Superstring Phenomenology

Fernando Quevedo
Cambridge
Pre-SUSY School
Southampton
July 2023

Outline

- Motivation
- Superstrings
- String Compactifications
- Model building
- Moduli stabilization and supersymmetry breaking
- The string landscape and the swampland
- String Cosmology
- Before Inflation?
- Models of String Inflation
- Post-inflation
- Alternatives

Recommended reading

- L. Ibanez, A. Uranga; String theory and particle physics, CUP (2009).
- A. Hebecker, Lectures on Naturalness, String Landscape and Multiverse, arXiv/2008.10625.
- Agmon, Bedroya, Kang, Vafa; Lectures on the string landscape and the swampland, arXiv/2212.06187.
- M. Cicoli, J. Conlon, A. Maharana, S. Parameswaran, F. Quevedo, I. Zavala; String Cosmology: from the early universe to today, arXiv/2303.04819.

Motivation

Our purpose in theoretical physics is not to describe the world as we find it, but to explain-in terms of a few fundamental principles- why the world is the way it is.

Steven Weinberg

Fundamental Theories:

Special Relativity and Quantum Mechanics

Poincaré Group

Massive particles: (Little group SO(3)) $\quad p=(m, 0,0,0)$

$$
\left|m, J ; p_{\mu}, s\right\rangle \text { with } s=-J,-J+1, \cdots, J \text { and } p^{2}=m^{2}
$$

Tachyons?
Massless particles: (Little group E2) $\quad p=(E, 0,0, E)$
∞-dimensional representations (CSR): not observed ??
Restricted Little group: O(2) in E2: $\left|p_{\mu}, \lambda\right\rangle$ with $\lambda=0, \pm 1 / 2, \pm 1, \cdots$.

Theories for spins 0,1/2,1: Quantum Field Theories (QFT)
Massless spins 3/2,2: (super) gravity: Effective Field Theories (EFT)

"General Predictions" of QFT

- Identical particles
- Antiparticles
- CPT
- Spin-statistics
- 'Decoupling' (physics organised by scales, EFTs)

Standard Model 1

- Particle physics

Name	Label	$\mathrm{SU}(3)_{C}, \mathrm{SU}(2)_{L}, \mathrm{U}(1)_{Y}$	Spin
Quarks	$Q_{L}^{i}=\binom{u_{L}^{i}}{d_{L}^{i}}$	$\left(\mathbf{3}, \mathbf{2},+\frac{1}{6}\right)$	$\frac{1}{2}$
	u_{R}^{i}	$\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{2}{3}\right)$	$\frac{1}{2}$
Leptons	d_{R}^{i}	$\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{1}{3}\right)$	$\frac{1}{2}$
$L_{L}^{i}=\binom{\nu_{L}^{i}}{e_{L}^{i}}$	$\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right)$	$\frac{1}{2}$	
Higgs	e_{R}^{i}	$(\mathbf{1}, \mathbf{1},-1)$	$\frac{1}{2}$
Gluons	$\nu_{R}^{i *}$	$(\mathbf{1}, \mathbf{1}, 0)$	$\frac{1}{2}$
W / Z-Bosons	$W_{\alpha}^{ \pm}, Z^{0}$	$\left(\mathbf{1}, \mathbf{2},+\frac{1}{2}\right)$	0
Photon	γ	$(\mathbf{8}, \mathbf{1}, 0)$	1
Graviton*	$h_{\mu \nu}$	$(\mathbf{1}, \mathbf{3}, 0)$	1

Triumph of gauge field theories and effective field theories (EFT) !

Standard Model 2

- Cosmology

\CDM + inflation
(source of almost scale invariant, gaussian, adiabatic density perturbations)

Note: There is no theory behind (origin of dark matter, dark energy, inflation, etc.)

Compelling Structure of the SM

- Gauge theories unique
- Higgs mechanism
- One spin/helicity s= 2 graviton
- No interacting higher spin s>2 massless states
- Choice of gauge groups, representations, couplings
*Missing spin 3/2 requires supersymmetry!

SM+Gravity as EFT

EFT: scalar field

$$
\mathcal{L}=\underbrace{\underbrace{\partial^{\mu} \phi \partial_{\mu} \phi-m^{2} \phi^{2}-g \phi^{3}-\lambda \phi^{4}}_{\text {Renormalisable }}+\frac{\alpha}{\Lambda} \phi^{5}+\frac{\beta}{\Lambda^{2}} \phi^{6}+\cdots}_{\text {Non-Renormalisable }}
$$

EFT: Einstein gravity $\quad \mathcal{L}_{E H}=M_{P}^{2} R^{(4)} \sqrt{-g} \quad \mu \ll M_{P}=\sqrt{\frac{\hbar c}{G_{N}}} \sim 10^{19} \mathrm{GeV}$.

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{P}} h_{\mu \nu} \Rightarrow M_{P}^{2} R^{(4)}=(\partial h)^{2}+\frac{h}{M_{P}}(\partial h)^{2}+\frac{h^{2}}{M_{P}^{2}}(\partial h)^{2}+\ldots .
$$

EFT: SMEFT

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{S M}+\frac{1}{M} \mathcal{L}_{5}+\frac{1}{M^{2}} \mathcal{L}_{6}+\mathcal{O}\left(\frac{1}{M^{3}}\right) . \\
& \mathcal{L}_{S M}=\mathcal{L}^{\text {gauge }}+\mathcal{L}_{F}^{\text {kinetic }}+\mathcal{L}_{F}^{\text {Yukawa }}+\mathcal{L}^{\text {Higgs }}
\end{aligned}
$$

EFT: SM + gravity

$$
\begin{aligned}
\mathcal{L}_{S M} & \rightarrow \sqrt{-g}\left(\mathcal{L}_{S M}^{\prime}+\Lambda+M_{P}^{2} R+\ldots\right) \\
\mathcal{L}_{S M}^{\prime} & =\mathcal{L}_{S M}\left[D_{\mu} \rightarrow \mathcal{D}_{\mu}\right]
\end{aligned}
$$

Open Questions

- Why? (3+1 (dimensions, families, interactions); + some $\mathbf{2 0}$ parameters (masses, couplings))
- Naturalness (hierarchy, cc, strong CP)
- 'Technical' (confinement,...)
- Cosmology (dark matter, baryogenesis, density perturbations of CMB, origin/alternatives to inflation,..., big-bang)
- UV completion of gravity

FUNDAMENTAL PROBLEM

Quantum Gravity

Planck scale: $\mathrm{M}_{\text {Planck }}=\sqrt{\mathrm{hc} / \mathrm{G}} \approx 10^{19} \mathrm{GeV}$

$$
L_{\text {Planck }}=\sqrt{\mathrm{hG} / \mathrm{c}^{3}} \approx 10^{-33} \mathrm{~cm}
$$

Greatest puzzle: Cosmological constant

Cosmological constant $=$
$\mathbf{0 . 0}$ 0001 M Planck 4 ????

Approaches to BSM

Simplicity

Superstrings

String Theory in a Nutshell

Relativistic point
particle mass m

$$
S=-m \int_{\gamma} \mathrm{d} s, \quad \quad d s=\sqrt{\eta_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}} d \tau
$$

$$
\frac{d}{d \tau}\left(m \frac{d x^{\mu}}{d \tau}\right)=m \ddot{x}^{\mu}=0 \quad \text { Free particle }
$$

$$
S=-m \int \sqrt{-\dot{x}^{2}} d \tau-q \int A_{\mu} d x^{\mu} . \quad \begin{aligned}
& \text { Electromagnetic } \\
& \text { interaction }
\end{aligned}
$$

Relativistic string of tension T

$$
\begin{aligned}
& \text { Nambu-Gotto action } \\
& S_{\mathrm{NG}}[X]=-T A(\Sigma)=-T \int_{\Sigma} d^{2} A=-\frac{1}{2 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}} \\
& \alpha^{\prime} \equiv \frac{1}{2 \pi T} .
\end{aligned}
$$

String analogue of E\&M coupling?
$Q \int B_{\mu \nu} d X^{\mu} d X^{\nu}$

Polyakov action

$$
S_{\mathrm{P}}[X, h]=-\frac{T}{2} \int d^{2} \sigma \sqrt{h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}
$$

$h_{\alpha \beta}(\sigma) \rightarrow e^{2 \Lambda(\sigma)} h_{\alpha \beta}(\sigma)$
Weyl (conformal) invariance together with Lorentz and 2d reparametrisations
Equation of motion for $\mathrm{X}: \quad \frac{1}{\sqrt{h}} \partial_{\alpha}\left(\sqrt{h} h^{\alpha \beta} \partial_{\beta} X^{\mu}\right)=0$
Equation of motion for h gives the Nambu-Gotto action

Boundary conditions

Closed Strings periodic

Open Strings $\delta S=\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} \sigma\left(\partial^{2} X\right) \cdot \delta X-\left.\frac{1}{2 \pi \alpha^{\prime}} \int d \tau\left(\partial_{\sigma} X^{\mu}\right) \cdot \delta X_{\mu}\right|_{\sigma=0} ^{\sigma=\pi}$

$$
\begin{array}{ll}
\partial_{\sigma} X^{\mu}=0 & \text { Neuman } \\
\delta X_{\mu}=0 & \text { Dirichlet }
\end{array}
$$

Neuman in time and p-spatial dimensions
Dirichlet in D-p dimensions: D-branes

$\int B_{M_{1} \ldots M_{p+1}} \mathrm{~d} x^{M_{1}} \wedge \ldots \wedge \mathrm{~d} x^{M_{p+1}}$
p+1 rank antisymmetric tensor couples to a p-dimensional brane

Critical Dimensions

Conformal gauge $h_{\alpha \beta}=\eta_{\alpha \beta}$
Conformal (trace) anomaly: $\quad T_{z \bar{z}}=-\frac{c}{24} \mathcal{R} . \quad \mathrm{c}=\mathbf{0}$.
Each scalar field X_{μ} contributes $\mathrm{c}=1$.
Ghost system contributes $\mathrm{c}=-26$
c=D-26

$$
D=26 . \quad \text { Bosonic strings }
$$

Add supersymmetry: 2-dimensional fermions $\mathrm{c}=1 / 2$ each, ghosts $\mathrm{c}=-15$ Then:

$$
D=10 \quad \text { Supersymmetric strings }
$$

Spectrum

Solution to wave equation

$$
\partial^{\mu} \partial_{\mu} X^{M}=0
$$

$$
X^{M}(\sigma, \tau)=X_{R}^{M}(\tau-\sigma)+X_{L}^{M}(\tau+\sigma)
$$

Mode expansion $\quad X_{R}^{M}(\tau-\sigma)=x_{R}^{M}+p_{R}^{M}(\tau-\sigma)+\frac{i}{2} \sum_{n \neq 1} \frac{1}{n} \alpha_{n}^{M} e^{-2 i n(\tau-\sigma)}$

$$
X_{L}^{M}(\tau+\sigma)=x_{L}^{M}+p_{L}^{M}(\tau+\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{M} e^{-2 i n(\tau+\sigma)}
$$

Hamiltonian (mass formula) $\quad M^{2}=N_{R}+N_{L}-2 . \quad$ Level matching $\quad N_{L}=N_{R}$
Vacuum (tachyon)
$|0\rangle$
Massless states (closed string)

$$
\alpha_{-1}^{M} \tilde{\alpha}_{-1}^{N}|0\rangle
$$

$$
G_{M N}, B_{M N}, \Phi
$$

Open strings:
|0〉 Tachyon
$\tilde{\alpha}_{-1}^{N}|0\rangle$ Massless $\mathrm{U}(1)$ gauge field
*In superstrings: tachyons projected out also no CSRs!

Two EFTs

2-dimensional

$$
S=\frac{1}{\alpha^{\prime}} \int d \sigma d \tau\left\{\left(G_{M N}(X)+B_{M N}(X)\right) \partial^{\mu} X^{M} \partial_{\mu} X^{N}+\alpha^{\prime} \Phi(X)^{(2)} R\right\} .
$$

Interactions

$$
\begin{aligned}
& \langle\text { out }| \text { evolution } \mid \text { in }\rangle=\sum_{\substack{\text { worrdsheets } \\
h=1}} \int\left[\mathcal{D X]} e^{-\mathcal{S}_{\mathrm{P}}[X]} \mathcal{O}_{h=2}[X] \mathcal{O}_{\text {out }}[X]\right.
\end{aligned}
$$

Each UV finite!
26/10-dimensional

$$
S=\int d^{D} X \sqrt{G} e^{-\Phi}\left\{R-\frac{1}{12} \nabla_{M} B_{N P} \nabla^{M} B^{N P}+\nabla_{M} \Phi \nabla^{M} \Phi-\frac{D-26}{3}\right\}
$$

String theory predicts Einstein's gravity plus...!!!
Dilaton $\boldsymbol{\Phi}$ loop counting parameter or string coupling

Low energy states in Superstring/M theories

Theory	Dimension	Supercharges	Massless Bosons
Heterotic $E_{8} \times E_{8}$	10	16	$g_{M N}, B_{M N}, \phi$
Heterotic $S O(32)$	10	16	$A_{M}^{i j}$
Type I	10	16	$g_{M N}, B_{M N}, \phi$
$S O(32)$			$A_{M}^{i j}$,
Type IIA	10	32	$g_{M N}, A_{M}^{i j}$
Type IIB	10	32	$g_{M N}, B_{M N}, \phi$
$C_{M}, C_{M N P}$			
M-Theory	11	32	$g_{M N}, B_{M N}, \phi$
$C_{0}, C_{M N}, C_{M N P Q}$			

String Compactifications

Simple Compactifications

X^{9} : \mathbf{S}^{1} Circle of radius \mathbf{R}

$$
X^{9}=X^{9}+2 \pi R
$$

$$
\begin{gathered}
p_{R}=m / 2 R-n R \quad p_{L}=m / 2 R+n R \\
\text { m,n integers: momentum and winding! } \\
M^{2}=N_{R}+N_{L}-2+\frac{m^{2}}{4 R^{2}}+n^{2} R^{2}, \quad N_{R}-N_{L}=m n .
\end{gathered}
$$

- $\mathrm{n}=0$, infinite tower of massive (Kaluza Klein) states mass=m/R
- Massless $\mathrm{n}=\mathrm{m}=0$: vector fields $\mathrm{U}(1)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{R}}$
- $\mathrm{n}=\mathrm{O}$ winding states mass proportional to R

- $m=n= \pm 1 \quad N_{R}=1, N_{L}=0$ or $N_{R}=0, N_{L}=1$ enhanced symmetry $\operatorname{SU}(2)_{L} \otimes S U(2)_{R}$ at $R^{2}=1 / 2$
- \mathbf{R} is arbitrary: a modulus!
- Duality! $R \leftrightarrow \frac{1}{2 R} \quad m \leftrightarrow n$. $\mathbf{R}^{2}=1 / 2$ self-dual

Toroidal Compactification

$$
h^{1,0} \begin{array}{ll}
h^{1,1} \\
& h^{0,0}
\end{array} h^{0,1}=1 \begin{gathered}
1 \\
1
\end{gathered}
$$

Hodge diamond

$$
\begin{aligned}
U & \equiv \frac{G_{12}}{G_{22}}+i \frac{\sqrt{G}}{G_{22}} & & \text { Complex structure } \\
T & \equiv B_{12}+i \sqrt{G} . & & \text { Kahler structure }
\end{aligned}
$$

$$
\begin{aligned}
& p_{L}^{2}=\frac{1}{2 U_{2} T_{2}}\left\|\left(n_{1}-n_{2} U\right)-T\left(m_{2}+m_{1} U\right)\right\|^{2} \\
& p_{R}^{2}=\frac{1}{2 U_{2} T_{2}}\left\|\left(n_{1}-n_{2} U\right)-T^{*}\left(m_{2}+m_{1} U\right)\right\|^{2}
\end{aligned}
$$

$$
U \rightarrow \frac{a U+b}{c U+d}
$$

$$
T \rightarrow \frac{a T+b}{c T+d}
$$

$$
a d-b c=1
$$

Modular invariance T-duality Mirror symmetry

$$
S L(2, \mathbf{Z})_{U} \otimes S L(2, \mathbf{Z})_{T}=O(2,2, \mathbf{Z})
$$

Moduli space $\quad S L(2, \mathbb{R}) / O(2) \otimes S L(2, \mathbb{R}) / O(2) \cong O(2,2, \mathbb{R}) /(O(2) \otimes O(2))$

In general $\quad \mathcal{M}=O(d, d, \mathbb{R}) / O(d) \otimes O(d) \quad$ T-Duality $\quad O(d, d, \mathbf{Z})$

Orbifolds

In general $O^{d} \equiv T^{d} / \mathcal{P} \equiv \mathbb{R}^{d} / \mathcal{S}$.

$\{(0,0),(0,1 / 2),(1 / 2,0),(1 / 2,1 / 2)\} \quad$ Fixed points

Strings on orbifolds

- Chiral N=1 SUSY
- Still essentially flat except for fixed points
- Extra sectors: twisted sectors

Quasi realistic models e.g. T^{6} / Z_{3} heterotic: 3 families $\operatorname{SU}(3) \times S U(2) x U(1) x$...

Horava Witten

11d on S^{1} / Z_{2} (interval) gives 10d heterotic $E_{8} \times E_{8}$ (strong coupling)

Orientifold Planes

Combine orbifold in target space with orbifold in string worldsheet (orientation) Fixed planes with positive or negative tension.

O-planes in IIA or IIB string theory break half supersymmetry

Calabi Yau Manifolds/Orientifolds

- 3d Complex Kahler manifolds with SU(3) holonomy (vanishing first Chern class)
- 1d CY torus T2, 2d CY K3 surface, 3d and higher many
- Admit Ricci flat metric but not known explicitly
- Heterotic/type I on CY give 4D Minkowski N=1 theory
- Type II on CY orientifold also 4d Minkowski N=1 SUSY
- Hodge diamond

Calabi Yau

Examples of Calabi-Yau

- Blow-up toroidal orbifolds
- Surfaces in Projective spaces (algebraic geometry) e.g. $\quad P \equiv z_{1}^{12}+z_{2}^{12}+z_{3}^{6}+z_{4}^{6}+z_{5}^{2}=0$

$$
\mathbb{P}_{\left(k_{0}, k_{1}, k_{2}, k_{3}, k_{4}\right)}^{4} \quad(1,1,2,2,6)
$$

- Hypersurfaces in Toric varieties, etc.

Database and tools:
http://hep.itp.tuwien.ac.at/~kreuzer/CY/
https://cy.tools/

Mirror Symmetry

Realistic Model Building

Challenges for String Models

- Gauge and matter structure of SM
- Hierarchy of scales + masses (including neutrinos)
- Flavor CKM, PMNS mixing, CP no FCNC
- Hierarchy of gauge couplings (unification?)
- 'Stable’ proton + baryogenesis
- Inflation or alternative for CMB fluctuations
- Dark matter (+ avoid overclosing)
- Dark radiation ($\mathrm{N}_{\text {eff }} \sim 3.04$)
- Dark energy
N.B. If ONE of them does not work, rule out the model!!!

String Model Building:

- Global Models (e.g. Heterotic)
-Local Brane Models (e.g. IIB, F-theory)

Calabi-Yau Spaces and Brane World

Compactification

New tools: Machine Learning

- Machine (supervised and reinforcement) learning

Lukas et al 2018-2019

- Genetic algorithms

Abel et al et al 2021

1. For model selection
2. Computing explicit metrics of Calabi-Yau manifolds

Anderson et al, Douglas et al, Jejjala et al 2020

Recent Progress

- $\mathrm{N}=10^{15}$ F-theory models with MSSM spectrum
- $\mathrm{N}>10^{23}$ heterotic models with MSSM spectrum

BUT

Big problem: moduli stabilization

(hundreds of massless gravitationally coupled scalar fields, $5^{\text {th }}$ force constraints rules them out)

Moduli Stabilisation and Supersymmetry Breaking

MODULI STABILISATION

Dine-Seiberg Problem

$\mathbf{V} \longrightarrow \mathbf{0}$ at weak coupling and large volume, then minimum may be at strong coupling/small volume beyond control of string perturbation theory

Approaches to DS Problem

- 1980s Racetrack models

$$
W=A e^{-\frac{2 \pi S}{N}}+B e^{-\frac{2 \pi S}{M}} \quad S=\frac{N M}{M-N} \log \left(-\frac{M B}{N A}\right)
$$

- 1990s T or S Duality

$$
W(S, T) \sim \eta(i T)^{-6} \exp (-3 S / 8 \pi b)
$$

Font et al, Ferrara et al 1990

- 2000s Flux compactifications

Sethi et al., Giddings et al 2002...

Flux compactifications

4D Moduli

10D massless spectrum:

- NSNS sector: $\quad g_{M N}, B_{2}\left(d B_{2}=H_{3}\right), \varphi\left(e^{\langle\varphi\rangle}=g_{s}\right)$
- RR sector:

$$
C_{0}, C_{2}\left(d C_{2}=F_{3}\right), C_{4}
$$

4D moduli:

- Axio-dilaton:

$$
S=e^{-\varphi}+i C_{0}
$$

- Complex structure moduli: $U_{\alpha} \alpha=1, \ldots, h_{1,2}^{-}$
- Kahler moduli:

$$
\begin{aligned}
& \left(T_{i}\right)=\tau_{i}+i b_{i}^{+}, \quad \tau_{i}=\operatorname{Vol}\left(D_{i}\right), \quad b_{i}^{+}=\int_{D_{i}} C_{4}, \quad i=1, \ldots, h_{1,1}^{+}, \\
& G_{j}=c_{j}-i S b_{j}^{-}, \quad c_{j}=\int_{\hat{D}_{j}} C_{2}, \quad b_{j}^{-}=\int_{\hat{D}_{j}} B_{2}, \quad j=1, \ldots, h_{1,1}^{-}
\end{aligned}
$$

Fluxes in IIB Compactifications

- Tree-level Kahler potential:

$$
K_{\text {tree }}=-2 \ln \mathrm{~V}\left(T_{i}+\bar{T}_{i}\right)-\ln (S+\bar{S})-\ln \left(i \int_{C Y} \Omega(U) \wedge \bar{\Omega}\right)
$$

- Tree-level superpotential:

$$
W_{\text {tree }}=\int_{C Y} G_{3} \wedge \Omega(U) \quad G_{3}=F_{3}+i S H_{3}
$$

- Flux quantisation:

$$
\frac{1}{2 \pi \alpha^{\prime}} \int_{\Sigma_{3}^{k}} H_{3}=n_{k} \quad \frac{1}{2 \pi \alpha^{\prime}} \int_{\Sigma_{3}^{k}} F_{3}=m_{k} \quad \mathrm{k}=1, \ldots, n=2 h^{1,2}+2
$$

$\longrightarrow 2 \mathrm{n}$ free parameters $\left(n_{k}, m_{k}\right)$
$\mathbf{W}_{\text {tree }}$ does not depend on T because of axion shift symmetry + holomorphicity

Tree-level moduli stabilisation (GKP)

- Tree-level scalar potential:

$$
\begin{aligned}
& V_{\text {tree }}\left.=\left.e^{K}\left|K^{I \bar{J}} D_{I} W D_{\bar{J}} \bar{W}-3\right| W\right|^{2}\right] \quad D_{I} W=W_{I}+W K_{I} \\
&=e^{K} \sum_{S, U} K^{\alpha \bar{\beta}} D_{\alpha} W D_{\bar{\beta}} \bar{W}+e^{K}\left[\sum_{T} K^{i \bar{j}} D_{i} W D_{\bar{j}} \bar{W}-3|W|^{2}\right] \\
&=e^{K} \sum_{S, U} K^{\alpha \bar{\beta}} D_{\alpha} W D_{\bar{\beta}} \bar{W}+e^{K} \underbrace{\left.\sum_{T} K^{\bar{j}} K_{i} K_{\bar{j}}-3\right]}_{=0}|W|^{2} \geq 0 \\
& \text { No-scale cancellation! }
\end{aligned}
$$

- Fix S and U supersymmetrically:

$$
\left.D_{S} W=0 \quad D_{U_{0}} W=0 \Rightarrow W_{0} \equiv<W_{\text {tree }}\right\rangle
$$

n real non-linear eqs. in n unknowns with $2 n$ parametersenough freedom to find solutions

- Number of solutions: if each flux quanta can take 10 different values (D3 tadpole cancell.)

$$
N_{\text {sol }} \approx 10^{2 n}=10^{4\left(h^{1,2}+1\right)} \approx 10^{400} \quad \text { for } h^{1,2} \approx O(100) \quad \text { Flux landscape }
$$

- Minkowski vacuum with SUSY breaking since $\mathrm{F}^{\top} \neq 0$ but T-moduli are flat!

$$
m_{3 / 2}=e^{K / 2}|W| \approx \frac{W_{0}}{\mathrm{~V}} M_{P} \quad \text { Naturally } \mathrm{W}_{0} \sim \mathrm{O}(1) \text { but can tune } \mathrm{W}_{0} \ll 1
$$

Perturbative vs Non perturbative

- In general:

$$
\begin{gathered}
\mathcal{K}=\mathcal{K}_{0}+\mathcal{K}_{p}+\mathcal{K}_{n p} \approx \mathcal{K}_{0}+J, \\
W=W_{0}+W_{n p} \approx W_{0}+\Omega, \\
V=V_{0}+V_{J}+V_{\Omega}+\cdots,
\end{gathered}
$$

- Then:

$$
V_{0} \sim W_{0}^{2}, \quad V_{J} \sim J W_{0}^{2}, \quad V_{\Omega} \sim \Omega^{2}+W_{0} \Omega,
$$

- Usually V_{0} dominates but $\mathrm{V}_{0}=0$ no-scale

$$
G_{i \bar{k}}^{-1} \mathcal{K}_{i} \mathcal{K}_{\bar{k}}=3
$$

- Dominant term is V_{J} (e.g. LVS)
- Unless $\mathbf{W}_{0} \ll 1$ (e.g. KKLT)

KKLT Scenario

Warning: The control status of these approaches is under heated debate!

KKLT

- Nonperturbative effects:

$$
W_{n p}=\sum A_{i} e^{-a_{i} T_{i}}
$$

SUSY AdS Vacua: DW=0

- Anti D3 brane (SUSY breaking+uplift)

$$
V_{\text {uplift }}=\frac{D^{2}}{\left(T+T^{*}\right)^{\alpha}}=\frac{D^{2}}{\mathcal{V}^{2 \alpha / 3}} \quad \begin{cases}\alpha=3 & \text { KKLT } \\ \alpha=2 & \text { KKLMMT }\end{cases}
$$

Can be supersymmetrised in EFT by a goldstino nilpotent superfield $\mathbf{X}, \mathbf{X}^{\mathbf{2}}=\mathbf{0}$!

Large Volume Scenario (LVS)

- Flux superpotential $\mathrm{W}_{0}(\mathrm{U}, \mathrm{S})$
- Perturbative corrections to $K \quad K=-2 \ln \left(\mathcal{V}+\frac{\hat{\xi}}{2}\right)$
- Nonperturbative contributions to W: $W_{n p}=\sum A_{i} e^{-a_{i} T_{i}}$

$$
\begin{gathered}
V_{F} \propto\left(\frac{K^{S \bar{S}}\left|D_{S} W\right|^{2}+K^{a \bar{b}} D_{a} W \bar{D}_{\bar{b}} \bar{W}}{\mathcal{V}^{2}}\right)+\left(\frac{A e^{-2 a \tau}}{\mathcal{V}}-\frac{B e^{-a \tau} W_{0}}{\mathcal{V}^{2}}+\frac{C\left|W_{0}\right|^{2}}{\mathcal{V}^{3}}\right) \\
\mathcal{V} \sim e^{a \tau} \quad \text { with } \quad \tau \sim \operatorname{ReS} \sim 1 / \mathrm{g}_{\mathrm{s}}>1 .
\end{gathered}
$$

Exponentially large volume for weak coupling!

dS Kahler Moduli Stabilisation

$$
V_{F}^{\text {tot }}=V_{\mathrm{np}}+V_{\alpha^{\prime}}+\mathrm{V}_{\text {uplift }}
$$

Relevant Scales

- String scale $\mathbf{M s}=M_{P} / V^{1 / 2}$
- Kaluza-Klein scale $M_{K K}=M_{P} / V^{2 / 3}$
- Gravitino mass $m_{3 / 2}=W_{0} M_{p} / V$
- Volume modulus mass $M_{V}=M_{p} / V^{3 / 2}$
- Lighter (fibre) moduli
$M_{1}=M_{p} / V^{5 / 3}$

e.g. SUSY Breaking

	KKLT	LVS
Soft term	D3	D3
$M_{1 / 2}$	$\pm\left(\frac{3}{2 a \mathcal{V}^{2 / 3}}\right) m_{3 / 2}$	$\pm\left(\frac{3 s^{3 / 2} \xi}{4 \mathcal{V}}\right) m_{3 / 2}$
m_{0}^{2}	$\left(\frac{s^{3 / 2} \xi}{4 \mathcal{V}}\right) m_{3 / 2}^{2}$	$\left(\frac{5 s^{3 / 2} \xi}{8 \mathcal{V}}\right) m_{3 / 2}^{2}$
$A_{i j k}$	$-\left(1-s \partial_{s} \log Y_{i j k}\right) M_{1 / 2}$	$-\left(1-s \partial_{s} \log Y_{i j k}\right) M_{1 / 2}$
	KKLT	LVS
Soft term	D7	D7
$M_{1 / 2}$	$\pm\left(\frac{1}{a \nu^{2 / 3}}\right) m_{3 / 2}$	$\pm\left(\frac{3}{4 a \tau_{s}}\right) m_{3 / 2}$
m_{0}^{2}	$(1-3 \omega) m_{3 / 2}^{2}$	$\left(\frac{9(1-\lambda)}{16 a^{2} \tau_{s}^{2}}\right) m_{3 / 2}^{2}$
$A_{i j k}$	$\frac{3}{2}\left(2 \lambda-1-s \partial_{s} \log Y_{i j k}\right) M_{1 / 2}$	$-3(1-\lambda) M_{1 / 2}$

e.g. SUSY Breaking

- Split Supersymmetry $\mathrm{m}_{0} \sim 50 \mathrm{M}_{1 / 2}$ $\mathrm{m}_{0}{ }^{\sim} 1000 \mathrm{M}_{1 / 2}$
$\mathrm{M}_{1 / 2} \sim 1 \mathrm{TeV}$
(Concrete realisation of split susy in a framework including landscape, relative scales fixed, matching well with experiments...)
- High energy SUSY $\mathrm{m}_{0}{ }^{\sim} \mathrm{M}_{1 / 2}{ }^{\sim} 10^{11} \mathrm{GeV}$

Axions

- Model independent axion partner of volume,

$$
\begin{gathered}
\text { mass } \approx \exp \left(-\mathrm{V}^{2 / 3}\right) \leq 10^{-22} \mathrm{eV} \\
\text { (dark energy, matter, radiation). }
\end{gathered}
$$

- Some massive by Stuckelberg effect
- Others massive from non-perturbative effects
- Open string axions (model dependent)

String Landscape

Vacuum transitions

Bubble nucleation

Transitions in the landscape

1. Flux transitions (induced by D5/NS5 nucleation)
2. Decompactification

Brown-Teitelboim 87

Coleman-De Luccia 1980
$\Gamma_{\text {flux }} \ll \Gamma_{\text {decompactification }}$
e.g. $\quad \Gamma_{\text {flux }} \sim e^{-\mathcal{V}^{2}} \Gamma_{\text {decompactification }}$
(In LVS)

The String Landscape

Quantum Decay
(tunnel effect)

Bousso+Polchinski

Cosmological Constant (?)

Bousso-Polchinski 2000, Weinberg 1987

The String Landscape and Dark Energy

- Anthropic prediction $\Lambda \sim \mathbf{1 0}^{-120}$ (Weinberg 1987)
- Concrete proposal (Bousso-Polchinski 2000)
- Explicit String realization (KKLT, LVS,... 2003)

The worst solution to the dark energy problem with the exception of all the others!
(smallness of Λ not a good question)

Predictions from the landscape?

- Bubble nucleations imply open universe!?
- Not possible to tunnel up from Minkowski nor anti de Sitter?

The Landscape

- Good: A `solution’ of dark energy and allows for the first time to trust calculations for low-energy SUSY breaking.
- Bad: missed opportunity to have new physics at low energies from small \wedge.
- Ugly: It may also be used to `solve' other problems (Split SUSY, High-energy SUSY,...) in unnatural ways.

NOT yet a solution to dark energy

- Not yet concrete models with so many fluxes (so far only a handful of moduli, need 100s or thousands)
- Need to populate the landscape
- Distribution of fluxes (measure problem, etc.)

The Swampland

The Swampland

Set of consistent low-energy EFTs without UV completion

Swampland conjectures

Vafa et al.

- Swampland: Quantum gravity vs EFT !
- Weak gravity conjecture
- No global symmetries
- Cobordism conjecture
- Distance conjecture

- 'anti'- de Sitter conjecture:
(It would imply quintessence and no de Sitter $M_{p} \frac{|\nabla V|}{V} \gtrsim c$, and hard to have inflation!).?
- TransPlanckian Conjecture, emergence conjecture,...

So far, the more rigorous the less relevant phenomenologically.

String Cosmology

Before inflation?

Wave functions of the universe

Mini-superspace

$$
d s^{2}=-N^{2}(t) d t^{2}+a^{2}(t)\left(d r^{2}+\sin ^{2} r d \Omega_{2}^{2}\right)
$$

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)

$$
\begin{gathered}
\mathcal{P}_{\mathrm{HH}}(\text { Nothing } \rightarrow \mathrm{dS})=\left\|\Psi_{\mathrm{HH}}\left(\mathrm{H}_{\mathrm{dS}}\right)\right\|^{2} \propto e^{\frac{\pi}{G H_{\mathrm{dS}}^{2}}}=e^{+\Gamma_{\mathrm{dS}}} \\
\mathcal{P}_{\mathrm{T}}(\text { Nothing } \rightarrow \mathrm{dS})=\left\|\Psi_{\mathrm{T}}\left(\mathrm{H}_{\mathrm{dS}}\right)\right\|^{2} \propto \mathrm{e}^{-\frac{\pi}{\mathrm{GH}} \mathrm{HS}_{\mathrm{dS}}^{2}}=e^{-S_{\mathrm{dS}}}
\end{gathered}
$$

Transition from nothing?

Wheeler-DeWitt, Vilenkin, Hartle-Hawking

String Inflation

e.g.
 Brane/antibrane inflation

e.g. Brane/Antibrane Inflation

e.g.

Moduli inflation

e.g. Kahler moduli

- Overall volume

- Blow-up
- Fibre moduli

e.g. Axion Monodromy

$$
V=\frac{M^{2}}{\beta}\left(\rho^{2}+\theta^{2}+\frac{2 \lambda}{M} e^{-b \rho}\left[\theta \cos (b \theta)+\rho \sin (b \theta)+\frac{\lambda}{2 M} e^{-b \rho}\right]\right),
$$

Predictions of String Inflation Models

String model	$\boldsymbol{n}_{\boldsymbol{s}}$	\boldsymbol{r}
Fibre Inflation	0.967	0.007
Blow-up Inflation	0.961	10^{-10}
Poly-instanton Inflation	0.958	10^{-5}
Aligned Natural Inflation	0.960	0.098
N-Flation	0.960	0.13
Axion Monodromy	0.971	0.083
D7 Fluxbrane Inflation	0.981	5×10^{-6}
Wilson line Inflation	0.971	10^{-8}
D3-D3 Inflation	0.968	10^{-7}
Inflection Point Inflation	0.923	10^{-6}
D3-D7 Inflation	0.981	10^{-6}
Racetrack Inflation	0.942	10^{-8}
Volume Inflation	0.965	10^{-9}
DBI Inflation	0.923	10^{-7}

Recent BICEP/KECK 2021 results

$r_{0.05}=0.014_{-0.011}^{+0.010}\left(r_{0.05}<0.036\right.$ at 95% confidence $)$

From Flauger 2021 (see Kallosh-Linde)

After Inflation

Moduli Domination

Reheating from latest moduli to decay NOT from inflaton!

Oscillons/Moduli stars?

Gravitational Waves Spectrum

Gravitational Waves High Frequency

Kination scenario

Alternative Histories?

Alternative histories of our Universe

Alternatives to String Inflation

Alternatives to String Inflation

> Pre big- bang

Bubble
of
nothing

S-branes/
Rolling tachyons

Thank You!

