called a domain wall. This is a topological defect of the
system reflecting that the space of vacua consists of two points. Domain wall solutions can
be easily found for the system by solving the field equations ⇤„+V Õ(„) = 0 for which „(x)
(independent of y, z) has a profile of the form „(x) = v tanh(v

Ô
⁄x) which interpolates

between the two vacua in the limits v æ ±Œ. The domain wall would extend through
the y, z directions. Domain walls are physical entities that carry energy and could play
an important role in the dynamics of the system.

In cosmology, if there were a scalar field with a potential of this type, the early universe
has a large temperature and then naturally is in an unbroken symmetry phase, as it cools
down while expanding the phase transition may occur towards a broken phase. This is
usually referred to symmetry restoration in the early universe. In this case, domain walls,
if present may have a significant impact by contributing a large amount to the energy
density of the universe which may over close it.

4.3 Spontaneous symmetry breaking of continuous
global symmetries

Let us begin our generalisation to the case of spontaneous breaking of continuous global
symmetries with a simple example, that of an N -component real scalar field „ = („1, . . . , „N)T .
The Lagrangian is

L = 1
2ˆµ„ · ˆµ„ ≠ V („) (4.22)
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Standard Model 1

• Particle physics

Figure 3.5: ATLAS Collaboration [163]: diphoton invariant
mass distribution of all selected data events, overlaid with
the result of the fit (solid red line). Both for data and for
the fit, each category is weighted by a factor ln(1 + S/B),
where S and B are the fitted signal and background yields
in an m�� interval containing 90% of the expected signal.
The dotted line describes the background component of the
model.
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Figure 3.6: CMS Collaboration [164]: distribution of the re-
constructed four-lepton invariant mass m4l. Points with error
bars represent the data and stacked histograms represent ex-
pected signal and background distributions. The SM Higgs
boson signal with MH = 125GeV, denoted as H(125), and
the ZZ backgrounds are normalized to the SM expectation,
whilst the Z+X background is normalized to the estimation
from data.

This is illustrated in Figure 3.4, where the distributions of the test statistic q̃ for the SM Higgs boson and for
the J

P alternative hypotheses are shown.

3.1.2. Higgs boson mass measurements
For a precise measurement of the Higgs boson mass, the full final state of the Higgs boson decay has to be

reconstructed with an excellent energy and momentum resolution of the final state particles. Hence, the mass
measurements of the Higgs boson are performed in the H ! ZZ

⇤ and H ! �� decay channels, where the
fully reconstructed invariant mass of the final state system leads to a narrow peak over smooth background.
The mass value can therefore be extracted from the peak position in a model independent way, i.e., without
assumptions concerning the Higgs boson production and decay yields. Since the SM expectation of the Higgs
boson width is only 4 MeV, the width of the observed signal is purely an artifact of the detection resolution and
the mass peak shift due to the interference between the SM background and Higgs signal can be neglected.
Both collaborations reported their final Higgs mass measurements of Run I and published a combination [166].

The Higgs boson decay into photons, through a loop of heavy particles, has a small branching ratio but
a very large event yield can be obtained with a narrow peak on top of a smoothly falling background. The
most important irreducible background process in the H ! �� channel is di-photon production (qq̄ ! ��),
but large contributions from reducible background processes such as � + jet or jet + jet production are also
expected, where one or two jets are mis-identified as photons. In order to suppress fake photons, typically tight
isolation and identification criteria are applied. The events need to clear a di-photon trigger and are required
to pass a minimal transverse energy requirement on the order of 25-35 GeV within the geometric acceptance
of the tracking detectors of ATLAS and CMS, i.e., with a maximal pseudo-rapidity |⌘| ⇡ 2.5. The Higgs signal
in the invariant mass distribution can be modeled by a sum of two Gaussian distributions and a Crystal Ball
function (ATLAS) or a sum of three to five Gaussian functions (CMS). The background is modeled by both
collaborations by smooth function, e.g., an exponential function, which can be fitted and tested directly at
the invariant mass distribution outside the signal region, i.e., via a side-band approach. The bias due to the
choice of the background function can be either studied by simulated samples or by the comparison of different
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Triumph of gauge field theories and effective field theories (EFT) !

Chapter 1. Introduction and History

Name Label SU(3)C , SU(2)L, U(1)Y Spin
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Figure 1.3: Particle content of the Standard Model with corresponding group represen-
tations. The right-handed neutrino and the graviton are included here for completeness
with the understanding that the couplings of the graviton to all other particles can be
studied as long as the energies are small enough in terms of an e�ective QFT.

confined within the particles of strong interactions such as protons and neutrons.
The representations4 of the particles involved are summarised in table 1.3.

(4) Three families. For the quarks and leptons, there are 3 distinct families coming with
the same copies of the representation:

Leptons:

Q

ca
‹e

e

R

db ,

Q

ca
‹µ

µ

R

db ,

Q

ca
‹·

·

R

db Quarks:

Q

ca
u

d

R

db ,

Q

ca
c

s

R

db ,

Q

ca
t

b

R

db .

Only the first family (with electron, its neutrino and up and down quarks) are
enough to make the matter we know. The second (muon, its neutrino, charm and
strange quarks) and third (tau-lepton, its neutrino, top and bottom quarks) are
more massive and the corresponding particles unstable having the particles of the
first family as end results of their decay.

4We work in a particular representation where – œ U(1)Y acts on Â œ C in such a way that Â æ –
6iy

Â,
i.e., weak hypercharges appear in integer multiples of 1/6. Keep in mind that di�erent definitions are
commonly used in the literature!
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Standard Model 2
• Cosmology

ΛCDM + inflation
(source of almost scale invariant, gaussian,
adiabatic density perturbations)

Note: There is no  theory behind (origin of dark matter, dark energy, inflation, etc.)



Compelling Structure of the SM

• Gauge theories unique

• Higgs mechanism

• One spin/helicity s= 2 graviton

• No interacting higher spin s>2 massless states

• Choice of gauge groups, representations, couplings

*Missing spin 3/2 requires supersymmetry!



SM+Gravity as EFT

Chapter 3. From Particles to Fields

The first four terms define a renormalisable theory which is very predictive since it has
only 3 arbitrary couplings m, g, ⁄. Whereas adding operators of higher dimensionality
would make the theory non-renormalisable and keeping a few terms would define an EFT
valid for energies E π �. Otherwise the theory breaks down at energies close to � and
would need to be substituted by an ultra-violet (UV) complete theory.

General relativity as an EFT*
Einstein’s gravity is an example of such theory that needs to be UV completed. Einstein’s
gravity can be treated quantum mechanically as long as it is an EFT addressing questions
at low energies (meaning E π MP ƒ 1018 GeV).

The most famous example of a theory without a continuum limit is Einstein’s theory
of General Relativity (GR). It is described by the Einstein-Hilbert (EH) term

LEH = M2

P
R(4)

Ô
≠g , M2

P
= ~c

GN

(3.27)

in terms of the 4-dimensional Ricci scalar R(4). The coupling constant GN has negative
mass dimension and is therefore non-renormalisable. Alternatively, we may expand the
Ricci scalar R(4) in terms of fluctuations of the metric around a constant Minkowski
background, that is,

gµ‹ = ÷µ‹ + 1
MP

hµ‹ ∆ M2

P
R(4) = (ˆh)2 + h

MP

(ˆh)2 + h2

M2

P

(ˆh)2 + . . . . (3.28)

Thus, an infinite number of counterterms would be necessary in perturbation theory.
Hence, the theory does not admit a continuum limit, but has an intrinsic cuto� set by
the Planck scale MP . Having said that, non-renormalisability does not constitute an
obstruction to making reliable perturbative quantum calculations in gravity as long as we
limit our considerations to energies µ well below MP ,

µ π MP =
Û

~c

GN

≥ 1019GeV . (3.29)

In this regime, we can treat gravity as an EFT which is extraordinarily predictive [? ].
In fact, pure gravity is finite at 1-loop [? ].

Issues arise, however, once we ask the “wrong” questions which can only be answered
within a fully consistent quantum theory of gravity. First and foremost, these questions
concern phenomena in the early Universe where energies came close to MP . Similarly, the
quantum nature of black holes might only be fully understood within quantum gravity.
A potential candidate for a theory describing the physics at the Planck scale is string
theory.

3.3 Internal Symmetries
So far, we have seen that putting special relativity and quantum mechanics together lead
us to classifying one-particle states in terms of their masses and spins2. Interactions lead

2Helicity is the appropriate term for massless particles. Nonetheless, one usually talks about spin even
in the case of massless states keeping in mind that the degrees of freedom are counted di�erently.
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valid for energies E π �. Otherwise the theory breaks down at energies close to � and
would need to be substituted by an ultra-violet (UV) complete theory.

General relativity as an EFT*
Einstein’s gravity is an example of such theory that needs to be UV completed. Einstein’s
gravity can be treated quantum mechanically as long as it is an EFT addressing questions
at low energies (meaning E π MP ƒ 1018 GeV).

The most famous example of a theory without a continuum limit is Einstein’s theory
of General Relativity (GR). It is described by the Einstein-Hilbert (EH) term

LEH = M2

P
R(4)

Ô
≠g , M2

P
= ~c

GN

(3.27)

in terms of the 4-dimensional Ricci scalar R(4). The coupling constant GN has negative
mass dimension and is therefore non-renormalisable. Alternatively, we may expand the
Ricci scalar R(4) in terms of fluctuations of the metric around a constant Minkowski
background, that is,

gµ‹ = ÷µ‹ + 1
MP

hµ‹ ∆ M2

P
R(4) = (ˆh)2 + h

MP

(ˆh)2 + h2

M2

P

(ˆh)2 + . . . . (3.28)

Thus, an infinite number of counterterms would be necessary in perturbation theory.
Hence, the theory does not admit a continuum limit, but has an intrinsic cuto� set by
the Planck scale MP . Having said that, non-renormalisability does not constitute an
obstruction to making reliable perturbative quantum calculations in gravity as long as we
limit our considerations to energies µ well below MP ,

µ π MP =
Û

~c

GN

≥ 1019GeV . (3.29)

In this regime, we can treat gravity as an EFT which is extraordinarily predictive [? ].
In fact, pure gravity is finite at 1-loop [? ].

Issues arise, however, once we ask the “wrong” questions which can only be answered
within a fully consistent quantum theory of gravity. First and foremost, these questions
concern phenomena in the early Universe where energies came close to MP . Similarly, the
quantum nature of black holes might only be fully understood within quantum gravity.
A potential candidate for a theory describing the physics at the Planck scale is string
theory.

3.3 Internal Symmetries
So far, we have seen that putting special relativity and quantum mechanics together lead
us to classifying one-particle states in terms of their masses and spins2. Interactions lead

2Helicity is the appropriate term for massless particles. Nonetheless, one usually talks about spin even
in the case of massless states keeping in mind that the degrees of freedom are counted di�erently.
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3.2.1 Interactions: organising physics by energy scales
At low energies, our theory is represented by an e�ective field theory (EFT) with La-
grangian

L =
ÿ

i

ciOi(�–) . (3.20)

Here, ci are some “constant” coe�cients, Oi operators and �– all fields in our theory.
The question is which operators Oi to include in the above expansion. The level of
importance of the operators Oi depends on their dimensionality and the energies which
we are interested to explore. Since the action S is dimensionless, we can determine the
mass dimension of L as

S =
⁄

L d4x =∆ [L] = 4 . (3.21)

Operators Oi of dimensions di = [Oi] are called relevant, marginal or irrelevant if di are
smaller, equal or greater than 4. The corresponding coe�cients ci would have energy
dimensions greater, equal or greater than zero respectively. The coe�cients with negative
dimensionality would naturally be suppressed by powers of a UV scale � and would then
be less relevant if we are interested in the physics at scales E π �. Thus, we call a theory

• Renormalisable if
[ci] Ø 0 ’i (3.22)

which is very restrictive since di = [Oi] Ø 0, while we require

[ci] + [Oi] = 4 . (3.23)

In a renormalisable theory only a few ci are non-zero and, hence, the theory is very
predictive.

• Non-renormalisable if
[ci] Æ 0 for some i . (3.24)

Then, the coe�cients ci scale with the characteristic energy scale � of our theory
as

ci ≥ �4≠di . (3.25)

We distinguish the following scenarios where E is a typical energy of the theory
being studied:

– if E π �, it is generically su�cient to keep only a few operators Oi and the
EFT becomes predictive.

– if E ≥ �, we have to include infinitely many operators and we loose predictive
power. Thus, we need a UV completion of our theory.

Notice that for a non-renormalisable theory scale of new physics � may be very large and
therefore the theory may be predictive for a large range of energies E as long as E π �.

A typical example that illustrates renormalisable and non-renormalisable theories is
to consider the Lagrangian for a real scalar field:

L = ˆµ„ˆµ„ ≠ m2„2 ≠ g„3 ≠ ⁄„4

¸ ˚˙ ˝
Renormalisable

+–

�„5 + —

�2
„6 + · · ·

¸ ˚˙ ˝
Non-Renormalisable

(3.26)
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Standard Model Lagrangian

LSM = Lgauge + Lkinetic

F
+ LYukawa

F
+ LHiggs . (8.10)

Let us perform a parameter count for the Standard Model:

Sector Parameters Physical Number

Gauge gs, g, gÕ, ◊G, ◊W , ◊B gs, e, cos(◊W ), ◊̄ 4

Higgs m2, ⁄ mh, mW 2

mu

i
, md

i
, me

i
9

Yukawa yu

ij
, yd

ij
, ye

ij
(, y‹

ij
)ú VCKM 4

VP MNS 6?

m‹

i
, M‹R

i
3+?

Total 25+

Therefore we have more than 25 free parameters in the Standard Model. We do not
specify the number of parameters coming from the right-handed neutrinos since it is yet
not known how right-handed neutrinos will appear and couple and in particular their
number does not have to be restricted to the number of families as for the other fields
since right-handed neutrinos are simply fermions that do not couple to any of the gauge
fields of the Standard Model.

The SM Lagrangian (8.10) is renormalisable and can be expanded in terms of operators
of di�erent dimensions. Let us write

LSM =
ÿ

i

ciOi , [ci] + [Oi] = 4 . (8.11)

The dimensions of the individual operators Oi is

• [Oi] = 0: c0 = � is the constant term in the scalar potential (⁄v4/2 in the Higgs
potential. Once coupled to gravity would correspond to the cosmological constant

• [Oi] = 2: c2 = m2 with m2 the coe�cient in the quadratic term m2H2 of the HIggs
potential.

• [Oi] = 3: there is no dimension 3 operator in the Standard Model Lagrangian.
But if right-handed neutrinos are involved then the corresponding Majorana mass
c3 = M ‹ multiplying ‹R‹R = O3.

• [Oi] = 4: all the other terms implying the coe�cients (gauge couplings, Yukawa
couplings, ◊ terms are dimensionless).

Notice that:

• No mass terms allowed for gauge fields because of gauge invariance.
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• No mass terms allowed for fermions, again from (chiral) gauge symmetry. The
fermion masses arise from Yukawa couplings and ÈHÍ = v ”= 0.

Then, unlike the case of the Higgs, fermion and gauge field masses are only generated after
symmetry breaking and quantum corrections to the Lagrangian cannot induce masses for
gauge fields and fermions.

The only missing piece in the Standard Model Lagrangian is gravity. To include gravity
we have to introduce the metric degrees of freedom and make the Lagrangian invariant
under general coordinate transformations, then we have a non-renormalisable EFT with
Lagrangian

LSM æ
Ô

≠g
1
LÕ

SM
+ � + M2

P
R + . . .

2
(8.12)

where g is the determinant of the metric � the cosmological constant and R the Ricci
scalar, also:

LÕ
SM

= LSM [Dµ æ Dµ] (8.13)
in terms of the covariant derivative Dµ suitably adjusted for gravity. Here we wrote
the gravity component as an expansion in powers of the curvature (which is a derivative
expansion) with leading order term the cosmological constant �, next order the Einstein-
Hilbert action in terms of the Ricci scalar and then higher powers of curvature terms
O(R2).

This is the model (or theory or framework) that explains and describes the world we
observe. It is

• Mathematically consistent in the sense that the Lagrangian is consistent with all
spacetime and internal symmetries, it is the most general renormalisable Lagrangian
consistent with these symmetries and all gauge symmetries are free from anomalies.

• Explains all the experiments done before the formulation of the model (all interac-
tions, decay rates, etc.).

• Made predictions that were spectacularly confirmed over the years (neutral currents,
W ±, Z0, Higgs).

• Precision tests: theory ¡ experiment with agreeing precision at many decimal fig-
ures.

• Explains the observed “approximate” and accidental symmetries

– Baryon number (accidental)
– Lepton number (accidental)
– Isospin (approximate)
– SU(3)f (eightfold way) (approximate)

• Consistent coupling to gravity as an EFT at energies

E π MP =
Û
~c

G
≥ 1019 GeV . (8.14)

It is important to compare the magnitude of this scale compared to the relevant
scales in the Standard Model namely the VEV of the Higgs v = ÈHÍ = 246 GeV
and the QCD scale: �QCD ≥ 250 MeV. We summarise the massive particle content
of the Standard Model together with the relevant scales in Fig. 8.1.
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L = LSM + 1
M

L5 + 1
M2

L6 + O
3 1

M3

4
. (8.42)

This is known as the Standard Model e�ective field theory or SMEFT . We know
that keeping a few of these terms is still predictive as long as the cut-o� scale is
large enough that higher order operators can be safely neglected. The importance
of this approach is that it is model independent. That is there may be many models
that can go beyond the SM and that will generate these operators. By studying
the operators themselves we may extract direct information that it is shared by all
of those models. Putting constraints on the magnitude of the couplings and scales
automatically constrains all models that generate this operator at low energies. For
instance, we can consider the relevant dimension-five operator

L5 =
A

⁄‹

M

B

HH‹L‹L , M ∫ mW (8.43)

This is a direct source of neutrino masses (with no need to introduce right-handed
neutrinos at this scale). For ÈHÍ = v ”= 0

⁄ÈHÍ2

M
≥ (50meV)2 ∆ M ≥ 1014GeV (8.44)

This means that to give rise to neutrino masses at the observed scale (≥ 50 meV),
the new physics that generates this dimension-five operator has to come at a scale
as large as 1014GeV, assuming the coe�cients ⁄ of order one.
Similarly, out of a total 63 operators of dimension-six, there are 4 that violate baryon
number. Operators of schematic type:

L6 =
A

—

M2

B

qqql (8.45)

where qqql represent three quarks and one lepton that can be QLQLQLLL, QLQLuReR,
QLLLuRdR, uRuRdReR. They all violate baryon number by one unit and therefore
allow the proton to decay as for instance p æ e+ + fi0. Knowing the limit on the
lifetime of the proton · > 1.67◊1034 years imply that the new physics that can give
rise to these operators has to be at scales M Ø 1015GeV. It is interesting to notice
that two completely di�erent physical processes, proton decay and neutrino masses
hint at a fundamental scale of similar order. If for some reason the coe�cients
cancel, then there are dimension 11 operators qqq¸¸¸hh/M7, that would imply the
fundamental scale to be M & 105GeV.

• Amplitudes*
Another bottom-up approach to address physics BSM is the on-shell amplitudes
programme. In this approach, all perturbative aspects of the SM and beyond can
be studied by just describing directly the amplitudes of interactions among the
corresponding particles without the use of an underlying Lagrangian. One of the
motivations of this approach is that very often starting from a Lagrangian and
computing the amplitudes lead to very long calculations that at the end collapse to
very simple expressions. Part of the problem is the redundancy generated by gauge
invariance. Working directly with the physical on-shell states skips this procedure
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Open Questions

• Why? (3+1 (dimensions, families, interactions); 
+ some 20 parameters (masses, couplings))

• Naturalness (hierarchy, cc, strong CP)

• ‘Technical’ (confinement,...)

• Cosmology (dark matter, baryogenesis, density perturbations 
of CMB, origin/alternatives to inflation,..., big-bang)

• UV completion of gravity



FUNDAMENTAL PROBLEM
Quantum Gravity

Planck scale: MPlanck=√hc/G ≈ 10 19 GeV
LPlanck=√hG/c3 ≈ 10 -33 cm



Greatest puzzle: Cosmological constant

}

Cosmological constant = 
0.00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000001 MPlanck4

????



Approaches to BSM

Simplicity

Follow your nose

Top-down

Bottom-up



Superstrings



String Theory



String Theory in a Nutshell

Chapter 4

String Theory

In this chapter we will briefly introduce the theory of strings, review what are the main
consequences of quantising the bosonic and the supersymmetric strings and discuss the
basic concepts related to Kaluza-Klein compactification and Calabi-Yau manifolds.

4.1 Bosonic String

In this section we will mainly follow [10].

Relativistic String

The action of a relativistic point particle is S = �m
R
�
ds, where � is its worldline

and ds2 = ⌘µ⌫dXµdX⌫ . In complete analogy, the Nambu-Goto action for a string
measures the surface area of the worldsheet embedded in target spacetime (see Fig. 4.1):

SNG = �T

Z

⌃

df = �T

Z

⌃

d2⇠
p
�G, (4.1)

where T is the string tension, ⇠ = (⇠0, ⇠1) = (⌧, �) parametrises the worldsheet, Gab is
the induced metric defined via ds2 = ⌘µ⌫dXµdX⌫ = ⌘µ⌫@aXµ@bX⌫d⇠ad⇠b = Gabd⇠ad⇠b

and G = det(Gab).
Because of the factor

p
�G, it is hard to quantise the system using this action and we

instead introduce the Polyakov action:

SP = �T

2

Z

⌃

d2⇠
p
�hhab@aX

µ@bX
⌫⌘µ⌫ , (4.2)

where hab is the worldsheet metric; solving its equations of motion, we find that this
action is equivalent to the Nambu-Goto one for hab = ↵Gab 8↵.
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Relativistic point 
particle mass m

Compute equations of motion through variation xµ
! xµ + �xµ:

�S

�xµ
= 0,

d

d�

 
m x0 µ

p
� x0 µ x0

µ

!
= 0 . (41)

To get the physical interpretation, replace arbitrary curve parameter � by proper
time ⌧ :

d

d⌧

✓
m

dxµ

d⌧

◆
= mẍµ = 0 . (42)

We claim that this is the same as (13) with ~F = ~0.
More generally, the covariant version of (13) is

d

d⌧

✓
m

dxµ

d⌧

◆
= fµ , (43)

where

(fµ) =
(~v · ~F , ~F )
p

1� ~v2
(44)

is the relativistic force. To see that this is equivalent to (13), note

dp0

dt
= ~v ·

d~p

dt
(45)

(The change of energy per unit of time is related to the acting force ~F by
~v · ~F . I.p., if the force and velocity are orthogonal, like for charged particle in a
homogenous magnetic field, the energy is conserved.)

Then (13) implies
dp0

dt
= ~v · ~F . (46)

Multiplying by d⌧

dt
and using the chain rule we get the manifestly covariant

version (43) of (13). The additional equation for p0 is redundant required for
having manifest covariance.

For a free massive particle the equation of motion is

mẍµ = 0 . (47)

Solution = straight (world)line:

xµ(⌧) = xµ(0) + ẋµ(0)⌧ . (48)
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Actions with interaction

• If the force fµ comes from a potential, fµ = @µV (x), then the equation of
motion (43) follows from the action

S = �m

Z p
�ẋ2d⌧ �

Z
V (x(⌧))d⌧ . (49)

For simplicity, we took the curve parameter to be proper time. In the sec-
ond term, the potential V is evaluated along the worldline of the particle.

• If fµ is the Lorenz force acting on a particle with charge q, fµ = Fµ⌫ ẋ⌫ ,
then the action is

S = �m

Z p
�ẋ2d⌧ � q

Z
Aµdxµ . (50)

In the second term, the (relativistic) vector potential Aµ is integrated
along the world line of the particle

Z
Aµdxµ =

Z
Aµ(x(⌧))

dxµ

d⌧
d⌧ . (51)

The resulting equation of motion is

d

d⌧

✓
m

dxµ

d⌧

◆
= qFµ⌫ ẋ⌫ , (52)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the field strength tensor. Equation (52) is
the manifestly covariant version of

d~p

dt
= q

⇣
~E + ~v ⇥ ~B

⌘
. (53)

• The coupling to gravity can be obtained by replacing the Minkowsk metric
⌘µ⌫ by a general (pseudo-)Riemannian metric gµ⌫(x):

S = �m

Z
d⌧

q
�gµ⌫(x)ẋµẋ⌫ . (54)

The resulting equation of motion is the geodesic equation

ẍµ + �µ

⌫⇢
ẋ⌫ ẋ⇢ = 0 . (55)

1.6 Canonical momenta and Hamiltonian for the covariant

action

Action and Lagrangian:

S =
Z

Ld� = �m

Z
d�

p
� x0 2 . (56)
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Free particle

Electromagnetic 
interaction

Q
Z

Bµ⌫dX
µdX⌫

↵0M2

2
= N + Ñ � D � 2

12
= N + Ñ � 2

D = 10

h↵� = ⌘↵�

GMN , BMN , �

ds =

s

⌘µ⌫
dxµ

d⌧

dx⌫

d⌧
d⌧
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Relativistic string of tension T

Note that in both cases the dynamical equation of motion ẍµ = 0 must be
supplemented by a constraint,

� =
⇢

ẋ2 + 1
ẋ2

�
= 0 (73)

to capture the full information.

2 The classical relativistic string

2.1 The Nambu-Goto action

Replace particle by one-dimensional string. Worldline becomes a surface, called
the worldsheet ⌃.

X : ⌃ 3 P �! X(P ) 2 . (74)

Coordinates on are X = (Xµ), where µ = 0, 1, . . . , D � 1.
Coordinates on ⌃ are � = (�0,�1) = (�↵). The worldsheet has one spacelike
direction (‘along the string’) and one timelike direction (‘point on the string
moving forward in time’). Take �0 to be time-like, �1 to be space-like:

Ẋ2
 0 , (X 0)2 > 0 . (75)

We use the following notation:

Ẋ = (@0X
µ) =

✓
@Xµ

@�0

◆
,

X 0 = (@1X
µ) =

✓
@Xµ

@�1

◆
. (76)

Range of worldsheet coordinates:

• Spacelike coordinate:
�1
2 [0,⇡] . (77)

• Timelike coordinate
�0
2 (�1,1) , (78)

for propagation of a non-interacting string for infinite time, or

�0
2 [�0

(1)
,�0

(2)
] . (79)

for propagation of a non-interacting string starting for a finite intervall of
time).

Nambu-Goto action ⇠ area of world sheet:

SNG[X] = �TA(⌃) = �T

Z

⌃

d2A (80)
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(also called: free boundary conditions, natural boundary conditions).
Open strings, ends can move freely. (The ends of an open string always
move with the speed of line and thus their worldlines are light-like.)
The momentum at the end of the string is conserved. (Pµ

1
is the momen-

tum density along the space-like direction of ⌃, i.e., along the string at a
given ‘time’.)

3. Dirichlet boundary conditions:

Xi(�1 = 0) = x0 , Xi(�1 = ⇡) = x1 . (89)

Open strings with ends kept fixed along the i-direction (spacelike).
(Dirichlet boundary conditions in the time direction make only sense in
imaginary time, in the Euclidean version of the theory, where they de-
scribe instantons).

Consider Neumann boundary conditions along time and p spacelike con-
ditions and Dirichlet boundary conditions along D � p directions. Then
the ends of the string are fixed on p-dimensional spacelike surfaces, called
Dirichlet p-branes. Momentum is not conserved at the ends of the string
in the Dirichlet directions (obvious, since translation invariance is broken)
) p-branes are dynamical objects. Interpretation: strings in a solitonic
background ( 6= vacuum).

Equations of motion (with either choice of boundary condition):

@0

@L

@Ẋµ

+ @1

@L

@X 0
µ

= 0 (90)

or
@↵P↵

µ
= 0 (91)

Canonical momenta are not independent. Two constraints:

⇧µX 0
µ

= 0

⇧2 + T 2(X 0)2 = 0 (92)

Canonical Hamiltonian (density):

Hcan = Ẋ⇧� L = 0 . (93)

2.2 The Polyakov action

2.2.1 Action, symmetries, equations of motion

Intrinsic metric h↵�(�) on the world-sheet ⌃, with signature (�)(+).
Polyakov action:

SP[X, h] = �
T

2

Z
d2�
p

hh↵�@↵Xµ@�X⌫⌘µ⌫ , (94)

where h = �det(h↵�) = |det(h↵�)|.
Local symmetries with respect to ⌃:
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Nambu-Gotto action

Polyakov action

1. Reparametrizations � ! �̃(�), which act by

X̃µ(�̃) = Xµ(�) ,

h̃↵�(�̃) =
@��

@�̃↵

@��

@�̃�
h��(�) . (95)

2. Weyl transformations:

h↵�(�)! e2⇤(�)h↵�(�) . (96)

Remarks:

1. A Weyl transformation is not a di↵eomorphism, but the multiplication
of the metric by a positive function. Mathematicians usually call this a
conformal transformation, because it changes the metric but preserves the
conformal structure of (⌃, h↵�).

2. The invariance under Weyl transformation is special for strings, it does
not occure for particles, membranes and higher-dimensional p-branes.

3. Combining Weyl with reparametrization invariance, one has three local
transformations which can be used to gauge-fix the metric h↵� completely.
Thus h↵� does not introduce new local degrees of freedom: it is an auxil-
iary (‘dummy’) field.

Global symmetries with respect to : Poincaré transformations.

Equations of motion from variations X ! X + �X and h↵� ! h↵� + �h↵� .

1
p

h
@↵

⇣p
hh↵�@�Xµ

⌘
= 0 , (97)

@↵Xµ@�Xµ �
1
2
h↵�h��@�Xµ@�Xµ = 0 . (98)

Boundary conditions: as before.
The X-equation (97) is the covariant two-dimensional wave equation, alter-

natively written as

⇤Xµ = 0, r↵r
↵Xµ = 0, r↵@↵Xµ = 0 (99)

The h-equation (98) is algebraic and can be used to eliminate h↵� in terms of
the induced metric g↵� = @↵Xµ@�X⌫⌘µ⌫ . It implies

det(g↵�) =
1
4

det(h↵�)(h��g��)2 . (100)

Substituting this into the Polyakov action one gets back the Nambu-Goto action.
More generally one can show that SP � SNG, where equality holds if g↵� and
h↵� are related by a Weyl transformation (i.e., they are conformally equivalent).
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Equation of motion for X:

Equation of motion for h gives the Nambu-Gotto action

Q
Z

Bµ⌫dX
µdX⌫
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String analogue of E&M 
coupling?

One easily checks that

T ab = � 1

↵0

✓
Gab � 1

2
hab(hcdGcd)

◆
, (3.18)

where we also introduced the Regge slope

↵0 ⌘ 1

2⇡T
. (3.19)

The latter is a di↵erent way to parameterise the string tension. It goes back to the early days of
string theory, when the focus was on string theory as a model of hadronic physics. This is nicely
explained in the first chapter of [95].

It follows both from our discussion in the last section as well as from the general definition
of T ab that the equation of motion of hab is

T ab = 0 . (3.20)

Moreover, tracelessness holds as an identity, i.e. independently of whether the field configuration
obeys the equations of motion:

T a
a = 0 for any hab . (3.21)

The reader should convince herself that this generally follows from symmetry (3). Finally, the
equations of motion of X are

⇤Xµ = 0 with ⇤ = Da@a . (3.22)

It is crucial for what follows that di↵eomorphisms andWeyl rescalings are (by definition)
not just symmetries but gauge redundancies. This allows one to work in the flat gauge,

hab = diag(�1, 1) . (3.23)

Indeed, very superficially one can argue as follows: A 2d metric contains 3 real functions. Dif-
feomorphisms and Weyl rescalings also contain 2 + 1 = 3 real functions. Hence, it should be
possible to bring hab to any desired form.

In somewhat more detail, one can explicitly check that
p
�h0R[h0] =

p
�h (R[h]� 2⇤!) for h0

ab
= e2!hab . (3.24)

Now, starting from any metric h, one may try to solve the equation 2⇤! = R. This can always
be achieved (in non-compact space with localised source R) since it only requires the inversion of
the Klein-Gordon operator. Without proof, we simply state that this holds also on the cylinder,
which is our case of interest. For more details, see e.g. [8].

Once 2⇤! = R is solved, one can Weyl rescale h using the solution !. The resulting metric
will have vanishing Ricci scalar and, since in d = 2

Rabcd =
1

2
(hachbd � hadhbc)R , (3.25)
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⌘µ⌫
dxµ

d⌧

dx⌫

d⌧
d⌧

S = � 1

2⇡↵0

Z
d�d⌧

r⇣
Ẋ ·X 0
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�

⇣
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Boundary conditions

Here we introduced l =
p
2↵0, the so-called string length. One should be aware that the precise

definition (the numerical prefactor) may vary from author to author and from context to context.

The constants xµ/2 in the mode decomposition are chosen to be equal by convention. It is
only their sum that has physical meaning, characterising the position of the center of mass of
the string at worldsheet time ⌧ = 0. Note that the coe�cients of the two terms linear in �+

and �� are forced to be equal by the periodicity of Xµ. They describe how the position of the
centre of mass changes as a function of ⌧ . It is hence natural to identify these coe�cients, up to
the proportionality factor l2/2, with the target-space momentum pµ. One could easily convince
oneself at the present, classical level of analysis that the proportionality factor has been chosen
correctly for pµ to be the standard momentum variable. But this will become clear anyway in a
moment. Reality of Xµ implies that xµ and pµ are real, consistently with their physical meaning
which we pointed out above. The oscillator modes have to satisfy

(↵µ

n
)⇤ = ↵µ

�n . (3.34)

3.3 Open string

It will later on be crucial to also consider open strings. We introduce them already now since
they are in fact a simpler version of the closed string – they basically carry half of the degrees
of freedom. Instead of a cylinder, one now has to think of a strip (parameterised transversely by
� 2 (0, ⇡)) embedded in target space, cf. Fig. 11.

Figure 11: Open string.

The variation of the action,

�S =
1

2⇡↵0

Z
d2� (@2X) · �X � 1

2⇡↵0

Z
d⌧

Z
⇡

0

d� @�(@�X · �X) , (3.35)

now includes boundary terms. Indeed, while the first term vanishes if the equations of motion
are obeyed, the second gives

� 1

2⇡↵0

Z
d⌧ (@�X

µ) · �Xµ

���
�=⇡

�=0
. (3.36)

To avoid introducing new degrees of freedom living at the boundary, we need that expression to
vanish as well. This can be achieved by two di↵erent types of boundary conditions,

@�X
µ = 0 (Neumann) , �Xµ = 0 (Dirichlet) . (3.37)
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Dirichlet in D-p dimensions: D-branes

Closed Strings periodic

7.1. BASICS OF KALUZA KLEIN THEORIES 83

This can be seen as follows: the electromagnetic field couples to a conserved current in 4 dimensions as
R
d4xAµJµ (with Dirac current Jµ =  ̄�µ for an electron field for instance). For a particle of charge q,

the current can be written as an integral over the world line of the particle Jµ = q
R
d⇠µ�4(x� ⇠) such that

R
J0d3x = q and so the coupling becomes

R
d4xJµAµ = q

R
d⇠µAµ.

We can extend this idea for higher dimensional objects. For a potential B[µ⌫] with two indices, the analogue

is Z
Bµ⌫ dxµ ^ dx⌫ ,

i.e. need a string with 2 dimensional worldsheet to couple. Further generalizations are
Z

Bµ⌫⇢ dxµ ^ dx⌫ ^ dx⇢ (membrane)
Z

BM1...Mp+1 dxM1 ^ ... ^ dxMp+1 (p brane)

Therefore we can see that antisymmetric tensors of higher rank coupled naturally to extended objects. This

leads to the concept of a p brane as a generalization of a particle that couples to antisymmetric tensors of

rank p + 1. A particle carries charge under a vector field, such as electromagnetism. In the same sense, p

branes carry a new kind of charge with respect to a higher rank antisymmetric tensor.

Exercise 7.2: Consider the following Lagrangian

S =

Z
d4x

✓
1

g2
Hµ⌫⇢ H

µ⌫⇢ + a ✏µ⌫⇢� @µH⌫⇢�

◆
.

Solve the equation of motion for the Lagrange multiplier a to obtain an action for a propagating massless

Kalb-Ramond field Bµ⌫ . Alternatively, solve the equation of motion for the field H⌫⇢�, to obtain an action

for the propagating axion field a. What happens to the coupling g under this transformation?

7.1.5 Gravitation in Kaluza Klein theory

After discussing scalar-, vector- and antisymmetric tensor fields

spin deg. of freedom

scalar ' 0 1 + 1

vector AM 0 , 1 D � 2

antisymmetric tensor AM1...Mp+1 0 , 1
�
D�2

p+1

�

we are now ready to consider the graviton GMN of Kaluza Klein theory in D dimensions

GMN =

8
>><

>>:

Gµ⌫ graviton

Gµn vectors

Gmn scalars

where µ, ⌫ = 0, 1, 2, 3 and m,n = 4, ..., D � 1.

The background metric appears in the 5 dimensional Einstein Hilbert action

S =

Z
d5x

p
|G| (5)R , (5)RMN = 0 .

p+1 rank antisymmetric tensor couples to a p-dimensional brane



Critical Dimensions

Conformal gauge  

Conformal (trace) anomaly:                                                    c=0. 

Each scalar field X𝝁 contributes c=1. 

Ghost system contributes c=-26

c=D-26

theory admits an independent stress tensor of the form

Tgh = 2(@c)b+ c@b, T̄gh = 2(@̄c̄)b̄+ c̄@̄b̄ (I.1.31)

with central charge c = c̄ = �26. Therefore, the central charge of the combined matter+ghost

CFT is

ctot = d� 26. (I.1.32)

Recall that before gauge-fixing, the classical worldsheet theory possessed a [Di↵⇥Weyl]

gauge symmetry. The quantum theory, as defined by the Polyakov path integral, can su↵er

from both global and gauge anomalies. Indeed, on a general curved worldsheet, bosonic

string theory su↵ers from a Weyl anomaly, which manifests itself through the non-vanishing

of the trace of the stress tensor7

Tzz̄ = � c

24
R. (I.1.33)

Here, R is the 2d Ricci scalar on the worldsheet, which completely captures the geometry of

a 2d manifold. To preserve the full [Di↵⇥Weyl] gauge symmetry and consistently quantize

the theory, we must therefore take the number of scalar fields to be equal to 26. This in turn

implies that the dimensionality of spacetime is [13]

d = 26. (I.1.34)

The resulting Weyl-invariant theory is known as critical bosonic string theory.

To summarize, the only dimension d where the d-dimensional Euclidean space could be

the target space of a non anomalous 2d CFT is d = 26.

1.5 BRST formalism

As we discussed in subsection 1.3, the conformal gauge choice gab = �ab does not completely

eliminate the gauge redundancy. As a consequence, the naive Hilbert space of the theory

over-counts the physical states. The BRST formalism is a systematic method that allows us

to restrict to a faithful subspace of the Hilbert space where every physical state is represented

exactly once. It is based on introducing a new global fermionic symmetry known as the BRST

symmetry [14, 15].8 For the combined matter+ghost CFT, the current jaB associated with

7Note that any CFT with c 6= c̄ necessarily has a gravitational (di↵eomorphism) anomaly, and so we will
usually assume c = c̄ unless explicitly stated.

8BRST refers to Becchi, Rouet, Stora, and Tyutin.
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Light spectrum, critical dimension, and low-energy physics

The spectrum of light particles in the theory corresponds to the string states with
smallest number of oscillators and satisfying (3.46). We have

N = Ñ = 0 |ki ↵0M2/2 = �(D � 2)/12 ,

N = Ñ = 1 ↵i
�1↵

j
�1|ki ↵0M2/2 = 2� (D � 2)/12 . (3.52)

In the light-cone gauge there is manifest invariance only under an SO(D � 2) sub-
group of the Lorentz group. It is possible to test the restoration of full Lorentz
invariance, by constructing the Lorentz generators in terms of the oscillator op-
erators, and checking their commutation relations. The computation shows that
full Lorentz invariance is obtained only for a specific value of the spacetime di-
mension, the critical dimension D = 26. The appearance of the critical dimension
from demanding full Lorentz invariance is consistent with its derivation from the
conformal anomaly mentioned in section 3.1.4 (see also section E.1); indeed, man-
ifest Lorentz invariance is lost in gauge fixing the conformal symmetry with the
light-cone condition (3.31).
It is actually possible to use a shortcut to recover the critical dimension, using

only a necessary condition for restoration of full Lorentz invariance. Recall that in
a D-dimensional Lorentz invariant theory, physical polarization states of particles
belong to representations of the little group, i.e. the subgroup of Lorentz group
preserving the particle D-momentum. For massive particles, the D-momentum can
be brought to the form P = (M, 0, . . . , 0) in the particle rest frame, and the little
group is SO(D�1). For massless particles, the D-momentum can be brought to the
form (E,E, 0, . . .), and the little group is SO(D� 2). The states in the second line
in (3.52) transform as a two-index tensor with respect to SO(D�2) and cannot be
arranged into a representation of SO(D � 1). Hence these states must correspond
to physical polarizations of massless particles, and this forces D = 26. Fixing this
value from now on, the mass formula reads

↵0 M2

2
= N + Ñ � 2 . (3.53)

The light states, suitably decomposed in irreducible representations of SO(24) are:

Sector State ↵0M2 SO(24) 26d field

N = Ñ = 0 |ki �4 1 T

N = Ñ = 1 ↵i
�1↵

j
�1|ki 0 + + 1 GMN , BMN ,�

(3.54)

where the Young tableaux , , denote the two-index antisymmetric and trace-
less symmetric tensor representations, and the ‘+1’ indicates the trace. It is possible

Add supersymmetry: 2-dimensional fermions c=1/2 each, 
ghosts c=-15 Then:

Q
Z

Bµ⌫dX
µdX⌫

↵0M2

2
= N + Ñ � D � 2

12
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Bosonic strings

Supersymmetric strings



Spectrum

S =
1

α′

∫

dσdτ
{

(GMN(X) +BMN(X)) ∂µXM ∂µX
N + α′Φ(X) (2)R

}

. (1)

Let us describe the different quantities entering into this action. First the
integral is over the 2D surface swept by the movement of the string. This surface
is parametrized by σ, τ . The inverse string tension α′ is the only (constant) free
parameter of the theory. XM(σ, τ),M = 1, · · · , D play two different roles: they are
scalar fields in the 2D theory, but they are coordinates of the target space where
the string propagates, which for critical string theories (the subject of this paper)
has dimension D = 26. Similarly GMN(X), BMN(X),Φ(X) are couplings of the 2D
theory but since they are functions of X they are fields in target space. GMN is
a symmetric tensor which is identiified with the metric; BMN is an antisymmetric
tensor field which in 4D target space will give rise to an axion field; and Φ is a scalar
field, the dilaton. Since it appears only multiplying the 2D curvature (2)R whose
integral is the topological invariant that counts the genus (number of holes) of the
corresponding 2D surface, the vev of the dilaton is identified with the string coupling.
These fields are always present in any closed string.

A fundamental symmetry of the above action is conformal invariance which
includes scalings of the 2D metric as well as 2D reparametrization invariance. Impos-
ing this symmetry at the 2D quantum level is similar to imposing that the coupling
constants do not run in standard field theory. This then defines a 2D conformal field
theory (CFT) and the constraints on the 2D couplings are the field equations for
the target space fields GMN , BMN ,Φ, AM . Not surprisingly the constraints give rise
to Einstein’s equations, Yang-Mills equations and equations of motion for BMN and
Φ. To leading order in α′ these are the equations derived from the following target
spacetime effective action:

S =
∫

dDX
√
Ge−Φ

{

R−
1

12
∇MBNP∇MBNP +∇MΦ∇MΦ−

D − 26

3

}

. (2)

Since heterotic strings are supersymmetric, we have to add the corresponding
fermionic partners of those fields. Solutions of these equations are then what we call
string vacua and thus we can claim that there is a correspondence between string
vacua and certain CFTs in 2D.

The simplest solution is of course 26D flat spacetime with constant values of
all the fields. For this case we have a 2D free theory, which can be easily quantized
by solving the wave equation ∂µ∂µXM = 0, the fields XM can be written as:

XM(σ, τ) = XM
R (τ − σ) +XM

L (τ + σ) (3)

as usual, XM
R and XM

L represent right- and left-moving modes of the string respec-
tively, with the mode expansion

XM
R (τ − σ) = xM

R + pMR (τ − σ) +
i

2

∑

n≠0

1

n
αM
n e−2in(τ−σ)
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n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

XM
L (τ + σ) = xM

L + pML (τ + σ) +
i

2

∑

n ̸=0

1

n
α̃M
n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

XM
L (τ + σ) = xM

L + pML (τ + σ) +
i

2

∑

n ̸=0

1

n
α̃M
n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

XM
L (τ + σ) = xM

L + pML (τ + σ) +
i

2

∑

n ̸=0

1

n
α̃M
n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

XM
L (τ + σ) = xM

L + pML (τ + σ) +
i

2

∑

n ̸=0

1

n
α̃M
n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

Solution to wave equation

S =
1

α′

∫

dσdτ
{

(GMN(X) +BMN(X)) ∂µXM ∂µX
N + α′Φ(X) (2)R

}

. (1)

Let us describe the different quantities entering into this action. First the
integral is over the 2D surface swept by the movement of the string. This surface
is parametrized by σ, τ . The inverse string tension α′ is the only (constant) free
parameter of the theory. XM(σ, τ),M = 1, · · · , D play two different roles: they are
scalar fields in the 2D theory, but they are coordinates of the target space where
the string propagates, which for critical string theories (the subject of this paper)
has dimension D = 26. Similarly GMN(X), BMN(X),Φ(X) are couplings of the 2D
theory but since they are functions of X they are fields in target space. GMN is
a symmetric tensor which is identiified with the metric; BMN is an antisymmetric
tensor field which in 4D target space will give rise to an axion field; and Φ is a scalar
field, the dilaton. Since it appears only multiplying the 2D curvature (2)R whose
integral is the topological invariant that counts the genus (number of holes) of the
corresponding 2D surface, the vev of the dilaton is identified with the string coupling.
These fields are always present in any closed string.

A fundamental symmetry of the above action is conformal invariance which
includes scalings of the 2D metric as well as 2D reparametrization invariance. Impos-
ing this symmetry at the 2D quantum level is similar to imposing that the coupling
constants do not run in standard field theory. This then defines a 2D conformal field
theory (CFT) and the constraints on the 2D couplings are the field equations for
the target space fields GMN , BMN ,Φ, AM . Not surprisingly the constraints give rise
to Einstein’s equations, Yang-Mills equations and equations of motion for BMN and
Φ. To leading order in α′ these are the equations derived from the following target
spacetime effective action:

S =
∫

dDX
√
Ge−Φ

{

R−
1

12
∇MBNP∇MBNP +∇MΦ∇MΦ−

D − 26

3

}

. (2)

Since heterotic strings are supersymmetric, we have to add the corresponding
fermionic partners of those fields. Solutions of these equations are then what we call
string vacua and thus we can claim that there is a correspondence between string
vacua and certain CFTs in 2D.

The simplest solution is of course 26D flat spacetime with constant values of
all the fields. For this case we have a 2D free theory, which can be easily quantized
by solving the wave equation ∂µ∂µXM = 0, the fields XM can be written as:

XM(σ, τ) = XM
R (τ − σ) +XM

L (τ + σ) (3)

as usual, XM
R and XM

L represent right- and left-moving modes of the string respec-
tively, with the mode expansion

XM
R (τ − σ) = xM

R + pMR (τ − σ) +
i

2

∑

n≠0
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in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)
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*In superstrings: tachyons projected out also no CSRs!



Two EFTs

S =
1

α′

∫

dσdτ
{

(GMN(X) +BMN(X)) ∂µXM ∂µX
N + α′Φ(X) (2)R

}

. (1)

Let us describe the different quantities entering into this action. First the
integral is over the 2D surface swept by the movement of the string. This surface
is parametrized by σ, τ . The inverse string tension α′ is the only (constant) free
parameter of the theory. XM(σ, τ),M = 1, · · · , D play two different roles: they are
scalar fields in the 2D theory, but they are coordinates of the target space where
the string propagates, which for critical string theories (the subject of this paper)
has dimension D = 26. Similarly GMN(X), BMN(X),Φ(X) are couplings of the 2D
theory but since they are functions of X they are fields in target space. GMN is
a symmetric tensor which is identiified with the metric; BMN is an antisymmetric
tensor field which in 4D target space will give rise to an axion field; and Φ is a scalar
field, the dilaton. Since it appears only multiplying the 2D curvature (2)R whose
integral is the topological invariant that counts the genus (number of holes) of the
corresponding 2D surface, the vev of the dilaton is identified with the string coupling.
These fields are always present in any closed string.

A fundamental symmetry of the above action is conformal invariance which
includes scalings of the 2D metric as well as 2D reparametrization invariance. Impos-
ing this symmetry at the 2D quantum level is similar to imposing that the coupling
constants do not run in standard field theory. This then defines a 2D conformal field
theory (CFT) and the constraints on the 2D couplings are the field equations for
the target space fields GMN , BMN ,Φ, AM . Not surprisingly the constraints give rise
to Einstein’s equations, Yang-Mills equations and equations of motion for BMN and
Φ. To leading order in α′ these are the equations derived from the following target
spacetime effective action:

S =
∫

dDX
√
Ge−Φ

{

R−
1

12
∇MBNP∇MBNP +∇MΦ∇MΦ−

D − 26

3

}

. (2)

Since heterotic strings are supersymmetric, we have to add the corresponding
fermionic partners of those fields. Solutions of these equations are then what we call
string vacua and thus we can claim that there is a correspondence between string
vacua and certain CFTs in 2D.

The simplest solution is of course 26D flat spacetime with constant values of
all the fields. For this case we have a 2D free theory, which can be easily quantized
by solving the wave equation ∂µ∂µXM = 0, the fields XM can be written as:

XM(σ, τ) = XM
R (τ − σ) +XM

L (τ + σ) (3)

as usual, XM
R and XM

L represent right- and left-moving modes of the string respec-
tively, with the mode expansion

XM
R (τ − σ) = xM

R + pMR (τ − σ) +
i

2

∑

n≠0

1

n
αM
n e−2in(τ−σ)
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on the system. For instance, from this perspective the action (3.4) describes a
two-dimensional (2d) field theory coupled to 2d gravity. Many of the remarkable
properties of string theory emerge from the subtle relation between the physics in
this 2d world and physics in spacetime. As we will see in chapter 4, di↵erent string
theories are defined by di↵erent worldsheet structures (e.g. 2d field contents).
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physical oscillation modes of the string are those transverse to the two directions of
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free massless scalar fields on the worldsheet. Quantization of this system leads to an
infinite set of decoupled harmonic oscillators, which correspond to the oscillation
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3.1.3 String interactions
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tions in the spacetime theory, which arise from the non-trivial worldsheet topologies,
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(and in fact at low energies reduces to) the sum over di↵erent Feynman diagrams
in theories of point particles i.e. quantum field theory. Formally, the scattering
amplitude has the structure

hout| evolution |ini =
X

worldsheets

Z
[DX] e�SP[X] Oin[X]Oout[X] , (3.5)

where theO[X] denote insertions of the so-called vertex operators, which implement
the information about the ‘in’ and ‘out’ string states. They are further discussed in
appendix E, although the details are not essential in our present heuristic discussion.
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includes scalings of the 2D metric as well as 2D reparametrization invariance. Impos-
ing this symmetry at the 2D quantum level is similar to imposing that the coupling
constants do not run in standard field theory. This then defines a 2D conformal field
theory (CFT) and the constraints on the 2D couplings are the field equations for
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Since heterotic strings are supersymmetric, we have to add the corresponding
fermionic partners of those fields. Solutions of these equations are then what we call
string vacua and thus we can claim that there is a correspondence between string
vacua and certain CFTs in 2D.
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by solving the wave equation ∂µ∂µXM = 0, the fields XM can be written as:
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3. Moduli

3.1. String Compactifications
Even if a full non-perturbative understanding of string and M-theory is still lacking, it has long been understood

that at low energies there are 5 di↵erent limits of string theory in 10-dimensional flat space, which are related to each
other by duality transformations. The M-theory picture also leads to a sixth limit, namely 11-dimensional supergravity,
often referred to as the low-energy limit of M-theory, the still-not-fully-defined theory that encompasses all the string
theories as di↵erent limits.

What these limits have in common, and arguably the single most important physical implication of string theories,
is the existence of extra dimensions. The process of starting from a higher-dimensional theory and then obtaining a
4-dimensional e↵ective theory is known as compactification, and over the past 35 years string compactifications have
been studied in much detail. Starting from a 10-dimensional theory, the di↵erent fields have to be decomposed into
their components in the 4 non-compact dimensions and also their ones in the extra compact dimensions. For instance,
the 10-dimensional graviton gMN splits into the 4-dimensional graviton gµ⌫, a set of scalar fields gmn that correspond
to moduli fields and potentially also vector fields gµn. Notice that from the 4-dimensional perspective the indices m, n
are just internal indices, as in compactification the extra dimensions are regarded as no longer directly visible from
the 4-dimensional perspective:

gMN =

 
gµ⌫ gµn
gn⌫ gmn

!
µ, ⌫ = 1, · · · , 4 ; m, n = 1, · · · , 6 (107)

A similar decomposition is performed with the higher-form antisymmetric tensors BMN , CMNP, etc present in each of
the 6 theories, with the form content of each theory shown in Tab. 3.

Theory Dimension Supercharges Massless Bosons
Heterotic 10 16 gMN , BMN , �
E8 ⇥ E8 Ai j

M

Heterotic 10 16 gMN , BMN , �
S O(32) Ai j

M

Type I 10 16 gMN , �, Ai j
M

S O(32) CMN

Type IIA 10 32 gMN , BMN , �
CM ,CMNP

Type IIB 10 32 gMN , BMN , �
C0 ,CMN ,CMNPQ

M-Theory 11 32 gMN ,CMNP

Table 3: The massless bosonic spectrum of the five string theories and of 11-dimensional supergravity. The corresponding massless fermionic
spectrum is determined by supersymmetry. Moduli fields all originate from these simple spectra in 10d, reduced on the internal manifold. There
are also matter states, which in IIA and IIB string theories come from D-brane intersections and in heterotic string theory come from solutions of
the Dirac equation with non-trivial gauge configuration. Further moduli, such as open string moduli from separation between D-branes or closed
string bundle moduli, can also be present.

The most studied compactifications are those that preserve N = 1 supersymmetry. These o↵er a greater degree
of control over the e↵ective action compared to non-supersymmetric theories, while also allowing for the presence of
chiral fermions and su�cient dynamics to allow for hierarchies and a non-supersymmetric vacuum state.

These correspond in the case of the heterotic or type I theories to the internal space being a Calabi-Yau (CY)
manifold. These are manifolds of S U(3) holonomy (or vanishing first Chern class). CY manifolds are complex Kähler
manifolds, meaning that the metric can be written as a second derivative of a Kähler potential K(zi, z̄ |̄): gi |̄ = @i@ |̄K.
However, since they do not have isometries, except for a few numerical examples, there are no known analytic metrics
for compact CY manifolds of complex dimension greater than one. Instead, we rely mostly on their topological
structure (and indeed, the full details of the internal metric are not needed for most parts of the 4-dimensional e↵ective
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Simple Compactifications

XM
L (τ + σ) = xM

L + pML (τ + σ) +
i

2

∑

n ̸=0

1

n
α̃M
n e−2in(τ+σ) (4)

Since this is a free theory, quantization assigns canonical commutation rela-
tions to the Fourier coefficients αN

m, α̃
N
m, like oscillators of the harmonic oscillator.

The Hamiltonian then gives rise to the mass formula:

M2 = NR +NL − 2. (5)

Where NR,L refer to the harmonic oscillator occupation numbers for left and right
movers and the level matching condition requires NL = NR for consistency. Note
that the ‘vacuum’ state (NL = NR = 0) is a tachyon and the next state requires one
left-moving and one right-moving oscillator (NL = NR = 1), since both oscillators
carry a target space index, the state corresponds to an arbitrary two-index tensor
αM
−1α̃

N
−1|0⟩ of which the symmetric part is the metric GMN , the antisymmetric part

is BMN and the trace is the dilaton Φ. That we can see are massless and are always
present.

The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
is then:

M2 = NR +NL − 2 +
m2

4R2
+ n2R2, NR −NL = mn. (6)

5

e2

e1 

(n = 0)

(n = 1)

(n = 2)

Figure 1: A 2D torus T 2 defined by the identification of points on IR2 by elements
of the lattice defined by e1 and e2. We display examples of a closed string on IR2

which is also closed on T 2 (n = 0), also a string closed on T 2 but not on IR2, winding
around the torus once(n = 1) and twice (n = 2).

This shows several interesting facts. First, for n = 0 and varying m, we obtain an
infinite tower of massive states with masses ∼ 1/R; these are the standard ‘momentum
states’ of Kaluza-Klein compactifications in field theory. In particular the massless
states with n = m = 0 and one oscillator in the compact direction are vector fields in
the extra dimensions giving rise to a U(1)L ⊗ U(1)R Kaluza-Klein gauge symmetry.
The states with n ≠ 0 are the winding states and are purely stringy; they represent
string states winding around the circle, they have mass ∼ R. Second, there are
special values of m and n which can give rise to extra massless states. In particular
for m = n = ±1 we can see that at the special radius R2 = 1/2 in units of α′, there
are massless states with a single oscillator NR = 1, NL = 0 corresponding to massless
vectors which in this case generate SU(2)R ⊗ SU(2)L. This means that the special
point in the ‘moduli space’ of the circle R2 = 1/2 is a point of enhanced symmetry.
The original U(1)R ⊗ U(1)L Kaluza-Klein symmetry of compactification on a circle
gets enhanced to SU(2)R ⊗ SU(2)L. This is a very stringy effect because it depends
crucially on the existence of winding modes (n ≠ 0). The third interesting fact about
this compactification is that the spectrum is invariant under the following ‘duality’
transformations [7]:

R ↔
1

2R
m ↔ n. (7)

This is also a stringy property. It exchanges small with large distances but at the
same time it exchanges momentum (Kaluza-Klein) states with winding states. This
symmetry can be shown to hold not only for the spectrum but also for the interactions
and therefore it is an exact symmetry of string perturbation theory.
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The instability due to the tachyon can be easily cured by supersymmetriz-
ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
SO(32) or E8 ⊗ E8.

Toroidal Compactifications

In order to construct string models in less than 10D as well as to understand
the heterotic string construction, we need to consider the simplest compactifications
which correspond to the extra dimensions being circles and their higher dimensional
generalization.

Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
the compact dimension and is thus named the ‘winding number’. The mass formula
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ing the theory. In that case the tachyon state is projected out. The most popular
supersymmetric string theory is the heterotic string. In this theory, only the right
moving modes have a fermionic partner and consistency requires that they live in a
10D space rather than the 26D space of the bosonic string. The left moving modes
however are purely bosonic, but the 26D space of these modes is such that the extra
16 coordinates are toroidally compactified, giving rise to extra massless states, which
in this case are vector-like, as we will see next, and correspond to the gauge fields of
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Let us first see the case of a circle. This means that the 10D space is repre-
sented by flat 9D spacetime times a circle S1. We know that a circle is just the real
line identifying all the numbers differing by 2πR, where R is the radius of the circle.
So the only difference with the flat space discussed above are the boundary conditions.
The solution of the wave equations are now as in (4). But now pR = m/2R−nR and
pL = m/2R+nR, m is an integer reflecting the fact that the momentum in the com-
pact direction has to be quantized in order to get single-valued wave function. The
integer n however refers to the fact that the string can wind around several times in
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m,n integers: momentum and winding!

• n=0, infinite tower of massive (Kaluza Klein) states mass=m/R

• Massless n=m=0: vector fields U(1)L ⊗U(1)R

• n≠ 0 winding states mass proportional to R

• m=n=±𝟏NR=1, NL=0 or NR=0, NL=1 enhanced symmetry SU(2)L ⊗SU(2)R at R2=1/2

• R is arbitrary: a modulus!

• Duality !                                                  R2=1/2 self-dual
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Figure 1: A 2D torus T 2 defined by the identification of points on IR2 by elements
of the lattice defined by e1 and e2. We display examples of a closed string on IR2

which is also closed on T 2 (n = 0), also a string closed on T 2 but not on IR2, winding
around the torus once(n = 1) and twice (n = 2).

This shows several interesting facts. First, for n = 0 and varying m, we obtain an
infinite tower of massive states with masses ∼ 1/R; these are the standard ‘momentum
states’ of Kaluza-Klein compactifications in field theory. In particular the massless
states with n = m = 0 and one oscillator in the compact direction are vector fields in
the extra dimensions giving rise to a U(1)L ⊗ U(1)R Kaluza-Klein gauge symmetry.
The states with n ≠ 0 are the winding states and are purely stringy; they represent
string states winding around the circle, they have mass ∼ R. Second, there are
special values of m and n which can give rise to extra massless states. In particular
for m = n = ±1 we can see that at the special radius R2 = 1/2 in units of α′, there
are massless states with a single oscillator NR = 1, NL = 0 corresponding to massless
vectors which in this case generate SU(2)R ⊗ SU(2)L. This means that the special
point in the ‘moduli space’ of the circle R2 = 1/2 is a point of enhanced symmetry.
The original U(1)R ⊗ U(1)L Kaluza-Klein symmetry of compactification on a circle
gets enhanced to SU(2)R ⊗ SU(2)L. This is a very stringy effect because it depends
crucially on the existence of winding modes (n ≠ 0). The third interesting fact about
this compactification is that the spectrum is invariant under the following ‘duality’
transformations [7]:

R ↔
1

2R
m ↔ n. (7)

This is also a stringy property. It exchanges small with large distances but at the
same time it exchanges momentum (Kaluza-Klein) states with winding states. This
symmetry can be shown to hold not only for the spectrum but also for the interactions
and therefore it is an exact symmetry of string perturbation theory.
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Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Complex structure

Kahler structure

Modular invariance T-duality Mirror symmetry

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7

Let us now extend the compactification to two dimensions, ie the 26D space-
time is the product of flat 24D spacetime and a 2D generalization of a circle, the torus
T 2. Again the only difference with flat space is the boundary conditions. The two
compact dimensions are identified by vectors of a 2D lattice, defining the torus T 2.
Out of the three independent components of the compactified metric G11, G22, G12

and the single component of BMN namely B12 we can build two complex ‘moduli’
fields:

U ≡
G12

G22
+ i

√
G

G22

T ≡ B12 + i
√
G. (8)

U is the standard modular parameter of any geometrical 2D torus and it is usually
identified as the ‘complex structure’ modulus. T is the ‘Kähler structure’ modulus
(since T 2 is a complex Kähler space) and its imaginary part measures the overall size
of the torus, since

√
G is the determinant of the 2D metric. It plays the same role as

R did for the 1D circle. In terms of T and U we can write the left- and right-moving
momenta as:

p2L =
1

2U2T2
∥(n1 − n2 U)− T (m2 +m1 U)∥2

p2R =
1

2U2T2
∥(n1 − n2 U)− T ∗(m2 +m1 U)∥2 (9)

The mass formula, depending on p2L + p2R, again shows that there are enhanced sym-
metry points for special values of T and U . It also shows the following symmetries:

U →
aU + b

c U + d
T →

a T + b

c T + d
T ↔ U. (10)

Where a, b, c, d are integers satisfying ad − bc = 1. The first transformation is the
standard SL(2,Z)U ‘modular’ symmetry of 2D tori and is independent of string
theory; it is purely geometric. The second transformation is a stringy SL(2,Z)T
named T -duality and it is a generalization of (7) for the 2D case. Again this is
a symmetry as long as we also transform momenta m1, m2 with winding n1, n2.
The third symmetry exchanges the complex structure U with the Kähler struc-
ture T and it is called ‘mirror symmetry’. If U and T each parametrize a com-
plex plane SL(2, IR)/O(2), the duality symmetry implies that they can only live in
the fundamental domain defined by all the points of the product of complex spaces
SL(2, IR)/O(2) ⊗ SL(2, IR)/O(2) ∼= O(2, 2, IR)/(O(2) ⊗ O(2)) identified under the
duality group SL(2,Z)U ⊗ SL(2,Z)T = O(2, 2,Z).

This is the situation that gets generalized to higher dimensions. In general,
compactification on a d-dimensional torus has the moduli spaceM = O(d, d, IR)/O(d)⊗
O(d) with points identified under the duality group O(d, d,Z). For the heterotic string
with 16 extra left moving coordinates M = O(d + 16, d, IR)/O(d + 16) ⊗ O(d) with
a similar modification to the duality group. The left- and right- moving momenta

7
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In general T-Duality

Figure 7: A schematic representation of the complicated geometry and topology of higher-dimensional Calabi-Yaus.

Lagrangian). The most relevant topological quantities are the non-trivial homological cycles. Their number are given
by the corresponding Hodge numbers hp,q.

The simplest CY manifold is the one complex dimensional case corresponding to the torus. This has only two
non-trivial homological cycles (h0,1 = h1,0 = 1) and its homological structure is summarised by the Hodge diamond:

h1,1

h1,0 h0,1

h0,0
=

1
1 1

1

Compactifying a string theory on a 2-torus gives rise to two geometric moduli. These are the Kähler modulus T and
the complex structure modulus U corresponding to

T =
p

g + iB12, U =
pg
g22
+ i

g12

g22
, (108)

where gi j, Bi j are the components of the metric and the antisymmetric tensors, with g = det gi j. Roughly speaking, Re
T determines the size of the torus and Re U the shape. These simple properties (Kähler and complex structure moduli,
which respectively correspond to size and shape of the compact space) generalise to the more complicated CY 3-folds
and 4-folds which are relevant for string and F-theories. A schematic representation of a Calabi-Yau is figure 7.
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x x

x xx → – x→ →e2

e1

Figure 2: Starting from the two-torus T 2, we generate the orbifold O2 ≡ T 2/Z2, ‘the
ravioli’, by the identification x⃗ ↔ −x⃗. O2 is singular at the four ‘fixed points’ shown.
Besides the momentum and winding states of the torus, the orbifold spectrum also
has ‘twisted’ states, corresponding to strings closed in O2 but not on T 2. The twisted
states are attached to fixed points, we display one example.

the E8 ⊗E8 lattice, say. This can easily be done in two ways:

(i) Perform a homomorphism of the point group action in the gauge lattice by shifting

the lattice vectors by a vector V = ML where M is the order of the point group
and L is any lattice vector in 16D.

(ii) Perform the homomorphism by twisting also the gauge lattice by an order M
rotation belonging to the Weyl group of the corresponding gauge group.

These embeddings on the gauge degrees of freedom allow us to break the gauge
group, reduce the number of supersymmetries and generate N = 1 chiral models in
4D as desired. The reason for this is the following: using the embedding by a shift
V , we start with the spectrum of the toroidal compactification and have to project

out all the states that are not invariant by the orbifold twist. For the gauge group,
only the elements satisfying P · V ∈ Z remain, where P ∈ E8 ⊗ E8, breaking the
gauge group to a subgroup of the same rank. The four gravitinos of the N = 4
toroidal compactification also transform and depending on the orbifold twist they are
reduced to only one or two invariant states, indicating that there is only N = 2 or
N = 1 supersymmetry. Actually there are only four twists ZM leading to N = 2
(for M = 2, 3, 4, 6) and some twenty ZM or ZM ⊗ ZN twists leading to N = 1
supersymmetry [11], which are the phenomenologically interesting ones. For each of
these twists we can have several (∼ 10) different embeddings on the gauge degrees of
freedom. One of these embeddings is called the standard embedding because it acts
identically in the gauge degrees of freedom as in the 6D space, this embedding also
describes compactifications of the type II strings and is distinguished because in the
2D worldsheet, the corresponding model has two supersymmetries on the left-movers
and two supersymmetries on the right-movers, the corresponding models are called
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pL, pR live on an even, selfdual lattice of signature (22, 6), which is usually called
the Narain lattice Λ22,6[8]. This generalizes the Λ2,2 lattice defined by the integers
m1, m2;n1, n2 of eq. (9).

We can easily verify in this case that the dimension of M is d(d + 16) cor-
responding to the number of independent components of Gmn, Bmn, AI

m with m,n =
1 · · ·d; I = 1, · · · 16. For d = 6 we have a 4D string model with a moduli space of
dimension 132. To this we have to add the dilaton field Φ which, together with the
spacetime components of the antisymmetric tensor Bµν , can be combined into a new
modular parameter:

S ≡ a+ i eΦ. (11)

Here the axion field a is defined as ∇µa = ϵµνρσ∇νBρσ. S parametrizes again a coset
SL(2, IR)/O(2). It is then natural to believe there is also a duality symmetry for
the field S of the type SL(2,Z); by analogy with the situation for T and U . Such a
symmetry was proposed in ref.[9] and it has received a lot of attention recently. If
true it may have far reaching consequences since (similar to equation (7)) it relates
strong to weak string coupling.

Orbifold Compactifications

We have then succeeded in constructing 4D superstring models from toroidal
compactifications and understand the full class of these models given by the moduli
spaceM. Unfortunately, all of these models have N = 4 supersymmetry and therefore
they are not interesting for phenomenology, because they are not chiral. To obtain
a chiral model we should construct models with at most N = 1 supersymmetry. If
we still want to use the benefits of free 2D theories, we should construct models from
flat space and modify only the boundary conditions. We have already considered
identifications by shift symmetries of a lattice defining the tori. We still have the
option to also use rotations and consider ‘twisted’ boundary conditions [10]. As an
example let us start with the torus T 2 discussed before. If we make the identification
X i → −X i we are constructing the orbifold O2 ≡ T 2/Z2, shown in figure 2, where
the Z2 twist is rotation by π. This space is not a manifold because it is singular at
the points left fixed by the rotation {(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)}. Notice that,
for instance, the point (1/2, 1/2) is fixed because it is transformed to (−1/2,−1/2)
which is identical to the original point after a lattice shift. In general, the discrete
group of rotations defining the orbifold is called the point group P, whereas the
nonabelian group including the rotations and also the translations of the lattice Λ,
is the space group S. So usually a torus is defined as T d ≡ IRd/Λ and an orbifold
Od ≡ T d/P ≡ IRd/S.

We can easily construct 4D strings from orbifold compactifications in which
the 10D spacetime of the heterotic string is the product of 4D flat spacetime and a
six-dimensional orbifold O6. The heterotic string is particularly interesting because
we can extend the action of the point group to the 16D lattice of the gauge group by
embedding the action of the orbifold twist in the gauge degrees of freedom defined by

8

pL, pR live on an even, selfdual lattice of signature (22, 6), which is usually called
the Narain lattice Λ22,6[8]. This generalizes the Λ2,2 lattice defined by the integers
m1, m2;n1, n2 of eq. (9).

We can easily verify in this case that the dimension of M is d(d + 16) cor-
responding to the number of independent components of Gmn, Bmn, AI

m with m,n =
1 · · ·d; I = 1, · · · 16. For d = 6 we have a 4D string model with a moduli space of
dimension 132. To this we have to add the dilaton field Φ which, together with the
spacetime components of the antisymmetric tensor Bµν , can be combined into a new
modular parameter:

S ≡ a+ i eΦ. (11)

Here the axion field a is defined as ∇µa = ϵµνρσ∇νBρσ. S parametrizes again a coset
SL(2, IR)/O(2). It is then natural to believe there is also a duality symmetry for
the field S of the type SL(2,Z); by analogy with the situation for T and U . Such a
symmetry was proposed in ref.[9] and it has received a lot of attention recently. If
true it may have far reaching consequences since (similar to equation (7)) it relates
strong to weak string coupling.

Orbifold Compactifications

We have then succeeded in constructing 4D superstring models from toroidal
compactifications and understand the full class of these models given by the moduli
spaceM. Unfortunately, all of these models have N = 4 supersymmetry and therefore
they are not interesting for phenomenology, because they are not chiral. To obtain
a chiral model we should construct models with at most N = 1 supersymmetry. If
we still want to use the benefits of free 2D theories, we should construct models from
flat space and modify only the boundary conditions. We have already considered
identifications by shift symmetries of a lattice defining the tori. We still have the
option to also use rotations and consider ‘twisted’ boundary conditions [10]. As an
example let us start with the torus T 2 discussed before. If we make the identification
X i → −X i we are constructing the orbifold O2 ≡ T 2/Z2, shown in figure 2, where
the Z2 twist is rotation by π. This space is not a manifold because it is singular at
the points left fixed by the rotation {(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)}. Notice that,
for instance, the point (1/2, 1/2) is fixed because it is transformed to (−1/2,−1/2)
which is identical to the original point after a lattice shift. In general, the discrete
group of rotations defining the orbifold is called the point group P, whereas the
nonabelian group including the rotations and also the translations of the lattice Λ,
is the space group S. So usually a torus is defined as T d ≡ IRd/Λ and an orbifold
Od ≡ T d/P ≡ IRd/S.

We can easily construct 4D strings from orbifold compactifications in which
the 10D spacetime of the heterotic string is the product of 4D flat spacetime and a
six-dimensional orbifold O6. The heterotic string is particularly interesting because
we can extend the action of the point group to the 16D lattice of the gauge group by
embedding the action of the orbifold twist in the gauge degrees of freedom defined by

8

Fixed points

pL, pR live on an even, selfdual lattice of signature (22, 6), which is usually called
the Narain lattice Λ22,6[8]. This generalizes the Λ2,2 lattice defined by the integers
m1, m2;n1, n2 of eq. (9).

We can easily verify in this case that the dimension of M is d(d + 16) cor-
responding to the number of independent components of Gmn, Bmn, AI

m with m,n =
1 · · ·d; I = 1, · · · 16. For d = 6 we have a 4D string model with a moduli space of
dimension 132. To this we have to add the dilaton field Φ which, together with the
spacetime components of the antisymmetric tensor Bµν , can be combined into a new
modular parameter:

S ≡ a+ i eΦ. (11)

Here the axion field a is defined as ∇µa = ϵµνρσ∇νBρσ. S parametrizes again a coset
SL(2, IR)/O(2). It is then natural to believe there is also a duality symmetry for
the field S of the type SL(2,Z); by analogy with the situation for T and U . Such a
symmetry was proposed in ref.[9] and it has received a lot of attention recently. If
true it may have far reaching consequences since (similar to equation (7)) it relates
strong to weak string coupling.

Orbifold Compactifications

We have then succeeded in constructing 4D superstring models from toroidal
compactifications and understand the full class of these models given by the moduli
spaceM. Unfortunately, all of these models have N = 4 supersymmetry and therefore
they are not interesting for phenomenology, because they are not chiral. To obtain
a chiral model we should construct models with at most N = 1 supersymmetry. If
we still want to use the benefits of free 2D theories, we should construct models from
flat space and modify only the boundary conditions. We have already considered
identifications by shift symmetries of a lattice defining the tori. We still have the
option to also use rotations and consider ‘twisted’ boundary conditions [10]. As an
example let us start with the torus T 2 discussed before. If we make the identification
X i → −X i we are constructing the orbifold O2 ≡ T 2/Z2, shown in figure 2, where
the Z2 twist is rotation by π. This space is not a manifold because it is singular at
the points left fixed by the rotation {(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)}. Notice that,
for instance, the point (1/2, 1/2) is fixed because it is transformed to (−1/2,−1/2)
which is identical to the original point after a lattice shift. In general, the discrete
group of rotations defining the orbifold is called the point group P, whereas the
nonabelian group including the rotations and also the translations of the lattice Λ,
is the space group S. So usually a torus is defined as T d ≡ IRd/Λ and an orbifold
Od ≡ T d/P ≡ IRd/S.

We can easily construct 4D strings from orbifold compactifications in which
the 10D spacetime of the heterotic string is the product of 4D flat spacetime and a
six-dimensional orbifold O6. The heterotic string is particularly interesting because
we can extend the action of the point group to the 16D lattice of the gauge group by
embedding the action of the orbifold twist in the gauge degrees of freedom defined by

8

In general

Strings on orbifolds
• Chiral N=1 SUSY
• Still essentially flat except for fixed points
• Extra sectors: twisted sectors

Quasi realistic models e.g. T6/Z3 heterotic: 3 families SU(3)xSU(2)xU(1)x…



11d on S1/Z2 (interval) gives 10d heterotic E8xE8 (strong coupling)

Horava Witten

10d E8 10d E8S1/Z2



Orientifold Planes

Combine orbifold in target space with orbifold in string worldsheet (orientation)
Fixed planes with positive or negative tension.

O-planes

O-planes in IIA or IIB string theory break half supersymmetry



Calabi Yau Manifolds/Orientifolds

• 3d Complex Kahler manifolds with SU(3) holonomy 

(vanishing first Chern class)

• 1d CY torus T2, 2d CY K3 surface, 3d and higher many

• Admit Ricci flat metric but not known explicitly

• Heterotic/type I on CY give 4D Minkowski N=1 theory

• Type II on CY orientifold also 4d Minkowski N=1 SUSY

• Hodge diamond

The corresponding Hodge diamond for a 3 complex dimensions CY manifold is:

h3,3

h3,2 h2,3

h3,1 h1,1 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h2,2 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

The relevant numbers here are h1,1, counting the number of Kähler moduli Ti, i = 1, · · · , h1,1 (volumes of 4-cycles
or their dual 2-cycles), and h1,2, counting the number of complex structure moduli U↵,↵ = 1, · · · , h1,2 (number of
3-cycles). There exist databases of millions of Calabi-Yau manifolds with di↵erent values of h1,1 and h1,2. Typically,
these numbers can be as high as hundreds or thousands, see e.g. [56]. A recent package, CYTools [57], provides tools
to compute various topological properties of CY manifolds e�ciently.

Another ‘universal’ modulus of great importance is the dilaton � (see the table) whose vacuum expectation value
h�i determines the string coupling, gs. This reflects the fact that string theory has no free parameters and so the
strength of string interactions, gs, is itself the expectation value of a field.

In addition to these ‘universal’ moduli, there are also normally other moduli present in the e↵ective theory. These
include open string moduli associated to the motion and deformation of branes and corresponding gauge moduli, such
as bundle moduli, associated to deformations of vector bundles present in the compactification.

3.2. General Properties of Moduli
We have said above that the existence of extra dimensions is the most important physical implication of string

theory. As moduli are the way these extra dimensions manifest themselves in the 4-dimensional e↵ective field theory,
moduli are arguably the most important type of particle arising in string compactifications. The moduli are scalar
degrees of freedom in the e↵ective action of the 4-dimensional observer and describe low energy excitations in the
extra dimensions (such as shape and size of the extra dimensions). They are gauge singlet scalars, typically with
gravitational strength interactions. In the simplest supersymmetric compactifications with extended supersymmetry,
the potential remains flat and the moduli are massless. Besides other issues such as the absence of chiral matter,
such models are automatically ruled out since these massless moduli would mediate unobserved long-range scalar
gravitational-strength interactions (fifth forces).

Luckily, for models with N = 1 or 0 supersymmetry (which, in any case, are the ones of phenomenological
interest), there exist ‘moduli stabilisation mechanisms’. These lift the flat potentials, give them a mass and allow for
the construction of phenomenologically viable models. Even though moduli are gauge singlets and hard to detect
experimentally, their role in string cosmology cannot be over-emphasised.

Why? Moduli are, in a stringy context, the most natural candidates to be inflaton fields or to drive any alternative
early universe cosmology. This is already very important. But what is perhaps even more important, and highly
relevant for the later cosmological evolution of the universe, is that in this context the inclusion of moduli into the
spectrum has a unique ability to undercut and render invalid the pre-existing cosmology. As we discuss in detail in
chapters 2.3, 5 and 6, moduli fields can potentially help address many important unanswered questions such as the
nature of dark energy, dark matter and dark radiation.

Furthermore, vacuum expectation values of moduli also determine the low energy e↵ective action of a model.
As mentioned above, string theory has no free dimensionless parameters: couplings and ratios of scales in the low
energy e↵ective action are set by the values taken on by the moduli. Thus, the task of computing moduli potentials
and finding their minima lies at the heart of string phenomenology.

At some levels, moduli are simply examples of scalar fields. The discovery of the existence of an apparently fun-
damental scalar (the Higgs) confirms the existence of scalar fields in nature and gives further motivation for studying
their properties. However in many ways, the properties of moduli are crucially di↵erent from more familiar scalars
such as the Higgs, and intuitions carried over from the Standard Model electroweak theory or the Minimal Supersym-
metric Standard Model (MSSM) are misleading when applied to moduli.
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Calabi Yau

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)

+ String Dilaton: S

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)



Examples of Calabi-Yau
• Blow-up toroidal orbifolds

• Surfaces in Projective spaces (algebraic 
geometry)  e.g.

• Hypersurfaces in Toric varieties, etc.

http://hep.itp.tuwien.ac.at/~kreuzer/CY/

https://cy.tools/

Database and tools:

only has gravitational strength couplings with the observable SU(3)⊗ SU(2)⊗U(1)
sector). This is an example of a quasi realistic model. The structure of Yukawa
couplings can be analyzed leading to very realistic properties and problems such as
very fast proton decay can be avoided. However, there are extra doublets in the model
that give rise to unrealistic values of Weinberg’s angle. This may in principle be solved
by contemplating the existence of intermediate scales, but at this point the model
stops being stringy. It also has the drawback that without knowing details about
supersymmetry breaking many of the low energy parameters can not be determined.
There are variations of this model that allow for an extra U(1) symmetry at low
energies, implying a relatively light Z ′ particle. There are several models in the
literature with similar properties as this one, showing that it is possible to get models
very close to the standard model of particle physics. But there is not a single model
that could be considered realistic. In particular there is no model yet with just the
spectrum of the supersymmetric standard model.

Calabi-Yau compactifications

We saw that the orbifolds obtained from twisting the 6D tori can give rise to
chiral N = 1 models in 4D. Orbifolds are singular objects but they can be smoothed
out by blowing-up the singularities at the fixed points. The resulting smooth mani-
fold is a so-called Calabi-Yau manifold [16]. Mathematically, these are 6D complex
manifolds with SU(3) holonomy or equivalently vanishing first Chern class. They
were actually the first standard Kaluza-Klein compactification considered in string
theory, leading to chiral 4D models and generically gauge group E6 ⊗ E8, with E8 a
hidden gauge group.

The drawback of compactifications on Calabi Yau manifolds is that they are
highly nontrivial spaces and we cannot describe the strings on such manifolds, con-
trary to what we did in the case of free theories such as tori and orbifolds. In
particular we can not compute explicitly the couplings in the effective theory, except
for the simplest renormalizable Yukawa couplings.

On the other hand, Calabi-Yau manifolds have been understood much better
during the past few years and have lead to some beautiful and impressive results. In
a way they are more general than orbiifolds because an orbifold is only a particular
singular limit of a Calabi-Yau manifold. Also there are other constructions of these
manifolds which are not related to orbifolds. They can be defined as hypersurfaces
in complex (weighted) projective spaces IP4

(k0,k1,k2,k3,k4) where ki’s are the weights of
the corresponding coordinates for which there is the identification zi ∼= λkizi. The
hypersurface is defined as the vanishing locus of a polynomial of the corresponding
coordinates. For instance the surface defined as:

P ≡ z121 + z122 + z63 + z64 + z25 = 0 (13)

defines a Calabi-Yau manifold with weights:(1, 1, 2, 2, 6). The relation
∑

i ki = d where
d is the degree of the polynomial ensures that the surface is a Calabi-Yau manifold.
The manifold is guaranteed to be smooth if both the polynomial P and its derivatives
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This paper is dedicated to the memory of Max Kreuzer.

1. Introduction

To date, the largest class of Calabi-Yau threefolds that has been constructed explicitly,

consists of hypersurfaces in toric varieties which are associated to reflexive polytopes via

the Batyrev construction [1]. Kreuzer and the third author have given a complete list of

473,800,776 such polytopes [2, 3]. The Hodge numbers h1,1 and h
1,2 play an important role

in the classification of Calabi-Yau manifolds and in applications of these manifolds to string

theory. There are combinatorial formulas for these numbers in terms of the polytopes, that

are given in [1]. By computing the Hodge numbers associated to the polytopes in the list,

one obtains a list of 30,108 distinct pairs of values for (h1,1
, h

2,1).
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Figure 1: The Hodge plot for the list or reflexive 4-polytopes. The Euler number � = 2
�
h1,1 � h1,2
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is plotted against the height y = h1,1 + h1,2. The oblique axes correspond to h1,1 = 0 and h1,2 = 0.
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Realistic Model Building



Challenges for String Models
• Gauge and matter structure of SM
• Hierarchy of scales + masses (including neutrinos)

• Flavor CKM, PMNS mixing, CP no FCNC
• Hierarchy of gauge couplings (unification?)
• ‘Stable’ proton + baryogenesis
• Inflation or alternative for CMB fluctuations
• Dark matter (+ avoid overclosing)
• Dark radiation (Neff~3.04)
• Dark energy

N.B. If ONE of them does not work, rule out the model!!!



String Model Building:

§Global Models (e.g. Heterotic)

§Local Brane Models (e.g. IIB, F-theory)



Compactification  

Calabi-Yau Spaces and Brane World



New tools: Machine Learning

• Machine (supervised and reinforcement) learning 

• Genetic algorithms

Lukas et al 2018-2019

Abel et al et al 2021

Review Ruehle Phys Rep. 2020

1. For model selection

2. Computing explicit metrics of Calabi-Yau manifolds

Anderson  et al, Douglas et 
al, Jejjala et al  2020



Recent Progress

• N =1015 F-theory models with MSSM spectrum

• N>1023 heterotic models with MSSM spectrum

Cvetic et al 2019

Constantin et al 2019

BUT
Big problem: moduli stabilization 
(hundreds of massless gravitationally coupled scalar fields, 5th

force constraints rules them out)



Moduli Stabilisation and 
Supersymmetry Breaking



MODULI   STABILISATION

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)

+ String Dilaton: S

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)



Dine-Seiberg Problem

V 𝟎 at weak coupling and large volume, 
then minimum may be at strong coupling/small 
volume beyond control of string perturbation theory

Dine, Seiberg 1985

Only trust runaway part



Approaches to DS Problem

• 1980s Racetrack models

• 1990s T or S Duality

• 2000s Flux compactifications

4.4.3 The Racetrack Scenario

The racetrack moduli stabilisation scheme [266–270] is a variation on the KKLT setup (4.76),
but where one considers W0 = 0, and two or more non-perturbative e↵ects. It is much older
than the KKLT proposal, and is also a somewhat universal mechanism, in that it can be used in
any of the string theories (or M-theory). The simplest racetrack scenario, for a single modulus
S, considers a superpotential with two non-perturbative e↵ects

W = Ae�
2⇡S
N +Be�

2⇡S
M . (4.81)

This superpotential can, for example, be induced by gaugino condensation of an SU(N)⇥SU(M)
gauge theory. It has a supersymmetric minimum at

S =
NM

M �N
log

✓
�MB

NA

◆
. (4.82)

The idea is then to consider NM � (M �N) so that the modulus is fixed in a perturbative
regime where other corrections may be su�ciently controlled.

The racetrack scenario is powerful due to its versatility, but is rather di�cult to realize
explicitly and in a controlled way. It is almost completely four-dimensional in nature and its
ten-dimensional uplift is therefore even more di�cult to establish than the KKLT setting. Note
that it is possible also to consider a combination of the racetrack and KKLT scenarios, see for
example [271].

4.5 The Weak Gravity Conjecture in type II string theory

Most of the work on testing the various versions of the Weak Gravity Conjecture has been
performed in the type II string theory setting. In fact, most of the work has been on understanding
the axionic version of the Weak Gravity Conjecture (3.70). We will discuss this in section 4.5.3,
but first we consider the U(1) version. In type II string theories there are two types of U(1)
symmetries, those coming from closed-strings and those supported on D-branes, which we will
refer to as open-string U(1)s. At strong coupling, like in M-theory or F-theory, this distinction
becomes less clear but for perturbative string theories it is a useful split.

4.5.1 Closed-string U(1)s

The closed-string U(1)s which come from the NS-NS sector, so the metric and Kalb-Ramond
field, lead to similar physics to that studied in sections 2.3 and 4.1. The states charged under
them are Kaluza-Klein and Winding modes, or in the context of the Heterotic string also
oscillator modes. In type II string theory there are also U(1)s which come from the RR sector.
This means they are associated to the anti-symmetric C(p)-forms in table 4.1, dimensionally
reduced using the appropriate internal forms to yield gauge fields in four dimensions. The
charged particles under these U(1)s are non-perturbative states in string theory, specifically
D-branes wrapping cycles. Note that this shows that the Weak Gravity Conjecture is really
a statement about non-perturbative quantum gravity, it is violated in perturbative string
theory. Studies of the Weak Gravity Conjecture in the context of closed-string U(1)s were made
in [31,102,107,112,133,136,142,190,272]. Note that some of these can also be considered studies
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4.4.3 The Racetrack Scenario

The racetrack moduli stabilisation scheme [266–270] is a variation on the KKLT setup (4.76),
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2⇡S
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◆
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Fig. 1. The scalar potential V as a function of (Re T, lm T). 
Notice the maxima and saddle points at the self-dual points 
(½x/3,~+n), (1, n) respectively. The minima of %) are at 
(~ 1.2, n) and their modular transformed images which are not 
shown in the figure. 

It is clear from the above discussion that the theory 
has to choose among an infinity of  degenerate minima 
whose posi t ions differ by modula r  t ransformations.  
Once the theory chooses one of  them, target-space 
modula r  invariance is spontaneously  broken. This 
was to be expected since the theory somehow has to 
fix the compactif icat ion scale and,  once this is done, 
duali ty has to be spontaneously  broken. As is the 
case for all spontaneously  broken symmetries,  all 
couplings will still respect duali ty and only the 
vacuum will be asymmetric.  At this point  one could 
make some speculat ions about  the effects of  this 
symmetry breaking. Thus, for example,  since duali ty 
is a discrete symmetry, if  there was a phase in the 
evolution of  the universe in which the compac-  
tification radius was spontaneously  chosen, "dual i ty  
domain  walls"  could be created separat ing different 
universes (e.g. the " R - w o r l d "  in which momenta  are 
used to define a posi t ion operator ,  and the " l / R -  
wor ld"  in which winding modes play that role). 

In the above study we have described the gaugino 
condensat ion  through an effective superpotential .  
One can find similar results if  instead of  as in [1] we 
explicit ly substitute the gaugino bi l inear  in the super- 

gravity act ion of  ref. [14] by the expression eq. (16), 
still keeping an S- independent  superpotent ial  W =  
cr/-6(T). In addi t ion we use here the tree-level gauge 
kinetic function f = S, since also the K~ihler potent ia l  
(3) corresponds to string tree-level computat ions.  In 
this case the scalar potential  has the form 

1 
V SRT~lnl,21c+ho exp[(3S/2bo)]l e 

+31c1= '~(T, T*), (28) 
SR 

where V is defined in eq. (27). The only essential 
difference is that instead of  a factor IOl 2 mult iplying 
~', there is the constant I cl=. Still the minimum of  this 
potential  is quali tat ively the same, as long as Icl is 
small enough (i.e. the weak coupling region). S is 
fixed to (approximate ly)  cancel the first term and the 
VEV for T is fixed by the same function ~'(T, T*). 
Thus the results described above are independent  of  
the way one describes the gaugino condensate.  We 
also expect  the quali tative results to remain valid in 
the effective lagrangian approach  of  ref. [24]. 

Coming back to the superpotent ial  description,  
since hs oc SRY2S -- O = 0 at the minima, it is the moduli  
T sector which is responsible for supersymmetry 
breaking (hr  ~ 0) and the gravit ino mass is given by 

Inl 
m3/2=exp (½G) S1R/2T3/2]rI]6 

Insl (29) 
SR1/2 T3R/21,I~16" 

The size of  m3/2 (and thus the scale of  supersymmetry 
breaking) is governed by the size of  the arbi trary 
constant  c. In order  to get the desired hierarchy, a 
value ] e l -  (1014 GeV) 3 is needed.  This requires a cer- 
tain amount  of  fine-tuning. Furthermore,  the origin 
of  such a term is unclear. It could originate from the 
vacuum expectat ion value of  a superpotent ia l  involv- 
ing "h idden  sector" matter  or else it could have some 
gravitat ional  origin [25]. Other suggestions to replace 
this constant  term include the possible existence of  
two s imultaneous condensates  [7, 26] with almost  
ident ical /3-funct ion.  Whatever  the origin of  the small 
factor Inl in eq. (29) may be, we believe that the 
T-dependence  is quite universal and essentially dic- 
tated by modula r  invariance,  and that the quali tative 

406 

We have to stress that in our treatment U is only a classical field, not to be integrated
out in any path integral. It also does not make sense to consider loop corrections to
its potential, this solves the question raised in [79] where loop corrections to the U
potential could change the tree level results. Furthermore, since U is classical we can
eliminate it by just solving its field equations: ∂Γ/∂U = 0. These equations cannot
be solved explicitly but we find the solution in an 1/Λ expansion, with Λ the scale
of condensation [80]. We find that the solution of these equations reproduces at first
order, the Wilson action derived in [77], for which we can just read the superpotential
(using f(S, T ) = S) to be:

W (S) = we−3S/c (42)

where w is an arbitrary constant. The superpotential is just the one found in [77].
The correction to the Kähler potential is not completely known due mainly to the
fact that the perturbative corrections to K are completely unknown [80]. Notice that
these are corrections of order e−1/g2 as expected.

By studying the effective potential for U we recover the previously known
results. For one condensate and field independent gauge couplings (no field S) the
gauginos condense (U ̸= 0) but supersymmetry is unbroken. For field dependendt
gauge coupling, the minimum is for U = 0 (S → ∞) so gauginos do not condense
(this is reflected in the runaway behaviour of the Wilsonian action for S).

Alternatively, after eliminating U from its field equations and using (42), we
find the scalar potential for the real parts of S and T (SR and TR respectively), namely
V (SR, TR) ∼ 1

SRT 3
R
exp(−3SR/4πb). This potential has a runaway behaviour for both

SR and TR, as expected.
The T dependence of the potential was completely changed after the consid-

eration of target space or T duality. It was shown [81], that imposing this symmetry
changes the structure of the scalar potential for the moduli fields in such a way that
it develops a minimum at T ∼ 1.2 (in string units), whereas the potential blows-up at
the decompactification limit (TR → ∞), as desired (see figure 3) 8. The modifications
due to imposing T duality can be traced to the fact that the gauge couplings get
moduli dependent threshold corrections from loops of heavy string states [82] as in
eq. (29). This in turn generates a moduli dependence on the superpotential induced
by gaugino condensation of the form

W (S, T ) ∼ η(iT )−6 exp(−3S/8πb), (43)

with η(T ) the Dedekind function 9.
This mechanism however did not help in changing the runaway behaviour of

the potential in the direction of S. There is a very generic problem emphasized mostly

8Notice that the scalar potential blows up at large radius which is weak sigma-model coupling.
This is anti-intuitive, since we would have expected the potential to vanish at weak coupling. A way
to understand this is to realize that 1/g24 = R6/g210 that means that for large R and fixed g4, the
original 10D string coupling becomes large, so the potential is blowing-up at strong string coupling
from the 10D point of view (we thank J. Polchinski and S.-J. Rey for explaining this point).

9This formula is actually more complicated if the coefficients δGS ̸= 0 in which case S also
transform under T-duality as in eq. (34), see for instance B. de Carlos et al in [84]

27

Krasnikov 1987

Font et al, Ferrara et al 1990

Sethi et al., Giddings et al 2002…



Flux compactifications



4D Moduli
10D massless spectrum:

• NSNS sector: 

• RR sector:

4D moduli:

• Axio-dilaton: 

• Complex structure moduli:

• Kahler moduli:
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Fluxes in IIB Compactifications
• Tree-level Kahler potential: 

• Tree-level superpotential:

• Flux quantisation:

2n free parameters 
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Tree-level moduli stabilisation (GKP)
• Tree-level scalar potential: 

• Fix S and U supersymmetrically:

n real non-linear eqs. in n unknowns with 2n parameters             enough freedom to find solutions

• Number of solutions: if each flux quanta can take 10 different values (D3 tadpole cancell.)

• Minkowski vacuum with SUSY breaking since FT ≠ 0 but T-moduli are flat!
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Perturbative vs Non perturbative

• In general: 

• Then:

• Usually V0 dominates but V0=0  no-scale                     

• Dominant  term is  VJ (e.g. LVS)

• Unless  W0<<1 (e.g. KKLT)



KKLT Scenario

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 9: A cartoon representation of a typical Calabi-Yau configuration as used in KKLT and LVS scenarios. The D7-branes wrapped 4-cycles
and may host the gauge theory that provides the corresponding non-perturbative e↵ects in the superpotential. The non-trivial fluxes typically lead
to the 3-cycles corresponding to long throats that give rise to warped factors in the metric and may host anti-D3-branes at their tip to provide the
dS uplift.

3.4.4. De Sitter in IIB
The vacua we have discussed so far are AdS. It is possible to obtain dS vacua either by incorporating additional

e↵ects which are part of the low energy e↵ective action or taking a more general approach to finding minima of the
e↵ective action. Below, we describe various proposals for constructions of dS vacua26 in the IIB setting, illustrating
such general constructions in figures 9 and 10.

• Anti-branes: This was proposed as part of the original KKLT construction [128]. Anti-D3-branes experience
a potential in the imaginary self dual backgrounds of [92]. This drives them to the bottoms of warped throats
within the compactification. An anti-D3-brane at the bottom of a warped throat makes a positive definite
contribution to the potential. This is given by

VD3 ⇠
e4A0

(T + T )2
,

where eA0 is the value of the warp factor at the bottom of the throat. Such a contribution uplifts the KKLT AdS
vacuum to a dS one. The introduction of an anti-brane takes the configuration away from the pseudo-BPS class,
and various aspects of the e↵ective field theory remain to be understood (see e.g. [205, 206, 207, 208, 209,
210, 211, 212, 213, 214] and references therein). Embedding of the system in a supersymmetric e↵ective field
theory by making use of the nilpotent field formalism is discussed in [215] and references therein. A recent
construction [216], provides a way to make dS constructions with anti-D3-branes minimalistic (in addition to
keeping the e↵ective field theory under control).

• Magnetised branes [217]: Here, one considers U(1) fluxes localised in a warped throat on D7-branes wrapping
the T (volume) modulus. If the vacuum expectation values of the matter fields charged under the U(1) are zero,

26For recent summaries of the state of the art in dS constructions and the challenges involved see for example [203, 204].
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Warning: The control status of these approaches is under heated debate ! 



KKLT

• Nonperturbative effects:

• Anti D3 brane (SUSY breaking+uplift)

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K�1
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K0
� 0 (1.1)

W = W0 +Wmatter +Wnp + ⇢X (1.2)
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c(T + T ⇤)n+3
(1.3)
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D2
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(1.4)
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1. Recall that a probe brane in a D-brane background is described by the combination of the

DBI and WZ actions:

S = �T3

Z
d4x

p
�g

✓
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h

p
1� hgµ⌫@µr@⌫r �

q

h

◆
(1.8)

where the first term comes from the DBI action and the second term from the Chern-Simons

action
R
Ctx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be

for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the

vacuum energy plus Coulomb interactions. So reading h�1
gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the

volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the

one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.

As we know, in the presence of fluxes the 10D metric is of the form:

ds210 = e2A⌘µ⌫dx
µdx⌫ + e�2Agmndy

mdyn (1.9)

The 5-form field strength F5 = dC4 + ... is:

(F5)rtx1x2x3 =
@e4A

@r
(1.10)

Rescaling the 6d metric by gmn ! �gmn is compensated by e2A ! �e2A which for � = V1/3

is what introduces the V1/3
factor in the 4d part of the metric and gives rise to the famous

V�4/3
in the uplift term. But this also scales the solution for C4 by C4 ! �2C4. Recall that

this is the source of the brane antibrane coupling determined by h�1
with h�1 = e4A. So
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SUSY AdS Vacua: DW=0

Can be supersymmetrised in EFT by a goldstino nilpotent superfield X, X2=0 !



Large Volume Scenario (LVS)

• Flux superpotential W0 (U,S)

• Perturbative corrections to K 

• Nonperturbative contributions to W: 

Exponentially large volume for weak coupling !

the Kähler moduli, the Yukawa couplings and the µ-term can depend only on S and U at

the perturbative level with the T -moduli appearing only non-perturbatively. We discuss

this dependence in more detail in Sec. 3 and Appendix B.

As motivated in [33, 53], we assume the following form of the Kähler potential which

describes the regime for the visible sector near the singularity

K = −2 ln

(

V +
ξ̂

2

)

− ln(2s) + λSM

τ2SM
V + λb

b2

V +KdS +Kcs(U) +Kmatter , (2.5)

where ξ̂ ≡ ξs3/2, the λ’s are O(1) coefficients, Kcs(U) is the tree-level Kähler potential for

complex structure moduli and KdS encodes the dependence on the sector responsible for

obtaining a dS vacuum (see Sec. 2.3). The matter Kähler potential Kmatter is taken to be

Kmatter = K̃α(M,M )C
α
Cα + [Z(M,M )HuHd + h.c.] . (2.6)

We assume at this stage that the matter metric is flavour diagonal beyond the leading

order structure which was highlighted in [54].9 The only exception is that we allow for the

Higgs bilinear to appear in Kmatter which we parameterise with the function Z. Note that

K̃α is the matter metric for the visible sector which we will parameterise as [33]

K̃α =
fα(U,S)

V2/3

(

1− cs
ξ̂

V + K̃dS + cSMτ
p
SM + cbb

p

)

, p > 0 , (2.7)

where we have used K̃dS to parameterise the dependence on the dS mechanism (details will

be given in Sec. 3.2). The c’s are taken as constants for simplicity while p is taken to be

positive in order to have a well-behaved metric in the singular limit b, τSM → 0. As they

can in principle depend on U and S, we comment in due course on the influence on the

soft-terms of such a dependence. The appearance of the Higgs bilinear and its potential

parametrisation are discussed in Sec. 3.3.4 when we analyse the µ-term in this scenario.

In general the functions fα(U,S) could be non-universal. Such non-universality can have

interesting phenomenological implications (e.g. mass hierarchies among families of sfermion

masses needed for a realisation of natural SUSY). As we are interested in soft-terms arising

for D-branes at singularities, we take the gauge kinetic function to be

fa = δaS + κa TSM , (2.8)

where δa are universal constants for Zn singularities but can be non-universal for more

general singularities.

2.2 Moduli stabilisation

As outlined earlier in this section, we stabilise the moduli following the LVS procedure.

The complex structure moduli and the dilaton are fixed at tree-level by background fluxes

while the Kähler moduli are fixed using higher order corrections to the effective action [28].

9Subleading flavour off-diagonal entries which can in principle appear [55] are taken to be absent. This

is motivated by the appearance of additional anomalous U(1) symmetries in D-brane models, in particular

also in the context of del Pezzo singularities [41].
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this is the source of the brane antibrane coupling determined by h�1
with h�1 = e4A. So

1
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Relevant Scales
• String scale   Ms=MP/V 1/2

• Kaluza-Klein scale    MKK=MP/V 2/3

• Gravitino mass     m3/2=W0 MP/V

• Volume modulus mass     MV=Mp/V 3/2

• Lighter (fibre) moduli         Ml=Mp/V 5/3



KKLT LVS

Soft term D3 D3

M1/2 ±
�

3
2aV2/3

�
m3/2 ±

⇣
3s3/2⇠
4V

⌘
m3/2

m2
0

⇣
s3/2⇠
4V

⌘
m2

3/2

⇣
5s3/2⇠
8V

⌘
m2

3/2

Aijk �(1� s@s log Yijk)M1/2 �(1� s@s log Yijk)M1/2

Table 1. Summary of different soft terms for the visible sector on D3 branes for both KKLT and
LVS scenarios. Notice the similarity of the expressions despite the difference in origin for soft terms.
In both cases there is a hierarchy of masses with the ratio ✏ = M1/2/m0 ⌧ 1. For typical numbers
we have ✏ ⇠ 1/50 for KKLT and ✏ ⇠ 10�2

� 10�3 for LVS, illustrating a version of mini-split
supersymmetry.

dark matter candidates. In the KKLT scenario, the scalars are around 50 times heavier than
gauginos and the dark matter candidates depend on how much anomaly mediation dominates.
On the one hand, it could have a compresed spectrum with dark matter is higgino like or a
mixture higgsino-bino. Or on the other hand it could be anomaly dominated and then, also
wino like dark matter is possible.

Our description of soft breaking terms treats in a unified way both the KKLT and LVS cases,
with similar expressions determining the structure of soft terms. The different physical properties
of both scenarios manifest only after writing the explicit values of the flux superpotential W0 and
the volume V. We summarise the structure of soft terms for matter on D3-branes for both KKLT
and LVS in Table 1, under the assumption that the Kähler potential takes the logarthmic form
(2.9).7

In summary, including also the study of the visible sector living on D7-branes presented in
Appendix ?? and summarised in Table ??, there are four distinct scenarios, depending whether the
visible sector lives on D3 or D7-branes and on the moduli stabilisation mechanism (KKLT or LVS).
These may be subject to strong constraints in the not too far a future by LHC and its potential
extensions and different dark matter searches.

There are several questions left open. A better understanding of the nilpotent superfield
realisation from the full string theory would be interesting. For instance, treating the D3-brane
superfield � and the anti-D3-brane superfield X in the same way (i.e. they shift in the same way
the Kähler coordinate describing the CY volume) reproduces the uplift term only when the anti-
D3-brane is placed in particular points of the warped CY, i.e. at the tip of a throat. It would have
been maybe more intuitive that this would happen for a generic point. A better understanding of
this would be desirable.

The structure of soft terms for the KKLT case is very similar to the one originally found
using other techniques by [13]. However not only our techniques are different but we get non-
vanishing scalar masses only after including ↵

0 corrections which were not included in [13]. It

7Notice that the soft terms are non-vanishing only when non-perturbative effects, ↵0 corrections and
the presence of the nilpotent superfield are considered. This is consistent with the existence of a vanishing
supertrace formula recently found in [36] since in that reference those effects were not included.

– 24 –

KKLT LVS

Soft term D7 D7

M1/2 ±
�

1
aV2/3

�
m3/2 ±

⇣
3

4a⌧s

⌘
m3/2

m2
0 (1� 3!)m2

3/2

⇣
9(1��)
16a2⌧2s

⌘
m2

3/2

Aijk
3
2(2�� 1� s@s log Yijk)M1/2 �3(1� �)M1/2

Table 3. Summary of different soft terms for the visible sector on D7-branes for both KKLT and
LVS scenarios. Here ! = �0

↵0�0
. Also the modular weight � is kept explicitly with values � = 1/2

for D7-branes simplifying the expressions. For D3-branes the leading order structure is given by
! = 1/3,� = 1.

Hence, the scalar masses at the dS minimum are given by

m
2 =

9(1� �)

(4as⌧s � 1)2
m

2
3/2 . (B.21)

Concering the gaugino masses, the gauge kinetic function is f = Ts and hence they are dominated
by the F

Ts :
M = ±

3

4as⌧s � 1
m3/2 , (B.22)

where the relative sign ± refers to the choice of W0 ? 0. Notice that the relation between the
scalars and the gauginos is given by

m
2 = (1� �)M2

. (B.23)

Finally the trilinears can be written as

Aijk = �3(1� �)M . (B.24)

For the case of D7-branes, � = 1/2 and hence

m
2 =

1

2
M

2 and Aijk = �
3

2
M . (B.25)

Cosmological and phenomenological observations
The mass of the lightest modulus is

m
2
V = 5as⌧s

s
3/2

⇠

V
m

2
0 (B.26)

one can see that the bound in order to avoid the cosmological moduli problem is

m0 & 103 TeV . (B.27)

In this scenario, the gauginos are of the same order as the scalars. Hence all the sparticles are at
MSUSY & 103 TeV. The higgsinos will be of the order µ ⇠ 10 TeV (if one is able to saturate the
last bound) due to the one loop mass contribution induced by the bino and the wino. Therefore,
this scerario would need of R-parity violation to avoud dark matter overproduction, and non of the
sparticles would be detectable at LHC or at direct or indirect detection experiments.
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e.g. SUSY Breaking
• Split Supersymmetry   m0~50 M1/2

m0~1000 M1/2

M1/2~ 1 TeV

• High energy SUSY  m0~ M1/2~1011 GeV

(Concrete realisation of split susy in a framework including 
landscape, relative scales fixed, matching well with experiments...)



Axions
• Model independent axion partner of volume, 

mass≈exp(-V2/3) ≤ 10-22 eV                                                      
(dark energy, matter, radiation).  

• Some massive by Stuckelberg effect

• Others massive from non-perturbative effects

• Open string axions (model dependent)



String Landscape



Vacuum transitions

𝜙

𝑈(𝜙)

𝜙1 𝜙2

𝑈1

𝑈2

turning point

Figure 1: The potential of the scalar field. False and true vacua are located respectively at

�1 and �2.

Also [16] studied the e↵ect of non-minimal coupling to gravity. More recently, tunneling in

Jordan-Brans-Dickie theory was studied in [17].

The paper is organized as follows. In section 2 we briefly review the formalism of vacuum

decay in flat spacetime. In section 3 we present our analysis of vacuum decay in f(R) theory

which is used in section 4 for the thin wall limit. Section 5 is devoted to f(R) = R+ ↵R
n as

an example of our setup. In section 6 we reformulate the equivalent analysis in the Einstein

frame and finally we conclude in section 7.

2 Vacuum decay in flat spacetime

Here we briefly review the vacuum decay in flat spacetime. For an extensive review see [18]

and [19]. Consider the canonical scalar field

Lm = �
1

2
(@µ�)

2
� U(�) , (2)

where the potential U(�) has two unequal minima as shown in Fig. 1. We denote the

field values at the false and true vacuum respectively by �1 and �2 and the corresponding

potential values by U1 and U2. Consider the situation where the field value is initially at

�1 in all space. As mentioned above, there is a nonzero probability at every point that the

field jumps to the turning point quantum mechanically. This is allowed as tunneling respects

energy conservation.

The conventional approach to compute the probability is to find the wave function of the

system by solving the time-independent Schrodinger equation. The probability amplitude of

tunneling is proportional to the ratio of the wave functions at the turning point and the false

vacuum. For a field theory, the configuration space is infinite dimensional and we must solve

for a wave functional. The wave functional can be found via WKB approximation under the

potential barrier. However, the WKB equation is not easily solved for a multidimensional

system even at zeroth order. The idea due to [20] is that the wave functional is maximized

3

True 
vacuum
HI

False 
vacuum  HO

Bubble nucleation

Bubble tension
k



T

V

Figure 1: A plot of V vs � for the scalar potential V = U(ln �)/�4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima � = �0 of this potential generically occur in the regime where �(�0) �
O(1). But if stabilization of other moduli make �g0 small, then inspection of (2.10) shows

that �0 must be very large because �g0 ln �0 � O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� �
����
U2

U3

���� � O(�) (2.12)

for some smallish � � 1. Such a hierarchy allows solutions to �V/�� |�0 = 0 for �0 � O(�)

and so

b1 ln �0 = ��1
g0 � ��1 (2.13)

can easily be order 1/� if � � �g0 and b1 < 0. For � <� 1/10 the value predicted for �0 can be

enormous �0 � e1/�, justifying the validity of the 1/� expansion ex post facto. As is easy to

check, when 9 U2
2 > 32 U1U3 the potential has a local minimum at �0 that is separated from

the runaway to � � � by a local maximum at �1 > �0 (see Fig. 1).

The value of the potential at this minimum is positive if U2
2 < 4 U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(�0) � O(�4) when

U3 � O(1), it happens that the condition V �(�0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(�0) � O(�5). As a result both V (�0)

and �2(�2V/��2)
��
�0

are O(�5|w0|2/�4
0 ), and this can be extremely small given that �0 can be
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!

"

Figure 12: Vacuum transitions in string theory. First bubble nucleation from flux/D3 brane charge transitions illustrated by the vertical arrow.
Then a CDL-like transition crossing the potential barrier illustrated by the horizontal line. In string theory this transition may correspond towards
decompactification.

vacua. From the 4-dimensional EFT, there is not a scalar potential which connects the two vacua so this cannot
be explicitly described in terms of the CDL bounce solution within the 4-dimensional EFT. But it fits nicely in
the BT formalism.

2. Transitions a la CDL are also implemented since any potential dS vacuum should coexist with the runaway
vacuum corresponding to infinite volume and vanishing string coupling. The potential for the volume modulus
connects both vacua and the transition may be estimated.

Transition rates have been estimated for type IIA [404] as well as type IIB flux compactifications (for both KKLT
and LVS) vacua [128, 405, 406]. The probability amplitude � ⇠ e�24⇡2/⇤0 where ⇤0 is the value of the scalar potential
at the dS minimum. The corresponding lifetime ⌧ ⇠ 1/� is exponentially small as compared with the Poincaré
recurrence time which is reassuring. Furthermore the transition from dS to an AdS is preferred over dS to dS and the
CDL transition towards decompactification dominates the dS to dS transitions.

An interesting observation was made in [407, 408] regarding the actual implementation of the bounce solution
in a toy model version of flux compactifications with two dS vacua plus the runaway. The claim is that not only
the decompactification transition is preferred but that the potential bounce solution connecting the two dS vacua
necessarily follows into the runaway towards decompactification providing a potential obstacle to implement the
transition. Note however that contrary to the toy model in which both transitions corresponded to the CDL type, in
flux compactifications the flux transition is of the BT type whereas the decompactification is of the CDL type.

57

Transitions in the landscape

1. Flux transitions (induced by D5/NS5 nucleation)

2. Decompactification

Contents

1 Introduction 1

1 Introduction

� ⇠ e
�B

, B = S[instanton]� S[background] (1.1)

�up = (1.2)

HI ! 0, �down ! exp


� ⇡

2G

1

H
2
O

�
(1.3)

HO ! 0, �up ! 0 (1.4)

�flux ⌧ �decompactification e.g. �flux ⇠ e
�V2

�decompactification (1.5)
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(In LVS)

Brown-Teitelboim 87

Coleman-De Luccia 1980



The String Landscape

Classical Solutions

Quantum Decay
(tunnel effect)

Warning: just a cartoon! Bousso+Polchinski



Cosmological Constant (?)

Bousso-Polchinski 2000, 
Weinberg 1987



The String Landscape and Dark 
Energy

• Anthropic prediction 𝜦~𝟏𝟎_𝟏𝟐𝟎 (Weinberg 1987)

• Concrete proposal (Bousso-Polchinski 2000)

• Explicit String realization (KKLT, LVS,… 2003)

The worst solution to the dark energy problem with the 
exception of all the others! 
(smallness of Λ not a good question)



Predictions from the landscape?

• Bubble nucleations imply open universe!?

• Not possible to tunnel up from Minkowski
nor anti de Sitter?



The Landscape

• Good: A `solution’ of dark energy and allows  for the first 
time to trust calculations for low-energy SUSY breaking.

• Bad:  missed opportunity to have new physics at low 
energies from small Λ.

• Ugly: It may also be used to `solve’ other problems  (Split 
SUSY, High-energy SUSY,…) in unnatural ways. 



NOT yet a solution to dark energy

• Not yet concrete models with so many fluxes 
(so far only a handful of moduli, need 100s or 
thousands)

• Need to populate the landscape

• Distribution of fluxes (measure problem, etc.)



The Swampland



EFT

EFT

Energy

Landscape Swampland

Landscape

Figure 40: A cartoon representation of the swampland. At low energies there are many consistent e↵ective field theories, but only a subset of them
can be lifted to be UV complete inside a quantum gravity theory. These correspond to the landscape. The rest are referred to as the swampland.

expansion (region I). For further details on the cosmological interpretations of S-branes see for instance [1105, 1106,
1107, 1108, 545, 1109, 1029, 1030].

7.7. Swampland Conjectures
The vast number of apparent string vacua has very interesting implications. As described in Chapter 6, it may be

the only self-consistent way to explain the smallness of the dark energy and may provide a totally di↵erent approach
to asking fundamental questions in physics, separating the ‘interesting questions’ (those that do need an explanation
from an underlying theory) from the ‘uninteresting questions’ (those that may be explained by the presence of the
multiverse). However, this may also lead to the belief that any theory at all may be derivable from string theory,
resulting in a conclusion that it is impossible ever to test string theory, even in principle. This gives the idea of the
swampland, illustrated in figure 40.

That said, since the early days of string theory we have known that this is not true: there are some, albeit only a
few, general physics properties that can be extracted from string theory. Namely,

• The need for supersymmetry at the fundamental level (although the scale of its breaking is not known and it
may take non-standard forms as in misaligned supersymmetry [990]);

• The existence of extra dimensions, and more concretely only 6 or 7 extra dimensions;

• The existence of moduli fields with specific properties, in particular gravitational-strength couplings, which
appear in very specific ways within the low-energy e↵ective field theory;

• The absence of an infinite number of continuous spin representations corresponding to massless particles. These
are in principle allowed by the principles of quantum mechanics but have not been observed in nature, despite
the lack of alternative explanations from basic principles;

• The general absence of global symmetries in the e↵ective field theory.

144

The Swampland

Set of consistent low-energy EFTs without UV completion



Swampland conjectures
• Swampland: Quantum gravity vs EFT !

• Weak gravity conjecture

• No global symmetries

• Cobordism conjecture 

• Distance conjecture                         

• ‘anti’- de Sitter conjecture:

(It would imply quintessence and no de Sitter 
and hard to have inflation!).?

• TransPlanckian Conjecture, emergence conjecture,… 

inflationary models. The conjecture states that everywhere in field space the full quantum

scalar potential V obeys the relation:

Mp
|rV |

V
& c , (1.1)

where c is an O(1) positive constant. It is important to examine whether such a criterion

can be consistent with phenomenology. The criterion (1.1) has many strong implications

for cosmology [9–11]. In particular it implies that at present we are necessarily in an

epoch of quintessence. The tight bounds on fifth-forces [12] and the time variation of

fundamental constants [13], provide strong constraints on the couplings of the quintessence

field. Furthermore, in the context of N = 1 supergravity it seems very hard to be able to

decouple a quintessence field from the Standard Model. Finally, depending on the model,

naturalness considerations require fine-tuning of the quintessence potential at the functional

level,1 or at least one additional tuning compared to dS models. This makes explicit

constructions of quintessence models from string compactifications very challenging.

This conjecture is the most recent of a series of articles claiming potential problems

with the standard approach to obtain a landscape of metastable dS string vacua as initiated

by the KKLT seminal paper [15] and followed-up by many other developments that have

improved the robustness of the original and other related scenarios. The challenges vary

from points of principle (e.g. how to properly define an S-matrix and a quantum theory in

general in dS space [16–18]) to details about each of the di↵erent steps of the KKLT scenario

[19–21] which seem to make it natural to explore alternatives to dS. The main purpose of

the first part of this article is to assess the pros and cons of the di↵erent approaches to dS

compactifications. This is important in order to have a clear idea of the assumptions used

and the continuous progress but also the open challenges. We will argue that dS models

reached a good level of concreteness and calculational control which has been improving

over time and provide interesting phenomenological applications to cosmology and particle

physics. Moreover we shall stress that some of the computational challenges apply also to

4D N = 1 supersymmetric vacua which, above all, do not seem to be promising starting

points for phenomenology. We will also point out that, even if dS string models are not

characterised by expansion parameters which can be made parametrically small, these

parameters can still be small enough to trust the phenomenological implications of these

constructions.

In the second part of the paper we first discuss the theoretical consistency of quintessence

models pointing out that in general, in the absence of a symmetry principle, their construc-

tion is more challenging that dS models since one needs to perform two fine-tunings to get

the correct energy scale and mass of the quintessence field. We then use a more phe-

nomenological approach to assess to which extent quintessence is a viable alternative to

dS from observations. In particular, we found (as recently shown also in [22]), that if

the quintessence picture is valid, and there is no other scalar field around other than the

Higgs, in order to satisfy the swampland conjecture (1.1), the Higgs field has to couple

1
A similar problem has been discussed in the context of attempts to explain time variation of coupling

constants in terms of a time varying field [14].
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Vafa et al.

M1
M2

EFT1 EFT2Domain wall

Figure 41: A representation of cobordism among two manifolds for which their union is the boundary of another manifold of one extra dimension.

3. Cobordism conjecture [1116]. Two manifolds are called cobordant if their union is the boundary of another
manifold of one extra dimension. This defines an equivalence relation. The corresponding equivalent classes
may define a global (topological) charge. We may generalise the absence of global charges conjecture to
this topological case and conjecture that in a consistent theory of gravity, all cobordism classes have to be
trivial. If the corresponding manifolds are, for instance, the 6-dimensional compact spaces, the corresponding
4-dimensional EFTs would be separated by a domain wall (see figure (41)). If the cobordism class is trivial then
it must admit an end-of-the-world configuration as in the Horava-Witten or bubble of nothing cases (see figure
(42)). If this conjecture holds, it may have very important implications for cosmology due to the presence of
the boundary-ending spacetime. For recent developments in this direction see for instance [1117, 1118].

4. Distance conjecture [58]. Consider an e↵ective field theory coupled to gravity with a moduli space, M, pa-
rameterised by massless scalar fields, �i, and a metric �i j(�k) which determines the scalar’s kinetic terms. In
standard e↵ective field theories, the consistency and trustworthiness of the dynamics of a scalar field potential
V(�) is determined by requiring that it does not excite modes with masses above the cuto↵, m & ⇤. As long as
this is satisfied, the range of possible values for � is not bound by ⇤. The swampland distance conjecture states
that this no longer holds if the EFT is consistently uplifted to the UV.

The swampland distance conjecture states that, as some modulus approaches a point at infinite geodesic distance
in moduli space, there is an infinite tower of states, which become exponentially massless with the geodesic
distance ��: m ⇠ e���. These states cannot be neglected from the EFT in this limit. The prime example of such
behaviour is when � represents the size of an extra dimension and the corresponding tower of states are either
the Kaluza-Klein or the winding modes.

As well as infinite limits, the revised distance conjecture also states that for finite displacements, starting from
a value �0, at a point �0 + �� infinite towers of modes with mass of order e��� become lighter and lighter with
the distance in field space �� and so can no longer be neglected from the EFT. Although the conjecture applies
to massless scalar fields moving along geodesic trajectories, it could in principle have implications for the field
range in single field inflationary models and/or the amount of non-geodesicity in multifield models. However,
further work in this direction is needed to establish these possible constraints (see e.g. [1119, 1120, 1111, 1112,
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M

EFT1
End of the 
world brane

Figure 42: Trivial cobordism with only one manifold in the boundary. The cobordism conjecture states that in this case there should be an end-of-the
world configuration.

1113]).59

5. Conjectures on AdS vacua (non-supersymmetric & supersymmetric): Swampland conjectures for non-supersymmetric
AdS constructions were proposed in [1122]. These conjectures are at two levels. The first is motivated by an ex-
tension of the weak gravity conjecture; the extension requires that the equality between electric and gravitational
forces is saturated if and only if the underlying theory is supersymmetric and the states under consideration are
BPS with respect to the supersymmetry. A consequence of this is that non-supersymmetric AdS solutions sup-
ported by flux60 are unstable as they can decay by a brane nucleation process which leads to flux depletion
(in a process similar to that of [1123]). The stronger form of the conjecture removes the requirement that the
AdS solution is supported by flux and states that there are no non-supersymmetric AdS solutions in a consistent
quantum theory with low energy description in terms of Einstein gravity coupled to a finite number of matter
fields. If correct, there will be important implication not only for moduli stabilisation (the AdS vacuum in the
LVS scenario is non-supersymmetric) but also for applications of the AdS/CFT correspondence to condensed
matter physics, quantum information and hadron physics since the holographic models used in this context have
no supersymmetry. At present, the stronger form of the conjecture does not have much support (see [86] for
good evidence in favour of non-supersymmetric AdS vacua in O(16) ⇥O(16) heterotic strings). The conjecture
can be reformulated in the language of conformal field theories. Conformal field theories dual to Einstein grav-
ity with a finite number of matter fields must satisfy the following (energy) gap condition: they can have only
a small number of primary fields whose operator products generate all primary fields up to a energy scale that
can be made parametrically large in the large N limit. The conjecture implies that this condition cannot be met
in non-supersymmetric conformal field theories. For attempts to construct such non-supersymmetric conformal
field theories meeting this condition see e.g. [1124, 1125].
For the relationship of these conjectures of other swampland conjectures, see e.g. [1126]. More recently, it has

59For example, in [1121] it has been shown that backgrounds with spacetime varying scalars can lead to trans-Planckian motion without encoun-
tering exponentially falling towers of states.

60A d dimensional AdS solution is said to be supported by flux if a d-form flux field strength space-fills the AdS space.
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So far, the more rigorous the less relevant phenomenologically.



String Cosmology



Before inflation?



Wave functions of the universe

space is then given in each case by

PHH(Nothing ! dS) = k HH (HdS)k
2
/ e

⇡

GH
2
dS = e+SdS (2.2) {eq:PHH}

PT(Nothing ! dS) = k T (HdS)k
2
/ e

� ⇡

GH2
dS = e�SdS (2.3) {eq:PT}

In the last relation on each line we have noted the curious fact that these solutions of the WdW
equation yield expressions which in the HH case is proportional to the positive exponential of the
horizon entropy SdS and hence to the dimension of the Hilbert space that can be built on the
horizon while in the tunneling case it is inversely proportional to the dimension of the Hilbert
space.

Note that the probability amplitude can be seen as a tunneling e↵ect considering the scale factor
a(t) as a field with the ’wrong’ kinetic term and a scalar potential V (a) = �3a+⇤a3. The tunneling
would be from ’nothing’ which would correspond to a = 0 to a 6= 0 which is the turning point of a
potential barrier of �V (a).

2.2 Bubble of Nothing

Review Witten’s BON

3 Down and Up-Tunneling Transitions

3.1 Hamiltonian approach to vacuum transitions

Let us start reviewing vacuum transitions from the Hamiltonian approach as initiated by Fischler,
Morgan and Polchinski (FMP) [11]. Starting with the spherically symmetric metric

ds2 = �N2
t dt2 + L(r, t)2(dr + Nrdt)2 + R(r, t)2d⌦2

2 (3.1)

in order to address the vacuum transition problem FMP considered the bulk-brane system with
the brane (or wall) at r = r̂ separating two regions with di↵erent cosmological constants ⇤± and
the following action:

S = Sbulk + Sbrane +

Z
d4x

p
�g (⇤+⇥(r � r̂) + ⇤�⇥(r̂ � r)) (3.2)

with standard Einstein-Hilbert Sbulk and brane action Sbrane respectively and with ⇥ the step
function.

FMP reduced the vacuum transition problem to solving for the quantum mechanics of the brane
(assumed spherically symmetric) with a wave function  (R̂) which solves the Wheeler deWitt
equation. In the leading WKB approximation this implies solving the momentum and Hamiltonian
constraints while satisfying the matching conditions at the brane.

R0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥



2
R̂ , (3.3) {eq:JunctionConditions}

3

Mini-superspace

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)
entropy

where VA = V (�A). Hence we have

B

2
= �12⇡2

Z
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In the second line we have assumed that beyond the point ⌧̄+�⌧ , V ' VA so that the contribution
from ⌧̄ + �⌧ to ⌧max in the first term of the first line cancels against the second term. Also T in
the middle term is defined by

⇢̄3T = 2
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d⌧⇢3(V (�(⌧) � VA). (4.5)

In the second line of Eq. (4.4) we have taken the path in ⌧ such that for 0 < ⌧  ⌧̄ � �⌧ , � is
held fixed at �B while in the interval ⌧̄ + �⌧  ⌧ < ⌧max, � = �A. So in the first and third terms
in Eq. (4.4) we can replace the integral over d⌧ = d⌧

d⇢
d⇢ using the Euclidean Eq. (4.1) with �

fixed7. This gives d⌧

d⇢
= ±1/

p
1 � VB,A⇢2 in the first and third terms8 so these integrations can

be done giving us (in the thin wall limit �⌧ ! 0),
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⇢̄ is then determined by extremising B. Upon substituting this value into the above one then
gets the usual expressions which we will quote later after re-deriving the above without invoking
Euclidean arguments with their corresponding interpretational issues.

4.2 Vacuum transitions in mini-superspace

An instructive exercise, that helps understanding the formalism outlined in Sec. 2 and shows
the di↵erences between the Lorentzian and Euclidean appproaches, consists in studying vacuum
transitions in a mini-superspace setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario [20–23]. For a recent discussion see for
instance [34–36]. The metric is

ds2 = �N2(t)dt2 + a2(t)(dr2 + sin2 rd⌦2

2) . (4.7)

The action (setting Mp = 1/
p

8⇡G = 1) is given by the sum S = Sg + Sm, where
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�
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, (4.8)

Sm = 2⇡2
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dt

✓
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a3�̇2 � Na3V (�)

◆
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Here k = ±1, 0 depending on whether the three-spatial slice is positively (negatively) curved
or flat. Of course in the open k = 0, �1 cases the factor 2⇡2 would have to be replaced by an

7Although not explicitly stated this seems to have been assumed also in [33].
8In [33] only the positive sign is kept here.
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Transition from nothing?
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Scalar potential as a function of S, T, w1:
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A quadratic for w0 gives:
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Plug back into V gives
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12a
� 3a+ a3⇤ (7)

The problem is to combine this with the minimisation wrt w1 (as in

equation (3). For the minimum this seems to lead to w0
0 ⇠ 1/T . I cannot

see how this is consistent. If w0
0 = 0 we get w1 ⇠ w0/T as in Cli↵ notes.

But again the three equations do not seem possible to solve simultaneosuly

(plug this into the VT equation).

1
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String Inflation

7 Quantum Initial Conditions

One of the most remarkable features of inflation is that it provides a natural mechanism for

producing the initial conditions for the hot big bang. To see this, recall that the evolution of the

inflaton field �(t) governs the energy density of the early universe ⇢(t) and, hence, controls the end

of inflation (see Fig. 20). Essentially, the field � plays the role of a “clock” reading o↵ the amount

of inflationary expansion still to occur. By the uncertainty principle, arbitrarily precise timing is

not possible in quantum mechanics. Instead, quantum-mechanical clocks necessarily have some

variance, so the inflaton will have spatially varying fluctuations ��(t,x). There will therefore be

local di↵erences in the time when inflation ends, �t(x), so that di↵erent regions of space inflate

by di↵erent amounts. These di↵erences in the local expansion histories lead to di↵erences in the

local densities after inflation, �⇢(t,x), and to curvature perturbations in comoving gauge, ⇣(x).

It is worth remarking that the theory was not engineered to produce these fluctuations, but that

their origin is instead a natural consequence of treating inflation quantum mechanically.

Figure 20. Quantum fluctuations ��(t,x) around the classical background evolution �̄(t). Regions acquir-
ing negative fluctuations �� remain potential-dominated longer than regions with positive ��. Di↵erent
parts of the universe therefore undergo slightly di↵erent evolutions. After inflation, this induces density
fluctuations �⇢(t,x).

7.1 Quantum Fluctuations

7.1.1 Free Scalar in de Sitter

Before attacking the real problem of interest, namely the quantization of coupled inflaton-metric

fluctuations during inflation, we will consider the simpler case of a free scalar field in de Sitter

space. We will assume that the scalar field carries an insignificant amount of the total energy

density and, hence, doesn’t backreact on the de Sitter geometry. Such a field is sometimes called

a spectator field.

The action of a massless, free scalar field in de Sitter space is

S =
1

2

Z
d4x

p
�g gµ⌫@µ'@⌫'

=
1

2

Z
d⌧ d3x a2

h
'̇2 � (@i')2

i
, (7.1)
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e.g. Brane/Antibrane Inflation

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 9: A cartoon representation of a typical Calabi-Yau configuration as used in KKLT and LVS scenarios. The D7-branes wrapped 4-cycles
and may host the gauge theory that provides the corresponding non-perturbative e↵ects in the superpotential. The non-trivial fluxes typically lead
to the 3-cycles corresponding to long throats that give rise to warped factors in the metric and may host anti-D3-branes at their tip to provide the de
Sitter uplift.

• dS vacua from logarithmic/power law loop corrections (111; 190; 107): In the presence of intersecting D7-
branes, there are loop corrections to the Kähler potential whose contributions to the potential are logarithmic in
the volume of the compatification (111; 190). These arise from graviton kinetic terms related to the emission
of closed strings on non-vanishing local tadpoles. The logarithmic dependence arises from infrared divergences
due to e↵ective propagation in the two transverse directions to the D7-branes. Combining the logarithmic
terms with the (usual) power law ↵0 and gs corrections to the potential, one obtains a non-supersymmetric AdS
minimum. dS vacua are obtained by incorporating the e↵ects of D-term contributions from U(1) magnetic
fluxes along the world-volume directions of the D7-branes.
Closely related are the constructions of (107), where it was found that Kähler moduli can be stabilised by
perturbative power law corrections, or those of (191) which used the perturbative ↵0 corrections to generate a
de Sitter minimum.
Again, various additional e↵ects can lead to dS minima in the setting. These constructions can provide an avenue
to obtain dS vacau without making use of the non-perturbative part of the superpotential, whose computation
involves various subtleties (70).

• Complex structure F-terms (110): The potential for the complex structure and dilaton generated by fluxes has
supersymmetric minima where DUWflux = 0,DS Wflux = 0. There can also be other minima, ones where the
F-terms associated with these fields are non-vanishing. These minima lead to dS vacua once the Kähler moduli
are stabilised without the need of further ingredients. A concrete example with V ' 104 was constructed in
(110).

• T-branes (192): In the presence of supersymmetry breaking imaginary self-dual (ISD) 3-form and gauge field
fluxes on D7-branes, one is led to T-brane configurations. That is, the D7-brane adjoint scalars � are in a
configuration for which

h
�,�†

i
, 0. Such configurations provide a positive definite contribution to the 4D

potential which can uplift the KKLT and LVS AdS minima to dS.

• Non-perturbative dS vacua (193): Here, dS minima arise from stabilising all the geometric moduli in one

42

D3 Brane

Figure 16: Warped brane-antibrane inflation. The set-up of KKLT is simply complemented with a moving D3 brane that is attracted to the anti-
brane at the tip of a warped throat. In principle the warping allows for naturally small ✏, ⌘ parameters. However, if, as in KKLT and LVS, moduli
are fixed non-perturbatively then there are extra contributions to ⌘V of order O(1) illustrating the single-field ⌘V problem.

in a warped resolved conifold [551, 552]. The challenge in this model is to ensure that it is consistent with moduli
stabilisation.

In the original formulation of [541, 542] a crucial assumption of this model was that the dynamics which stabilises
the Kähler moduli in the bulk does not alter the flatness of the potential (162) since at the time of the proposal there
was no explicit scenario of moduli stabilisation. This is generically not the case since inflaton-dependent higher
dimensional operators arise from both the tree-level Kähler potential and the prefactors of non-perturbative e↵ects
[371]. A detailed study of how moduli stabilisation can be incorporated in this set-up has been reviewed in [422]
(crucial as including moduli stabilisation substantially changes the dynamics of the original proposal). See however
a recent potential way-out exploiting perturbative stabilisation mechanism via RG e↵ects [202] for which the warped
inflation potential is at work even after moduli stabilisation.

One of the attractive points of D3-D3 inflation is the fact that the dimensionality of spacetime may play a role. In
fact ref. [541] proposed that in a gas of branes, D3-branes (for the type IIB case) are such that they can meet in 10
dimensions. This idea was further explored in [553, 554]. Furthermore, the ending of brane inflation via the string
tachyon is a stringy way to end inflation in a string theory realisation of hybrid inflation. The idea is that, while the
branes approach each other, there is an open string state stretching between the two branes that gets lighter and lighter,
at a critical distance becomes massless and, after that, becomes tachyonic. The end of inflation is the point where the
tachyon reaches a minimum of its potential, which is essentially of the Mexican hat shape. This leads, in turn, to the
prediction after inflation of cosmic strings (D1-branes) that may be one of the very few observable implications of
string cosmology which is directly stringy in nature [555, 556].

D3-D3 inflation also o↵ers the cleanest illustration of one of the more distinctive possibilities within string in-
flation: the disappearance of the inflaton field at the end of inflation. The inflaton is the position modulus of the
D3-brane, but after brane-antibrane annihilation this field is entirely removed from the e↵ective field theory. This is in
contrast to most field theory scenarios where, although the inflaton may decay, the field remains present in the theory.

Inflection Point Inflation
Ref. [557, 558, 559] have shown that the single-field ⌘V -problem of D3-D3 Inflation can be avoided since this

system features enough tuning freedom to suppress dangerous Planck-suppressed higher dimensional operators that
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e.g. Kahler moduli

• Overall volume

• Blow-up

• Fibre moduli

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.

2 4 6 8 10 12 !
"

2·10-6

4·10-6

6·10-6

8·10-6

V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes
the parameters used in the text (for which ϕ̂ip ≃ 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C ≪ B and B > 0. As we have seen, this case

also implies 0 < C0 ≪ C1 = 4C2, leaving a potential well approximated by

V ≃ C2
⟨V⟩10/3

[

(3−R)− 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
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)

e−2κϕ̂ +R eκϕ̂
]

(3.33)

which uses Cup ≃ C1 − C0 − C2 and C1/C2 ≃ 4, and works to linear order in

R :=
C0
C2

= 2g4s

(
CKK
1 CKK

2

CW
12

)2

≪ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R
)

C2/⟨V⟩10/3.
In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for
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e.g. Axion Monodromy

i. Multiple axions Axion Monodromy Similar to N-flation, one possibility is to consider several axions whose
shift symmetry is broken at tree-level generating a leading power-law term. This case was considered in [660],
where it as shown that the spectral index is shifted red-wards from the single-field predictions.
Later, in [661, 662] the same generalisation was consider, with the distinctive feature that inflation happens in
two (or more) stages of monodromy inflation, separated by non-inflating epochs, such as matter domination43.
This model allows for a spectral index which fits the CMB constraints, and 0.02 . r . 0.06, which should be
considered alongside the observational bound from BK-Planck 2020 r . 0.3 [24]. The authors also consider
the possibility that the first inflaton couples to a U(1) vector field, producing vectors near the end of the first
stage of inflation, which in turn can source tensors during the intermediate matter epoch. These tensor modes
turn out to be chiral and could be accessible to future gravitational wave experiments at di↵erent scales.

ii. Axion-saxion Axion Monodromy While the models above focus on several axions, axions are usually coupled
to their companion saxions, which are assumed to be stabilised in axionic inflation. However, the axion-saxion
system can evolve cosmologically with very interesting e↵ects. This was considered in [665], which studied
an N = 1 supergravity model with an axion-saxion system that evolves non-trivially, giving rise to several
interesting e↵ects: (i) the fields execute transient strong non-geodesic motion without the requirement of a
large field space curvature44. This originates from transient violations of slow-roll, ⌘ & 1, caused by the
modulations in the scalar potential. (ii) The non-trivial dynamics lead to a large enhancement of the adiabatic
power spectrum at small scales, providing the first concrete realisation of resonant features studied recently in
the literature [666, 667, 668, 669]. These can lead to considerable production of light PBHs and a large and
wide spectrum of induced GWs. The potential takes the simple form

V =
M2

�

 
⇢2 + ✓2 +

2�
M

e�b⇢

✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e�b⇢

�!
, (188)

where ✓ is the axion and ⇢ the saxion, both of their leading terms being quadratic45. In Fig. 19 we show the
inflationary trajectory and in Fig.20 we show the adiabatic and GW spectra for a selection of parameters (see
[665] for details). However, due to the large oscillations, the spectral index and tensor-to-scalar ratio at CMB
scales have variations that violate current constraints.

Figure 19: Inflationary trajectory of axion-saxion system as they move in the scalar potential (188) [665].

43Double inflation models have been considered in the past [663] to decouple the spectrum on large and small scales. Models with multiple
stages of inflation were called rollercoaster cosmology in [664].

44In [11] it was shown that strong non-geodesic trajectories in supergravity seem to require large field space curvatures.
45This potential arises from the following potentials: M�2

Pl K = �↵ log[(�+�̄)/MPl��S S̄ /M2
Pl] and W = S (M�+ i�e�b�), where S is a nilpotent

superfield and � = ⇢ + i✓ [18, 665].
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Predictions of String Inflation Models
String model ns r
Fibre Inflation 0.967 0.007

Blow-up Inflation 0.961 10�10

Poly-instanton Inflation 0.958 10�5

Aligned Natural Inflation 0.960 0.098
N-Flation 0.960 0.13

Axion Monodromy 0.971 0.083
D7 Fluxbrane Inflation 0.981 5 ⇥ 10�6

Wilson line Inflation 0.971 10�8

D3-D3 Inflation 0.968 10�7

Inflection Point Inflation 0.923 10�6

D3-D7 Inflation 0.981 10�6

Racetrack Inflation 0.942 10�8

Volume Inflation 0.965 10�9

DBI Inflation 0.923 10�7

Table 4: Comparison among the predictions for the scalar spectral index and the tensor-to-scalar ratio of the main models of string inflation,
evaluated as a benchmark point at Ne ' 52.

4.2.5. Single-field String Inflation and Cosmological Observables
After presenting a brief description of several examples of single-field models of string inflation, let us now

summarise and compare their predictions for two main cosmological observables, the scalar spectral index ns and the
tensor-to-scalar ratio r, evaluated at the benchmark point Ne ' 52. These predictions are listed in Tab. 4.

Note that there is a relatively small number of inflaton candidates among all open and closed string moduli and
most have been used in concrete proposals of string inflation. Note also that as per the scientific tradition, more than
half of them are already in tension with the latest experimental bounds on ns and r. Models such as axion monodromy
and fibre inflation will be further tested in the planned experiments for the next 5-10 years.

Let us stress that we focused just on a restricted list of single-field models which represent the most developed
classes of string inflationary scenarios. A broader ensemble of di↵erent models is present in the literature, even
if most of them are just string-inspired, or supergravity-inspired, since they are based on ideas coming from string
theory but are still lacking a solid stringy embedding or a detailed mechanism for moduli stabilisation. Just to name
some of these examples, let us mention M-flation [601, 602, 603, 604], ↵-attractor models [605, 606, 607, 608, 609],
sequestered inflation [610, 611], axion inflation on a steep potential due to dissipation from gauge field production
[612, 613], and chromonatural inflation [614].

4.3. Multi-Field Inflation
So far our discussion has been restricted to the case where the inflation proceeds along either a single direction

– such as a closed string modulus, the radial direction of a D-brane moving in the 6-dimensional compact space, a
single Wilson line, or a single combination of axions – or with predictions that are e↵ectively single-field, such as
racetrack inflation. Indeed models are usually designed this way, with all the non-inflaton fields sitting in their local
minima as the inflaton rolls. This has the obvious advantage of simplicity, besides being e↵ective in describing the
primordial fluctuations, which are approximately scale invariant, statistically Gaussian, isotropic and homogeneous to
high degree.

Going beyond this simple picture, however, is not only well motivated from an observational point of view, as
future experiments may reveal interesting or unexpected physics (such as non-gaussianities, anisotropies, inhomo-
geneities), but also from a theoretical perspective. In particular, in string compactifications, moduli (spin-0) fields are
ubiquitous, while spin-1 fields also enter in the process of moduli stabilisation (see Sec. 3.3).

Thus a generic feature of string inflation models is that a significant number of moduli and/or spin-1 fields, with
a range of masses, may be dynamically active during inflation. Their dynamics can thus contribute to the inflationary
mechanism at the level of background or fluctuation evolution, and can leave imprints on the properties of scalar as
well as tensor modes, for example by amplifying their spectra. The resulting inflationary models can thus in general be
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This limitation of ⇠-attractors disappears if one considers a more general class of models

with nonminimal coupling of scalars to gravity

LJp
�g

=
1

2
⌦(�)R � 1

2
KJ(�)(@�)2 � VJ(�) . (3.7)

One can show that for certain relations between ⌦(�), KJ(�) and VJ(�) this theory in the

Einstein frame becomes equivalent to the theory of ↵-attractors [9]. Therefore in this more

general context one can describe any small values of r.

4 Special cases

So far we presented T- and E-models with a continuous value of ↵, which at small ↵ reach the

attractor point with cosmological predictions depending on the number of e-foldings and ↵ as

shown in (2.5). One can implement these models in the minimal N = 1 supergravity, where

the parameter 3↵ is given by 3↵ = 1
2 |RK |. Here |RK | is the curvature of Kähler geometry

[7]. In the context of the Poincaré hyperbolic disk geometry, representing an Escher disk,

R2
Esher = 3↵ defines the size of the disk [10].

Figure 7: This figure (courtesy of R. Flauger) shows the 7 Poincaré disks of the T-model of ↵-attractors as

green lines, as well as Higgs inflation, R2 inflation and fibre inflation [22].

The most interesting B-mode targets in this class of cosmological attractor models are

the ones with the discrete values of 3↵ = 7, 6, 5, 4, 3, 2, 1 [23–26]. These models of Poincaré

disks are inspired by string theory, M-theory and maximal supergravity. They are known in

cosmology community, see for example the plot of R. Flauger presented in his talk at CMB-S4

collaboration meeting in 2021. We present it here in Fig. 7.
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Recent BICEP/KECK 2021 results
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.

– 1 –

From Flauger 2021 (see Kallosh-Linde)
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Moduli Domination

of MPl (as for moduli), then ‘standard’ expectations as to the reheating temperature are greatly modified. The reheating
temperature now becomes
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In a stringy context, we expect the reheating temperature to be much lower than in field theory scenarios. Physics
expected to take place in the early universe (e.g. baryogenesis) must proceed via scenarios that can operate at these
relatively low temperatures.

The fact that in string theory, reheating is expected to proceed via moduli decay (see Fig. 24,) leads to various
cosmological problems and/or opportunities that must be addressed. It should be emphasised again, though, that these
problems are not specific to string theory; all consistent theories of the early universe must include gravity and these
questions arise in any theory which includes in its spectrum scalar particles whose interactions are not stronger than
gravitational strength (i.e. they are non-renormalisable and suppressed by explicit powers of MPl): this issue cannot
be rendered irrelevant by pretending it does not exist.

Inflation After Inflation

Decay/reheating Late times

!

!

!

!

V

VV

V

Figure 24: Moduli domination. During inflation moduli fields which are not inflatons tend to be trapped at a point that does not correspond to
their minimum. Only after inflation is finished do those moduli field start settling towards their minimum. Their coherent oscillations around this
minimum come to dominate the energy density of the universe, behaving like matter domination, and particle production during this time is the
source of reheating. This di↵ers substantially from the standard picture of reheating from the inflaton right after inflation.

5.5. Aspects of Moduli-Induced Reheating
This epoch of moduli domination can a↵ect various areas of early universe physics and we now consider in more

detail the implications of reheating driven by decays of moduli.

5.5.1. The Cosmological Moduli Problem
One of the best-known issues associated with moduli reheating is the cosmological moduli problem (CMP) [710,

711, 712]. The MPl-suppression in moduli interactions implies that they are long-lived. While the masses of moduli
are model-dependent to some extent, in most cases these masses are comparable to the gravitino mass. When low-
energy gravity-mediated supersymmetry is used to solve the hierarchy problem of the Standard Model, the soft terms
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Oscillons/Moduli stars?
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Figure 27: Non-linear e↵ects giving rise to oscillons.

Neglecting gravity (⇤ ⌧ MPl) oscillons can be formed by tachyonic reheating with tachyonic oscillations for
which the homogeneous field starts oscillating in the region where V 00 < 0 (since the term tachyonic) and then the
modes for which k2

a2(t) +V 00(�(t)) < 0 will grow exponentially as it can be seen from the equation for the perturbations.
A second source for exponential growth of perturbations is parametric resonance for which the perturbation

frequency !2
k = k2/a2 + V 00 varies non-adiabatically (|!̇k/!2

k | << 1 is violated).
It is natural to ask if the scalar potentials computed from string compactifications such as KKLT and LVS models

allow for the existence of oscillons and/or oscillatons. This has been done for oscillons in [438] where it was found
that oscillons can be formed in KKLT scenarios, as well as for blow-up modes in the LVS scenario (see Fig. 28). For
KKLT the mechanism is parametric resonance whereas for blow-up modes the mechanism is tachyonic oscillations.
Large moduli, like the volume modulus or fibre moduli do not give rise to oscillons. For KKLT and blow-up modes
the spectrum for gravitational waves was computed and found to be substantially di↵erent in both cases. In principle,
gravitational waves (GW) could allow us to hear the shape and size of the extra dimensions by measuring the GW
spectrum. However, the frequencies obtained naturally fall in the Giga Hertz regime, far beyond the reach of Earth
interferometers such as LIGO and VIRGO and any future experiments which probe frequencies below the kilo Hertz
(and also outside the range of LISA [787] or future space interferometers which will probe even smaller frequencies).

Such stringy oscillons are one of a large number of potential sources of gravitational waves of ultra high frequen-
cies (UHF-GWs) at MHz range and above (see Fig. 29 for an example in KKLT and LVS models). Other sources are
cosmic strings, phase transitions, preheating, boson stars, etc. Essentially, every model beyond the Standard Model
may predict sources of GWs at high frequencies, with higher-energy processes giving higher frequencies (a rough
rule of thumb is that GUT scale energies 1017 GeV correspond to GHz frequencies). Furthermore, usually the higher
the frequency the smaller the potential experiment to detect them. However, the required sensibility (measured by
the strain of the spectrum) increases with energies and therefore it is more challenging to detect them. On the other
hand, contrary to lower frequencies, there are no standard astrophysical sources at such frequencies and therefore
any observation would imply either exotic astrophysics or a stochastic background of GWs with cosmological origin,
hinting at physics beyond the Standard Model and early universe cosmology [832, 833]. This opens-up an interesting
new challenge towards devising ways to search for UHF-GWs (for a general discussion see [834]; it is worth noticing
that, even though there are many sources of UHF-GWs, see Fig. 30, it was the study of string cosmology that gave
rise to this initiative).

For boson stars/oscillatons there is also the possibility that the inhomogeneities collapse to black holes. A full
study of the Einstein-Klein-Gordon equations needs to be studied and recently developed codes for numerical relativ-
ity, such as GRChombo [835], have been used to explore potentials like KKLT and LVS but also potentials appearing
in axion monodromy. The growth in the energy density may lead in some cases to gravitational collapse and the
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Figure 9: Spectrum of gravitational waves �GW,e(k) for KKLT model as a function of the
physical momentum a�1k/m at a = 5.72 (blue), a = 6.41 (green), a = 7.07 (orange) and
at the end of the simulation a = 8.3 (red). One can clearly see two peaks at k/a . 1 and
k/a . 2. The simulation which led to the results was performed with W0 = 10�5 and 5123

points.

3.2 Blow-up moduli in LVS

Next we dicuss the standard potential for Kähler moduli in the Large Volume scenario of
moduli stabilisation [10,11] in type IIB string theory. It is realised in so-called Swiss-cheese
type Calabi-Yau manifolds where the volume can be written as

V = �

�
� 3/2
b �

N�

i=2

�i�
3/2
s,i

�
, (45)

where �, �i are numerical constants, �i are the Kähler moduli which describe the size
of four-cycles in the Calabi-Yau threefold. In the following we will focus on the small
blow-up cycles �s which are cycles that can shrink to zero size while the volume stays
finite – the holes of the Swiss-cheese. As in KKLT, the complex structure moduli and
the dilaton are stabilised using fluxes. The potential for the Kähler moduli is generated
by ���corrections and non-perturbative corrections. The Kähler and superpotential are
given by

K/M2
Pl = �2 log

�
V +

�s3/2

2

�
, (46)

W/M3
Pl = W0 +

N�

i=2

Aie
�aiTs,i , (47)

where � � �(CY) is proportional to the Euler characteristic of the CY considered and
parametrises the leading ���corrections, s = 1/gs is the inverse string coupling. W0 is
the VEV of the flux superpotential, Ai are O(1) coe�cients, ai are constants depending
on the non-perturbative e�ects (e.g. for gaugino condensation caused by N D7-branes,
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Figure 12: Spectrum of fluctuations at di�erent moments in time: at the end of linear preheating
at a � 1.16 (blue), shortly after the beginning of the non-linear regime at a � 1.45 (green),
at a � 2.1 (orange), and at the end of the simulation a � 2.5 (red).

of the energy density. It is shown in Figure 14 in units of the average energy density
���, for di�erent moments in time. The green areas correspond to regions with � = 6 ���
and the blue ones to regions with � = 12 ���. One can see that the energy density
starts fragmenting once non-linear interactions become important (a � 1.2) leading to
highly energetic regions. As the Universe expands the dynamics between field fluctuations
eventually become less violent, leading to stable, highly energetic, bubbly regions. These
bubbly regions represent localised, large amplitude oscillations in field space, i.e. oscillons.
Although the snapshots shown in Figure 14 are most likely still representing a phase
of oscillon formation, one can see that for a � 1.78 there are already bubbles which
persist at least until the end of our simulation. Compared to the oscillons we found in
KKLT (see Figure 8) the oscillons for blow-up moduli look more deformed and also many
smaller inhomogeneities are present. Similar to the model studied in [32], the tachyonic
oscillations lead to violent field dynamics and the homogeneous mode decays quickly
into inhomogeneous fluctuations within the first four oscillations of the condensate. The
fluctuations in KKLT, however, are gradually amplified over many oscillations of the
background and over a larger period of expansion. By looking at Figure 8 and Figure 14,
it seems as if inhomogeneities in KKLT are directly generated in the form of oscillons,
while the formation of stable oscillons for blow-up moduli happens indirectly through the
fragmentation of previously generated, unstable inhomogeneities. Another impression of
the formation and dynamics of oscillons can be seen in two-dimensional simulations where
we show snapshots of the evolution of the energy density in Figure 13.

The rich dynamics within this blow-up moduli setup lead also to the production of
GWs. The stochastic background of GWs produced during the early stage of preheating
is shown in Figure 15 at di�erent moments in time. After the end of linear preheating
a & 1.16 the spectrum forms a flat plateau for k/a . m which falls o� for larger values of
k/a. The peaky structure in the GW spectrum, which is typically formed in the presence
of oscillons, is not visible by the end of our simulation. This, however, does not mean that
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Figure 29: Spectrum of GWs for KKLT and blow-up modes in LVS at di↵erent moments in time [438]. Even though in both cases the gravitational
waves are in the Giga Hertz range, the spectrum is di↵erent for di↵erent fields and scenarios. In principle potential observation of high frequency
gravitational waves can di↵erentiate among di↵erent scenarios.

Cosmic strings are, by convention, parametrised by a tension Gµ (with c = 1 and G Newton’s constant; although
we normally use MPl in this review, here we conform to the standard convention for cosmic strings). Cosmic strings
lose energy through radiation of gravitational waves and other light particles, forming a cosmic string network charac-
terised by a scaling solution. These scaling solutions maintain a constant fraction of energy density in string relative
to the overall universe during both matter and radiation epochs, with

⇢string = �Gµ ⇢total, (278)

where � is an O(1 � 10) constant whose precise values depends on the detailed description of the network, and the
possible energy loss channels. This is a complicated numerical problem (e.g. see [843] for an older review and [844]
for more recent work). Observational bounds from potential modifications of the CMB power spectrum constrain

Gµ . 10�7. (279)

The possibility of a cosmic string network consisting of fundamental strings was first considered in [845] with a
negative conclusion: observational bounds on the tension of cosmic strings are incompatible with ms ⇠ MPl (and
hence µ ⇠ G�1), and in the heterotic models then in vogue it is not possible to decouple the string and the Planck
scales.

This conclusion has had to be revisited with the development of scenarios in which the fundamental string scale
can be much less than the 4-dimensional Planck scale (such as in warped compactifications or in large volume com-
pactifications such as LVS). For such models, there is no kinematic di�culty with the constraint Gµ . 10�7: this
bound is automatically satisfied in phenomenologically appealing versions of these scenarios.

Although this greatly ameliorates the kinematic constraints on the existence of networks of fundamental cosmic
superstrings, one still needs a dynamical production mechanism. The most appealing such mechanism is brane-
antibrane annihilation at the end of a period of brane inflation, which can lead to the formation of both D1-branes (i.e.
D-strings) and fundamental strings, with Gµ in the interesting range

10�12 . Gµ . 10�6 , (280)
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Gravitational Waves High Frequency
Figure 8: Results from a lattice simulation of the KKLT model with W0 = 10�5 and 512 points

per dimension. The figure shows the three dimensional energy density distribution. The
green surfaces correspond to regions with six times the average energy density ��� while the
blue surfaces indicate �/��� = 12. The energy density distribution is shown at four di�erent
moments in time denoted by the corresponding scale factor.

22

Figure 14: Three dimensional energy density distribution in units of the average energy density.
The green surfaces correspond to overdensities six times the average energy density, while
the blue ones correspond to twelve times the average energy density.

29

Figure 28: 3D modelling of oscillons for KKLT and blow-up in LVS.

production of primordial black holes. This is an interesting avenue of string cosmology that is only starting to be
developed [836, 837, 838].

levitated sensors
bulk acoustic wave

interferometers magnetic conversion

Neutron stars
Primordial BHs
Exotic compact objects
Superradiance annihilation
Superradiance decay

Figure 2: Examples of coherent sources of GWs. The green bands correspond to the frequency ranges probed by
levitated sensors, bulk acoustic wave devices and magnetic conversion detectors respectively, while the cyan band
corresponds to the frequency range probed by interferometers. See text for details.

• For mergers of compact objects, i.e. primordial BHs (Sec. 3.2.2) and exotic compact objects
(Sec. 3.2.3) we take the masses of both merging partners to be equal and estimate the
maximal signal by determining for each frequency the maximal mass contributing to mergers
at this frequency (i.e. the mass corresponding to f = fISCO in Eq. (19) or Eq. (29)). For
the frequency range depicted, this corresponds to the mass range (10�9, 1) M� for primordial
BHs. For exotic compact objects, we vary the compactness as 5 � 10�2 < C < 1/2. The
amplitude of the oscillating GW signal is then given by Eqs. (21) and (30), respectively.

• For signals from axion superradiance we consider both the axion annihilation and axion decay
channel (see Sec. 3.2.4). The frequency of the signal is determined by the axion mass, which
is turn linked to the BH mass by the superradiance condition in Eq. (31). Inserting this into
Eq. (33) and Eq. (35) and taking �/l = 1/2, � = 10�3 and MBH > M� yields the curves
depicted.

3.2 Late Universe

In this section we revise a number of sources that are relevant for high-frequency GW production
and are active in the late Universe. For a summary of these sources see Fig. 2 and Tab. 2 in
App. A.

3.2.1 Neutron star mergers

For not too high binary masses the merger of two neutron stars avoids the prompt collapse to a
BH and leads to the formation of a massive rapidly rotating and oscillating neutron star remnant.
The oscillations of this remnant are very characteristic of the incompletely known equation of state
of high-density matter and generate GW emission in the kHz range (see Fig. 3). For instance, the
dominant oscillation frequency of the post-merger phase (fpeak in Fig. 3) scales tightly with the
radii of non-rotating neutron stars [19]. These radii are uniquely determined by the equation of
state of neutron stars, and are therefore particularly valuable messengers of the underlying high-
density matter physics (see e.g. [20] for a review). Simulation results show a tight correlation
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physics model. In this context, I will show how in string theory there are some natural mechanisms that can 
lead to an enhancement or a suppression of cosmological GW signals, and I will analyse each source taking 
these into account. From the experimental point of view, I will propose a new GW detection concept based on 
the heterodyne detection method [38], which is routinely used in radio receiver circuits, and employed in all 
modern radio receivers. The crucial advantage of this concept is that the power measured by the photon detec-
tor would be linear in the GW amplitude, contrary to what happens in the currently existing detectors that are 
sensitive to the square of the GW amplitude. As the typical GW amplitudes can be as small as ~10-35 in the 
UHF band, the improvement in the sensitivity can potentially be significant. 
Part 1: Ultra-High-Frequency Gravitational Wave Sources 
Part 1 of this project is devoted to a systematic study of the theoretical aspects of both late and early 
Universe sources and to the analysis of the detection prospects with the experimental concepts available. 
Part 1a: Early Universe Sources 

 
The 

weakness of gravity is a source 
of joy and torment: on the one hand, it is 
responsible for the fact that GWs can go 
through the early Universe’s plasma 
unaltered, delivering a snapshot of the 
Universe’s state at the time of production. On 
the other hand, it also implies that to produce 
detectable GWs, violent events must occur, 
involving high energy densities and 
relativistic speeds. The paradigmatic example 
in the late Universe is provided by BH mer-
gers: the densest objects are smashed together reaching a 
speed close to that of light in the last phases of the merger. Eq. 1 is the equation of motionj for the metric 
perturbations hij in a Friedman-Robertson-Walker background, that obey the transverse traceless (TT) condi-
tions and represent the two GW polarizations while Πij is the anisotropic stress-energy tensor [39]. There are 
two ways to generate GWs in the early Universe [40]: i) through the amplification of vacuum fluctuations, 
with Πij = 0; ii) through a large classical source of tensor modes, in which case Πij ≠ 0. Case i) is the inflationary 
mechanism for the generation of tensor perturbations, that might be detected in the CMB. In this project I will 
focus on case ii). While the Universe’s history before BBN is unknown, it is widely believed, based on our 
current knowledge of quantum field theory, thermodynamics and GR, that many events potentially producing 
a large source term in Eq. 1 might have occurred in this era. Remarkably, most of these events are also crucial 
to driving the Universe to its current state, for instance i) phase transitions [41], which occur any time the 
Universe changes its vacuum state, ii) the formation of topological defects [41], that can be produced during 
phase transitions, iii) evaporating PBHs [42], which produce gravitons through Hawking radiation, iv) the 
thermal production of GWs [43-45], which is the GW analogue of CMB and v) baryogenesis [46], i.e. the 
production of the asymmetry between matter and antimatter that we observe today, and in many scenarios 
leads to GW production. One paradigmatic example of GW production mechanism acting immediately after 
the end of inflationk (see Fig. 1) and subject of my studies, is preheating. After inflation, the energy density 
stored in the inflaton has to be transferred to the SM degrees of freedom. This can happen slowly, through the 
perturbative decay of the inflaton, or violently, through non-perturbative effects. The latter case is called 
preheating: it occurs in a plethora of BSM models and sources GWs. During such a stage, dense clumps of 
scalar field called oscillons [54] can form and remain meta-stable. Fig. 4 reports three time-slices from a pre-
heating simulation for a monodromy inflation model [47], where red/blue regions have less/more than average 
energy density. The leftmost slice contains only primordial perturbations as obtained from inflation, while in 
the other two slices large energy density oscillons are formed. These generate large gradients (due to non-
sphericity) that produce a large Πij term and source GWs [40]. I will analyse other GW production mechanisms, 
some of which are listed in Fig. 3,l in the detailed description of the work packages. In Fig. 3 [27], the regions 
below the dotted line illustrate the region that may be covered by the corresponding source for appropriate 
parameter choices. For these sources, it is crucial to come up with precise and physically sound targets, in 
order to guide the work on detector concepts. Below, I will give more details on the detectors in Fig. 3.	 

 
j Derivatives are taken with respect to conformal time, G is the gravitational constant and a is the scale factor. 
k Inflation is a postulated period of accelerated expansion taking place before radiation domination, see Fig. 1. 
l Note that we will discuss some of the detectors appearing in Fig. 3 and 5 in a subsequent section. 
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 Figure 3: early Universe sources and detectors' sensitivities. 

Figure 30: Di↵erent sources of high frequency gravitational waves and the experimental constraints. Taken from [834].

5.9. Cosmic Strings and Superstrings
String theory is normally regarded as a theory of small scales and early times. However, there is one potential

enormous exception to this: the possibility of a network of fundamental cosmic superstrings (or D1-strings) that stretch
across the sky. For a long time, cosmic strings were regarded alongside inflation as one of the leading candidates
to explain the origin of structure; in a field theory they have a natural origin as topological defects formed during
processes of symmetry breaking in the early universe (as first described by Kibble in the 1970’s [839]).52 Cosmic
string were also appealing as a possible source of structure in the universe [840, 841]. Although observations of
acoustic peaks in the CMB subsequently disfavoured cosmic strings as the primary source of structure in the universe,
cosmic string networks could still exist at a subdominant level (CMB bounds on cosmic strings are described in [842]).

52One of the authors (JC) would like to note here that the town he lives in, Didcot, has streets named after Dirac, Higgs and Kibble.
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Kination scenario

5. Post-Inflation

This section refers to physics that originates between the end of inflation and the start of the thermal Hot Big Bang.
It begins with the universe still dominated by the vacuum energy of inflation, but now moving away from slow-roll as
the inflationary epoch terminates. It ends as the universe settles into the Hot Big Bang: a radiation-dominated epoch
with the energy density predominantly in relativistic thermalised Standard Model degrees of freedom. In this section,
we focus on what happened between these two eras. This is not a comprehensive review of all aspects of cosmology
in this epoch. Instead, we focus on those aspects where stringy physics is especially relevant. Readers interested in a
more general treatment of the standard cosmology can consult e.g. [671, 4], while an earlier discussion of aspects of
moduli physics in this epoch is [672] and a review of non-standard expansion histories is [673].

While it is true that there exists a ‘standard’ cosmological account of reheating, involving a rapid transfer of energy
from inflationary degrees of freedom to relativistic Standard Model degrees of freedom, in string theory cosmologies
there are no strong reasons to expect this standard account to hold. Although some aspects of the standard cosmology
may be preserved in some string theory models, the standard cosmology may be modified in (at least) three ways.
First, through the existence of large field displacements between the end of inflation and the final vacuum. Second, in
there being no necessary relationship between the inflaton field and the field responsible for reheating. Third, through
the expectation of a long moduli-dominated epoch in the universe culminating in moduli-driven reheating. These
possibilities are illustrated in Fig. 21. In addition, UV complete string models may connect aspects of early universe
and particle physics that otherwise appear uncorrelated.

V(!)

!!min

"! ≤ $!

"! ≈ &'$!

(1016 GeV)4

inflation

kination

Moduli 
domination
and reheating

V ≈ e-!"

Scaled by  
≈ 1030

Figure 21: A cartoon of one way moduli and stringy physics can substantially modify the post-inflationary history of the universe. Following a
period of inflation at relatively high energies, several epochs may occur prior to the start of the Hot Big Bang. We show here the case of a kination
epoch followed by moduli domination leading to late reheating. Note the large range of scales that may arise in the scalar potential and the scalar
field displacement. In particular, the barrier after the minimum may be 20 (or more) orders of magnitude smaller than the energy scale during
inflation (Vbarrier ' 10�20Vinf ).

5.1. The Standard Cosmology
We start with a brief review of the ‘standard’ account of post-inflationary cosmology. During the inflationary

epoch, the universe was dominated by the vacuum energy density of a scalar field and the evolution of the universe
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Alternative Histories?

and so matter wins out over radiation. Although both familiar and basic, Eq. (230a) implicitly contains one of the
most important elements of string cosmology. As discussed in Section 3, moduli originate from higher-dimensional
modes of the graviton and interact through gravitationally suppressed couplings. On dimensional grounds, the decay
rates of such moduli are set as

�� =
�

16⇡

m3
�

M2
Pl

, (231)

where � is a dimensionless O(1) constant, whereas particles with renormalisable perturbative decays have decay rates
given by Eq. (203). Compared to these, the lifetimes of the scalar moduli are enhanced by a factor of

⇣
MPl/m�

⌘2
.

Indeed, as the Planck scale is the silverback mountain gorilla of energy scales in physics, moduli also outlive other
particles with non-renormalisable interactions suppressed by (merely) the GUT scale.

When heavy particles decay, their decay products are normally relativistic. With radiation redshifting as ⇢rad ⇠ a�4

and matter redshifting as ⇢mat ⇠ a�3, the relativistic products from any ‘early’ decays rapidly grow sub-dominant to
any surviving matter present. With the evolution of cosmic time, a universe crowded with particles inevitably becomes
dominated by the longest-living, latest-decaying matter. As gravity is, both empirically and theoretically, the weakest
force, this implies that it is a generic expectation of string compactifications that the universe will go through a
stage where its energy density is dominated by the mass-energy of moduli particles, for which all interactions are
non-renormalisable and suppressed by the Planck scale.

This era of moduli domination is one of the most generic and distinctive expectations of string cosmology, and it is
one of the most notable ways in which string cosmology di↵ers quite substantially from many field theory approaches
to inflation where reheating is assumed to be driven by fields with couplings that are either renormalisable or, at least,
suppressed by scales far lower than the Planck scale (see Fig. 23).
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5.1. Moduli Domination
In expanding universes, matter and radiation redshift as

⇢matter /
1

a(t)3 ,

⇢radiation /
1

a(t)4 , (152)

and so matter wins out over radiation. Although both familiar and basic, Eq. (152) implicitly contains one of
the most important elements of string cosmology. As discussed in section XXREFXX, moduli originate from
higher-dimensional modes of the graviton and interact through gravitationally suppressed couplings. On dimensional
grounds, the decay rates of such moduli are set as

�� =
�

16⇡
m3
�

M2
P
, (153)

where � is a dimensionless O(1) constant, whereas particle with renormalisable perturbative decays have decay rates
given by Eq. (150). Compared to these, the lifetimes of the scalar moduli are enhanced by a factor of M2

P
m2
�

. Indeed,
as the Planck scale is the silverback gorilla of energy scales in physics, moduli also outlive other particles with non-
renormalisable interactions suppressed by (merely) the GUT scale.

When heavy particles decay, their decay products are normally relativistic. With radiation redshifting as ⇢� ⇠ a�4

and matter redshifting as ⇢ ⇠ a�3, the relativistic products from ‘early’ decays rapidly grow sub-dominant to any
matter present. With the evolution of cosmic time, a universe crowded with particles inevitably becomes dominated
by the longest-living, latest-decaying matter. As gravity is, both empirically and theoretically, the weakest force, this
implies that it is a generic expectation of string compactifications that the universe will go through a stage where its
energy density is dominated by the mass-energy of moduli particles for which all interactions are non-renormalisable
and suppressed by the Planck scale.

This era of moduli domination is one of the most generic and distinctive expectations of string cosmology, and it is
one of the most notable ways in which string cosmology di↵ers quite substantially from many field theory approaches
to inflation where reheating is assumed to be driven by fields with couplings that are either renormalisable or, at least,
suppressed by scales far lower than the Planck scale. While not strictly unique to string theory (the key feature is the
presence of massive scalars with gravitational-strength interactions), it represents a very di↵erent cosmological history
to many Beyond-the-Standard-Model post-inflationary scenarios, which involve a rapid transfer of energy from the
inflationary degrees of freedom into Standard Model particles.

Sometimes string theory is seen as an esoteric UV issue of little interest to hard-working practical-minded cos-
mologists studying the universe one trillionth of a second after the Big Bang. It is, therefore, important to note that
the cosmology of such field theory scenarios is unstable to the inclusion of a sector with only gravitationally coupled
particles (i.e. moduli). As described above, as long as there is some initial amplitude in the moduli fields, we expect
this energy density to grow so that the universe passes through an epoch of moduli domination.

Naively, one may think it possible to avoid this by assuming that the inflaton is charged only under Standard
Model degrees of freedom, and that all inflationary dynamics only involves a displacement in the inflaton field. The
claim is that, in this case, there would be no amplitude in the moduli degrees of freedom or, put another way, the
post-inflation moduli would not be displaced from their final minimum during inflation. However, in practice it is
very hard to engineer this: in the context of any e↵ective Lagrangian with a UV completion in string theory, there
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The Kähler potential is
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5.1. Moduli Domination
In expanding universes, matter and radiation redshift as

⇢matter /
1

a(t)3 ,

⇢radiation /
1

a(t)4 , (152)

and so matter wins out over radiation. Although both familiar and basic, Eq. (152) implicitly contains one of
the most important elements of string cosmology. As discussed in section XXREFXX, moduli originate from
higher-dimensional modes of the graviton and interact through gravitationally suppressed couplings. On dimensional
grounds, the decay rates of such moduli are set as

�� =
�

16⇡
m3
�

M2
P
, (153)

where � is a dimensionless O(1) constant, whereas particle with renormalisable perturbative decays have decay rates
given by Eq. (150). Compared to these, the lifetimes of the scalar moduli are enhanced by a factor of M2

P
m2
�

. Indeed,
as the Planck scale is the silverback gorilla of energy scales in physics, moduli also outlive other particles with non-
renormalisable interactions suppressed by (merely) the GUT scale.

When heavy particles decay, their decay products are normally relativistic. With radiation redshifting as ⇢� ⇠ a�4

and matter redshifting as ⇢ ⇠ a�3, the relativistic products from ‘early’ decays rapidly grow sub-dominant to any
matter present. With the evolution of cosmic time, a universe crowded with particles inevitably becomes dominated
by the longest-living, latest-decaying matter. As gravity is, both empirically and theoretically, the weakest force, this
implies that it is a generic expectation of string compactifications that the universe will go through a stage where its
energy density is dominated by the mass-energy of moduli particles for which all interactions are non-renormalisable
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Here the initial condition has been set as �(t0) = �0. The residual integration constant has been fixed by requiring
that a time coordinate of t = 0 represents (at least formally) an initial singularity where the energy densities diverge.
It is worth noting that during kination, the field moves through approximately one Planckian distance in field space
each Hubble time. This is an interesting feature from the perspective of string cosmology, as transPlanckian field
excursions are home territory for string theory and require a theory of quantum gravity to ensure adequate control of
the e↵ective field theory expansion over such large displacements. Any extended kination epoch, lasting for many
Hubble times, will result in a field traversing a markedly transPlanckian distance.

The scale factor behaves as
a(t) / t1/3, (180)

which follows immediately from H2 ⌘ ȧ(t)2

a(t)2 =
�̇2

6M2
P
. During a kination epoch, the energy density therefore drops o↵ as

⇢kination(t) / 1
a(t)6 . (181)

By comparing with ⇢ / a�3 or ⇢ / a�4 (behaviours of matter and radiation domination), we see that kinetic energy
dilutes much faster. This implies that during a fast-rolling kination phase, any initial sources of matter or radiation
will – over time – catch up with the kination energy. At this point, their additional Hubble friction can e↵ectively stop
the evolution of the field (it becomes overdamped) until the energy densities of the universe have fallen su�ciently
for the slope of the potential to become important again.

At this point, the evolution enter an attractor tracker solution. The ‘attractor’ nature refers to the fact that many
initial conditions converge onto the same solution. The ‘tracker’ property refers to the fact that fixed proportions
of the energy density lie in each of potential energy, kinetic energy and radiation (or matter) (28; 296; 297). The
use of tracker solutions, and additional Hubble friction to avoid overshoot, goes back a long way (for example, see
(298; 299; 300; 301; 302; 303)).

We now describe the properties of the tracker solution (mostly following the analysis of (297)). The existence of
the tracker solution relies on the presence additional contributions to energy density which redshift slower than kinetic
energy. For a generic cosmic fluid with equation of state

P = (� � 1)⇢, ⇢ ⇠ a�3�,

and so a slower redshift than kinetic energy requires � < 2. Both matter and radiation satisfy this condition. Given
the high inflationary scales, there does not appear to be an obvious candidate for stable matter at the end of inflation
(although, as possibilities, one could consider either primordial black holes or relatively heavy axions with ma < H,
which become non-relativistic shortly after the end of inflation).

Instead, we focus on the relatively universal case of initial radiation, where ⇢extra = ⇢� (note we use ⇢� to denote
any form of radiation, not just photons). There are many good candidates for such radiation (for example, gravitons,
axion-like particles or extra U(1) gauge bosons).

The Friedmann equations are

Ḣ = � 1
2M2

P

⇣
⇢� + P� + �̇2

⌘
= � 1

2M2
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⇣
�⇢� + �̇

2
⌘
, (182)
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, (183)

with energy conservation set by
⇢̇� = �3H

�
⇢� + P�

�
= �3H�⇢�. (184)

The attractor nature is made manifest by transforming to the variables

x =
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MP

1
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6H
, y =

r
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Alternative histories of our Universe

Figure 23: Alternative histories of the universe including potential periods of kination and moduli domination.

While not strictly unique to string theory (the key feature is the presence of massive scalars with gravitational-
strength interactions), it represents a very di↵erent cosmological history to many Beyond-the-Standard-Model post-
inflationary scenarios, which involve a rapid transfer of energy from the inflationary degrees of freedom into Standard
Model particles.

Sometimes string theory is seen as an esoteric UV issue of little interest to hard-working practical cosmologists
studying the universe one trillionth of a second after the Big Bang. It is, therefore, important to note that the cosmology
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Figure 6: Temperature T against the radius of the extra dimensions R in string gas cosmology illustrating the Hagedorn temperature as a limiting
temperature in string theory and the two dual phases of T-duality separated at the self dual point Rc.

The main obstacles regarding these proposals rely on the lack of understanding of string theory at small scales
and strong couplings and in particular the nature of the Hagedorn phase. In the regimes where e↵ective field theo-
ries are applicable there is the standard challenge of implementing the scenario in realistic set-ups including moduli
stabilisation.

5.3. Pre Big-Bang Cosmology
In the 1990s Veneziano and collaborators somehow went beyond the Brandenberger-Vafa proposal by considering

the possibility of T duality in realistic cosmological backgrounds closer to the FRW type. For an ansatz of the type:
ds2 = �dt2 +

Pd
i=1 a2

i (t) dx2
i it can be easily seen that T duality is a symmetry of the equations of motion acting as:

ai(t)!
1

ai(t)
'! ' � 2

X

i

log ai (199)

Since ai(t) represent in this case the scale factors, like in FRW, this has been named scale factor duality (343). Thus
we can see that expanding and contracting universes are related by this symmetry.

Gasperini and Veneziano combined this symmetry with the standard symmetry under inversion of time: a(t) $
a(�t) which allow for the possibility to consider cosmology before t = 0 for which the Hubble parameter increase
instead of decrease. That is without duality the symmetry under t ! �t would send H(t) ! �H(�t) but, combining
this with scale factor duality, it provides four di↵erent sign combinations for H(t). If the universe at late times is
decelerating H would be a decreasing monotonic function of time for ‘positive’ t, then a combination of duality and
the t ! �t transformation can give rise to H(�t) = H(t) so that this function can be even, see figure. Therefore GV
proposed a concrete scenario in which the universe accelerates from negative times towards the big bang and then
decelerates after the big-bang. The acceleration would indicate a period of inflation before the big-bang without the
need of an scalar potential. This scenario is called Pre Big-Bang Cosmology (344; 320; 345).

A concrete solution for this system corresponds to the isotropic case ai = a j ⌘ a(t) for which:

a(t) = t1/
p

d t > 0 , (200)

57

?

t

H

t=0

Figure 7: Possible realisation of the pre big bang scenario with the past and future regions expected to match at the singularity with strong coupling
and large curvature

with a constant dilaton. For this H(t) ⇠ 1/t decreases monotonically with time. By applying the transformation t ! �t
and duality we can generate the four di↵erent branches of solutions:

a(t) = t±1/
p

d t > 0, a(t) = (�t)±1/
p

d t < 0 . (201)

With '±(±t) = (±
p

d � 1) log(±t).
The universe expands in the two branches for which H > 0 which provide an interesting realisation of the pre

big-bang scenario, see figure 7. The solutions are such that there is a singularity at t = 0 but also in this region the
dilaton blows up implying strong string coupling. It is expected that nonperturbative string e↵ects would provide a
smooth matching between these two branches. The weak coupling perturbative string vacuum appears as a natural
initial condition in the pre big-bang era. Therefore the scenario consists of an empty cold universe in the infinite
past that expands in an accelerated way towards a region of higher curvature until it approaches the region of strong
coupling and large curvature which is assumed will match smoothly to the post big bang branch in which the universe
continues expanding but decelerates.

The spectrum of density perturbations has been estimated and claimed not to contradict the recent observations.
Also it provides testable di↵erences with respect to the tensor perturbations that could be put to test in the future
searches for gravitational waves.

This scenario has very interesting features but it has also been subject to criticism for several reasons. First, as the
authors point out, the main problem to understand is the graceful exit question, that is how to pass smoothly from the
pre to post big-bang period, that means how to describe the big bang singularity which is a major challenge. Close
to the big-bang the perturbative treatment of string theory does not hold since the dilaton and the curvature increase,
implying strong string coupling. Therefore there is no concrete way to address this issue in the framework that the
theory is formulated. Another important problem is the fact that the moduli are neglected from this analysis and there
has to be a mechanism that stabilises the extra dimension. Also the scale factor duality symmetry that motivated
the scenario is not clearly realised in more realistic settings with nontrivial matter content. The fact that the dilaton
will eventually be fixed by nonperturbative e↵ects may change the setting of the scenario. On the other hand it is
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Figure 10: An illustration of the potential and trajectory of the field in the cyclic universe.

This is definitely an urgent question to approach before these models can be considered genuine M-theory models. In
this sense these scenarios are at present in the same stage as D-brane inflation was in 1998 where the scalar potential
was only guessed, instead of explicitly calculated as in the brane/antibrane and intersecting brane models. Finding a
potential with the proposed properties is certainly an interesting challenge.

There are several problems of this scenario. In particular the assumption of having fixed the moduli of the Calabi-
Yau manifold is not justified. Although the main problem to deal with is the singularity giving rise to the bounce,
which is a very strong assumption. Observationally, the important points to address refer to the spectrum of density
perturbations since this is what could rule out the model.

In summary, the three scenarios: pre big-bang, string/brane gas and ekpyrotic/cyclic contemplate a period of
contraction and are examples of bouncing cosmologies. For a nice recent review on bouncing cosmologies see (324).

5.5. The Rolling Tachyon
As we have seen the open string tachyon plays an important role in brane anti-brane inflation. It provides the

natural way to end inflation and is the source of production of lower dimensional branes like stringy cosmic strings.
On the other hand, from the formal perspective, there has been concrete progress in understanding from first

principles the physics of the open string tachyon. In particular, using string field theory Sen managed to extract
substantial information regarding the tachyon potential. This is actually one of the only cases in which a scalar
potential has been derived from string theory. It is then worth exploring the potential cosmological implications of the
tachyon field, independent of brane inflation.

String calculations suggest that to all orders in derivative expansion these actions can take a Born-Infeld form.

L = � V(T )
q

1 � gµ⌫@µT@⌫T , (206)

where V(T ) can take di↵erent forms depending on the type of string theory, namely bosonic or supersymmetric.
First, Sen studied the rolling of the tachyon to its asymptotic minimum T ! 1 and concluded that even though

the vacuum should correspond to the closed string vacuum and the unstable D-brane system (such as brane/antibrane
pairs or non BPS D-branes) has decayed. The energy density is still localised. Furthermore he was able to prove that
the resulting gas corresponded to a pressureless gas. This is easy to see from the e↵ective action above for which the
stress energy tensor give for a time dependent tachyon:

⇢ =
V(t)
p

1 � Ṫ 2
, p = �V(T )

p
1 � Ṫ 2 . (207)

For constant energy density the pressure goes like p = �V2/⇢ and at the minimum in T ! 1 we know that V ! 0
and so p! 0. The equation of state is p = w⇢ with w = �(1 � Ṫ 2) and therefore �1  w  0.
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Figure 11: Penrose diagram for an S-brane. Note that it is a ⇡/2 rotation of the Schwarzschild black hole Penrose diagram. Regions I and III are
cosmological representing expanding and contracting universe respectively, separated by smooth horizons which can be identified with the S-brane.
Whereas regions II and IV are static and have time-like singularities which can be identified with negative tension (end-of-the-world) brane objects
(similar to orientifolds). Their corresponding mass and charge can be computed explicitly.

together with M ! iP. The metric becomes:
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whose surface of constant r and t is the hyperbolic planeH2 rather than the two-sphere, as expected. In addition to the
symmetries of the hyperbolic space it has a spacelike Killing vector ⇠ = @r but is time dependent, again as expected
for a S0 brane. The apparent singularity at t = 2P is again a horizon. For t < 2P the metric is:

dŝ2
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r
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r
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dr2 + r2
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sinh2 ✓ d�2 + d✓2

⌘
, (213)

which is now static with the timelike singularity at r = 0. The corresponding Penrose diagram is a ⇡/2 rotation of the
black hole diagram as it can be seen in figure (11).

More general solutions of (210) will have both dilatonic and Fq+2 charges (see for instance (351; 352)). Having
the static region provides us with a way to actually identify correctly this geometry. It turns out that the singularities
are the physical objects to which mass (or tension) and charge can be assigned unambiguously. It is found that the two
singularities correspond to negative tension objects (like end-of-the-world branes) with opposite charge. Furthermore,
the similarity with black hole geometry indicates that there will be particle production and then we can also compute
a generalised Hawking temperature and entropy which could have interesting cosmological interpretation. Finally,
just like the cases of pre bing-bang, ekpyrotic/cyclic and brane gas scenarios, S-branes naturally have a period of
contraction of the universe (region III of the Penrose diagram), followed by another period of expansion (region I).
For further details on the cosmological interpretations of S-branes see for instance (351; 352; 353; 354; 355).
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similar to the Euclidean Schwarzschild metric this is non-singular even at r = R. But this is a minimum value of
the coordinate r. For large r the metric is asymptotically flat. So this instanton mediates a transition from the flat
spacetime with the circle of radius R to a spacetime with maximum value of r where the fifth dimension collapses
which we may identify as a bubble of nothing. The interesting point is that after nucleation the further evolution
of the bubble is towards increasing at the speed of light as it can be seen by the Wick rotation ✓ ! it and since
cos ✓ ! cosh t the bubble radius increases exponentially with time eating up the full spacetime. In the 5d case
this transition depended on the existence of supersymmetry and was considered without taking into account moduli
stabilisation of the extra dimension. Generalisations to 6d with moduli fixed by fluxes have been found with the
similar dramatic outcome (374; 375). Furthermore, it was recently argued that these bubbles of nothing are ubiquitous
in string compactifications (376) and may be eventual sources of instabilities (although being non-perturbative the
decay rate may be much suppressed).

The second appearance of nothing was in the creation out of nothing scenario of Vilenkin (377; 378; 379) and
the subsequent wave function of the universe of Hartle and Hawking (380). This defines, within the domain of
semiclassical gravity, a concrete proposal to describe the beginning of the universe from a state with no spacetime.
So, in a sense it is the opposite of the bubble of nothing picture.

From simple mini-superspace arguments the transition from nothing to a de Sitter space with cosmological con-
stant given by H2 > 0 is found to be of order

P = | |2 / e
⌘⇡

2GH2 (216)

with ⌘ = +1 for Hartle-Hawking boundary conditions (no boundary proposal in which the nucleated universe is a
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Thank You!


