Superstring Phenomenology

Fernando Quevedo Cambridge

Pre-SUSY School Southampton July 2023

Outline

- Motivation
- Superstrings
- String Compactifications
 - Model building
 - Moduli stabilization and supersymmetry breaking
 - The string landscape and the swampland
- String Cosmology
 - Before Inflation?
 - Models of String Inflation
 - Post-inflation
 - Alternatives

Recommended reading

- L. Ibanez, A. Uranga; String theory and particle physics, CUP (2009).
- A. Hebecker, Lectures on Naturalness, String Landscape and Multiverse, arXiv/2008.10625.
- Agmon, Bedroya, Kang, Vafa; Lectures on the string landscape and the swampland, arXiv/2212.06187.
- M. Cicoli, J. Conlon, A. Maharana, S. Parameswaran, F. Quevedo, I. Zavala; String Cosmology: from the early universe to today, arXiv/2303.04819.

Motivation

Our purpose in theoretical physics is not to describe the world as we find it, but to explain-in terms of a few fundamental principles- why the world is the way it is.

Steven Weinberg

Fundamental Theories:

Special Relativity and Quantum Mechanics

Poincaré Group

Wigner 1939

Massive particles: (Little group SO(3))
$$p = (m, 0, 0, 0)$$

 $[m, J; p_{\mu}, s)$ with $s = -J, -J + 1, \cdots, J$ and $p^2 = m^2$

Tachyons?

Massless particles: (Little group E2) p = (E, 0, 0, E)

→ ∞-dimensional representations (CSR): not observed ??
Restricted Little group: O(2) in E2:
$$|p_{\mu}, \lambda\rangle$$
 with $\lambda = 0, \pm 1/2, \pm 1, \cdots$

Theories for spins 0,1/2,1: Quantum Field Theories (QFT)

Massless spins 3/2,2: (super) gravity: Effective Field Theories (EFT)

"General Predictions" of QFT

- Identical particles
- Antiparticles
- CPT
- Spin-statistics
- **'Decoupling'** (physics organised by scales, EFTs)

Standard Model 1

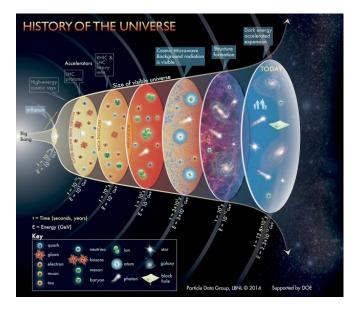
• Particle physics

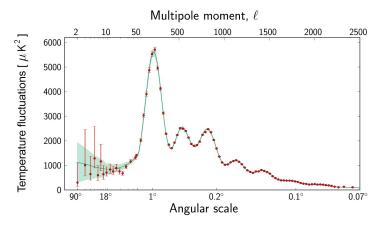
Name	Label	$\mathrm{SU}(3)_C,\mathrm{SU}(2)_L,\mathrm{U}(1)_Y$	Spin	07~
	$Q_L^i = \left(\begin{array}{c} u_L^i \\ d_L^i \end{array}\right)$	$\left(3,2,+rac{1}{6} ight)$	$\frac{1}{2}$	0.8 0.5 0.4 > 0.3
Quarks	u_R^i	$ig(ar{3},1,rac{2}{3}ig)$	$\frac{1}{2}$	
	d_R^i	$(ar{3},1,-rac{1}{3})$	$\frac{1}{2}$	
	$ \begin{array}{c} L_{L}^{i} = \left(\begin{array}{c} \nu_{L}^{i} \\ e_{L}^{i} \end{array} \right) \end{array} $	$ig(1,2,-rac{1}{2}ig)$	$\frac{1}{2}$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
Leptons	e_R^i	(1 , 1 ,-1)	$\frac{1}{2}$	$\begin{array}{c} \bullet \\ \circ \\$
	$ u_R^{i*}$	(1, 1, 0)	$\frac{1}{2}$	$\begin{array}{c} \textcircled{0}{0} \\ \end{array}{}$
Higgs	Н	$(1,2,+ frac{1}{2})$	0	
Gluons	g_{lpha}	$({\bf 8},{\bf 1},0)$	1	
W/Z-Bosons	W^{\pm}, Z^0	(1, 3, 0)	1	
Photon	γ	$({f 1},{f 1},0)$	1	
Graviton*	$h_{\mu u}$	(1, 1, 0)	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Triumph of gauge field theories and effective field theories (EFT) !

Standard Model 2

Cosmology





ACDM + inflation (source of almost scale invariant, gaussian, adiabatic density perturbations)

Note: There is no theory behind (origin of dark matter, dark energy, inflation, etc.)

Compelling Structure of the SM

- Gauge theories unique
- Higgs mechanism
- One spin/helicity s= 2 graviton
- No interacting higher spin s>2 massless states
- Choice of gauge groups, representations, couplings

*Missing spin 3/2 requires supersymmetry!

SM+Gravity as EFT

EFT: scalar field

$$\mathcal{L} = \underbrace{\partial^{\mu}\phi\partial_{\mu}\phi - m^{2}\phi^{2} - g\phi^{3} - \lambda\phi^{4}}_{\text{Renormalisable}} + \frac{\alpha}{\Lambda}\phi^{5} + \frac{\beta}{\Lambda^{2}}\phi^{6} + \cdots$$

Non-Renormalisable

EFT: Einstein gravity

$$\mathcal{L}_{EH} = M_P^2 R^{(4)} \sqrt{-g} \qquad \qquad \mu \ll M_P = \sqrt{\frac{\hbar c}{G_N}} \sim 10^{19} \text{GeV}.$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{1}{M_P} h_{\mu\nu} \Rightarrow M_P^2 R^{(4)} = (\partial h)^2 + \frac{h}{M_P} (\partial h)^2 + \frac{h^2}{M_P^2} (\partial h)^2 + \dots$$

EFT: SMEFT

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \frac{1}{M} \mathcal{L}_5 + \frac{1}{M^2} \mathcal{L}_6 + \mathcal{O}\left(\frac{1}{M^3}\right) \,. \\ \mathcal{L}_{SM} &= \mathcal{L}^{\text{gauge}} + \mathcal{L}_F^{\text{kinetic}} + \mathcal{L}_F^{\text{Yukawa}} + \mathcal{L}^{\text{Higgs}} \end{split}$$

EFT: SM + gravity

$$\mathcal{L}_{SM} \to \sqrt{-g} \left(\mathcal{L}'_{SM} + \Lambda + M_P^2 R + \ldots \right)$$

$$\mathcal{L}_{SM}' = \mathcal{L}_{SM}[D_{\mu} \to \mathcal{D}_{\mu}]$$

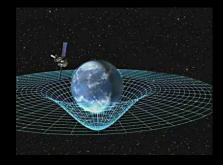
BUT ...

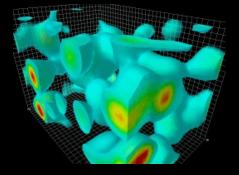
Open Questions

- Why? (3+1 (dimensions, families, interactions);
 + some 20 parameters (masses, couplings))
- Naturalness (hierarchy, cc, strong CP)
- 'Technical' (confinement,...)
- Cosmology (dark matter, baryogenesis, density perturbations of CMB, origin/alternatives to inflation,..., big-bang)
- UV completion of gravity

FUNDAMENTAL PROBLEM

Quantum Gravity

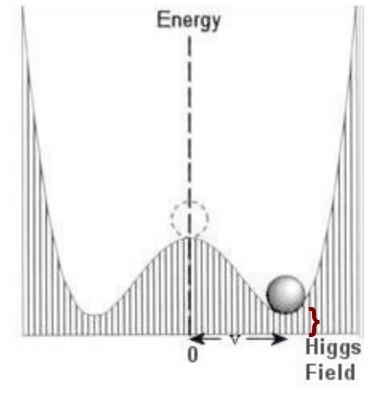




Planck scale:
$$M_{Planck}=\sqrt{hc/G} \approx 10^{-19} \text{ GeV}$$

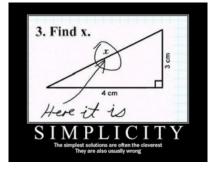
 $L_{Planck}=\sqrt{hG/c^3} \approx 10^{-33} \text{ cm}$

Greatest puzzle: Cosmological constant



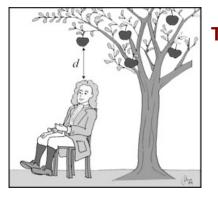
Cosmological constant =

Approaches to BSM



Simplicity

Follow your nose



Top-down

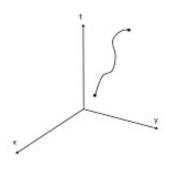
Bottom-up

Superstrings

String Theory

String Theory in a Nutshell

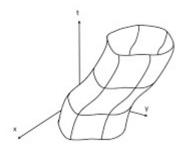
$$S = -m \int_{\gamma} ds, \qquad \qquad ds = \sqrt{\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}} d\tau$$



$$\frac{d}{d\tau}\left(m\frac{dx^{\mu}}{d\tau}\right) = m\ddot{x}^{\mu} = 0$$
 Free particle

$$S = -m \int \sqrt{-\dot{x}^2} d\tau - q \int A_\mu dx^\mu$$
. Electromagnetic interaction

Relativistic string of tension T



$$S_{\rm NG}[X] = -TA(\Sigma) = -T\int_{\Sigma} d^2A = -\frac{1}{2\pi\alpha'}\int d\sigma d\tau \sqrt{\left(\dot{X}\cdot X'\right)^2 - \left(\dot{X}\right)^2 \left(X'\right)^2}$$
$$\alpha' \equiv \frac{1}{2\pi T}.$$

Nambu-Gotto action

String analogue of E&M $Q \int B_{\mu\nu} dX^{\mu} dX^{\nu}$ coupling?

Polyakov action

$$S_{\rm P}[X,h] = -\frac{T}{2} \int d^2 \sigma \sqrt{h} h^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X^\nu \eta_{\mu\nu}$$

$$h_{\alpha\beta}(\sigma) \to e^{2\Lambda(\sigma)} h_{\alpha\beta}(\sigma)$$

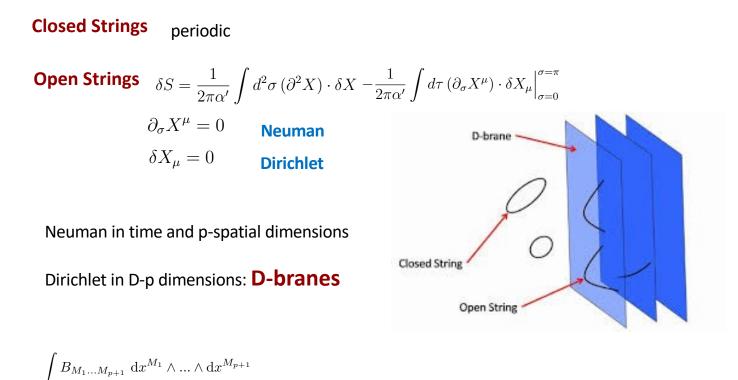
Weyl (conformal) invariance together with Lorentz and 2d reparametrisations

Equation of motion for X:

$$\frac{1}{\sqrt{h}}\partial_{\alpha}\left(\sqrt{h}h^{\alpha\beta}\partial_{\beta}X^{\mu}\right) = 0$$

Equation of motion for h gives the Nambu-Gotto action

Boundary conditions



p+1 rank antisymmetric tensor couples to a p-dimensional brane

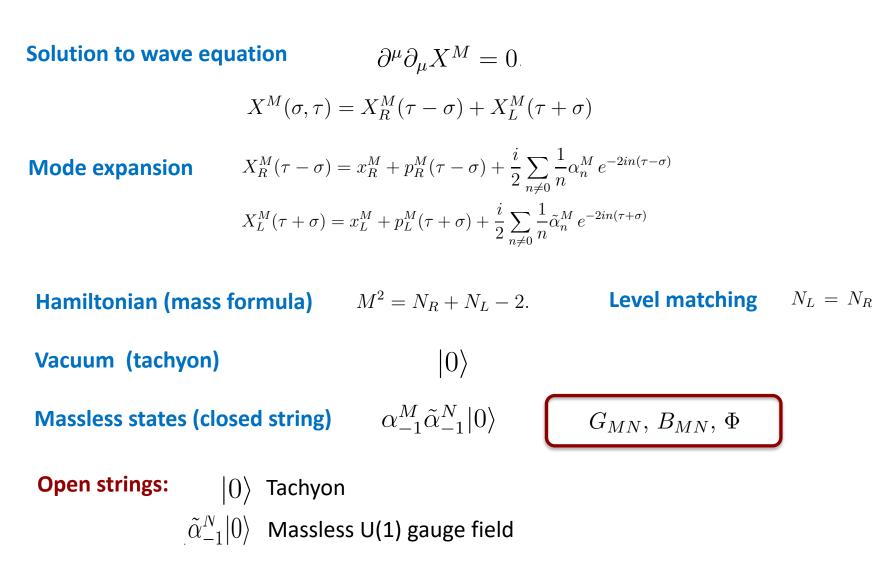
Critical Dimensions

Conformal gauge $h_{\alpha\beta} = \eta_{\alpha\beta}$ Conformal (trace) anomaly: $T_{z\bar{z}} = -\frac{c}{24}\mathcal{R}$. c=0. Each scalar field X_{μ} contributes c=1. Ghost system contributes c=-26 c=D-26 D = 26. Bosonic strings

Add supersymmetry: 2-dimensional fermions c=1/2 each, ghosts c=-15 Then:

D = 10 Supersymmetric strings

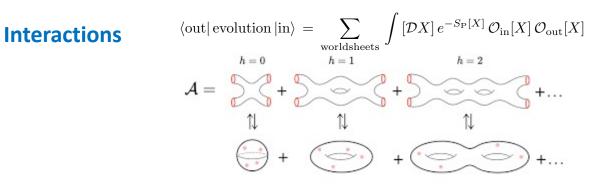
Spectrum



*In superstrings: tachyons projected out also no CSRs!

Two EFTs

2-dimensional
$$S = \frac{1}{\alpha'} \int d\sigma d\tau \left\{ \left(G_{MN}(X) + B_{MN}(X) \right) \partial^{\mu} X^{M} \partial_{\mu} X^{N} + \alpha' \Phi(X)^{(2)} R \right\}.$$



Each UV finite!

26/10-dimensional

$$S = \int d^D X \sqrt{G} e^{-\Phi} \left\{ R - \frac{1}{12} \nabla_M B_{NP} \nabla^M B^{NP} + \nabla_M \Phi \nabla^M \Phi - \frac{D - 26}{3} \right\}$$

String theory predicts Einstein's gravity plus...!!! Dilaton Φ loop counting parameter or string coupling

Low energy states in Superstring/M theories

Theory	Dimension	Supercharges	Massless Bosons
Heterotic	10	16	$g_{_{MN}},B_{_{MN}},\phi \ A^{ij}$
$E_8 \times E_8$			$A^{ij}_{_M}$
Heterotic	10	16	$g_{_{MN}},B_{_{MN}},\phi \ A^{ij}$
<i>SO</i> (32)			$A^{ij}_{_M}$
Type I	10	16	$g_{_{MN}},\phi,A_{_M}^{ij}$
<i>SO</i> (32)			$C_{_{MN}}$
Type IIA	10	32	$g_{_{MN}},B_{_{MN}},\phi$
			$C_{_M}, C_{_{MNP}}$
Type IIB	10	32	$g_{_{MN}},B_{_{MN}},\phi$
			$C_{\scriptscriptstyle 0}, C_{\scriptscriptstyle MN}, C_{\scriptscriptstyle MNPQ}$
M-Theory	11	32	$g_{_{MN}}, C_{_{MNP}}$

String Compactifications

Simple Compactifications

X⁹: S¹ Circle of radius R

X⁹=X⁹+ 2π R

$$p_R = m/2R - nR \qquad \qquad p_L = m/2R + nR$$

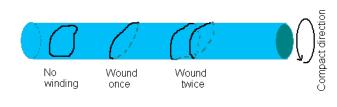
m,n integers: momentum and winding!

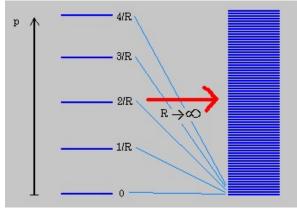
$$M^{2} = N_{R} + N_{L} - 2 + \frac{m^{2}}{4R^{2}} + n^{2}R^{2}, \qquad N_{R} - N_{L} = mn.$$

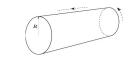
- n=0, infinite tower of massive (Kaluza Klein) states mass=m/R
- Massless n=m=0: vector fields U(1)_L ⊗U(1)_R
- $n \neq 0$ winding states mass proportional to R

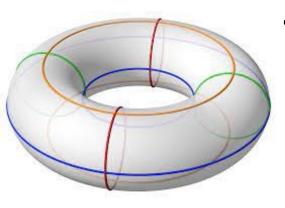
• m=n= ± 1 N_R=1, N_L=0 or N_R=0, N_L=1 enhanced symmetry SU(2)_L \otimes SU(2)_R at R²=1/2

- R is arbitrary: a modulus!
- Duality ! $R \leftrightarrow \frac{1}{2R}$ $m \leftrightarrow n$. R²=1/2 self-dual



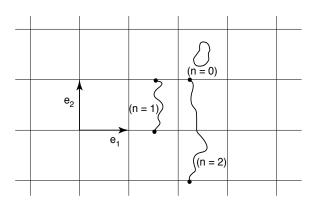






Toroidal Compactification

Hodge diamond



$$U \equiv \frac{G_{12}}{G_{22}} + i \frac{\sqrt{G}}{G_{22}}$$
$$T \equiv B_{12} + i \sqrt{G}.$$

Complex structure

Kahler structure

$$p_L^2 = \frac{1}{2U_2T_2} \|(n_1 - n_2 U) - T(m_2 + m_1 U)\|^2$$
$$p_R^2 = \frac{1}{2U_2T_2} \|(n_1 - n_2 U) - T^*(m_2 + m_1 U)\|^2$$

$$U \to \frac{a U + b}{c U + d}$$
 $T \to \frac{a T + b}{c T + d}$ $T \leftrightarrow U.$ $ad - bc = 1$

Modular invariance

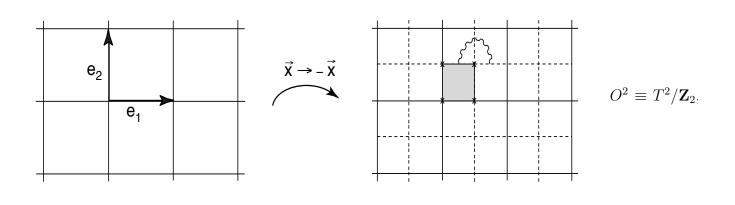
T-duality Mirror symmetry

 $SL(2, \mathbf{Z})_U \otimes SL(2, \mathbf{Z})_T = O(2, 2, \mathbf{Z})$

Moduli space $SL(2,\mathbb{R})/O(2) \otimes SL(2,\mathbb{R})/O(2) \cong O(2,2,\mathbb{R})/(O(2) \otimes O(2))$

In general $\mathcal{M} = O(d, d, \mathbb{R}) / O(d) \otimes O(d)$ T-Duality $O(d, d, \mathbb{Z})$

Orbifolds



In general $O^d \equiv T^d / \mathcal{P} \equiv \mathbb{R}^d / \mathcal{S}.$

 $\{(0,0), (0,1/2), (1/2,0), (1/2,1/2)\}$ Fixed points

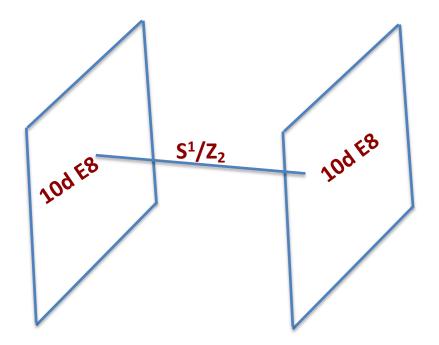
Strings on orbifolds

- Chiral N=1 SUSY
- Still essentially flat except for fixed points
- Extra sectors: twisted sectors

Quasi realistic models e.g. T^6/Z_3 heterotic: 3 families SU(3)xSU(2)xU(1)x...

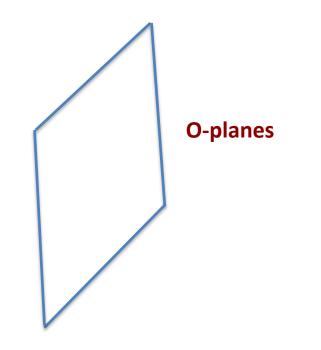
Horava Witten

11d on S¹/Z₂ (interval) gives 10d heterotic E₈xE₈ (strong coupling)



Orientifold Planes

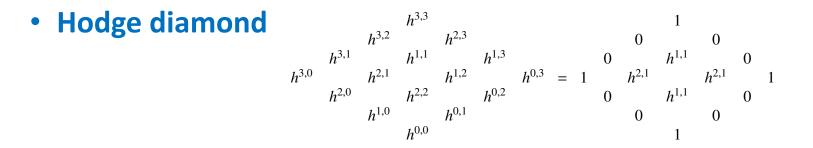
Combine orbifold in target space with orbifold in string worldsheet (orientation) Fixed planes with positive or negative tension.



O-planes in IIA or IIB string theory break half supersymmetry

Calabi Yau Manifolds/Orientifolds

- 3d Complex Kahler manifolds with SU(3) holonomy (vanishing first Chern class)
- 1d CY torus T2, 2d CY K3 surface, 3d and higher many
- Admit Ricci flat metric but not known explicitly
- Heterotic/type I on CY give 4D Minkowski N=1 theory
- Type II on CY orientifold also 4d Minkowski N=1 SUSY



Calabi Yau

4-cycle size: *τ* (Kahler moduli)

3-cycle size: U (Complex structure moduli)

Examples of Calabi-Yau

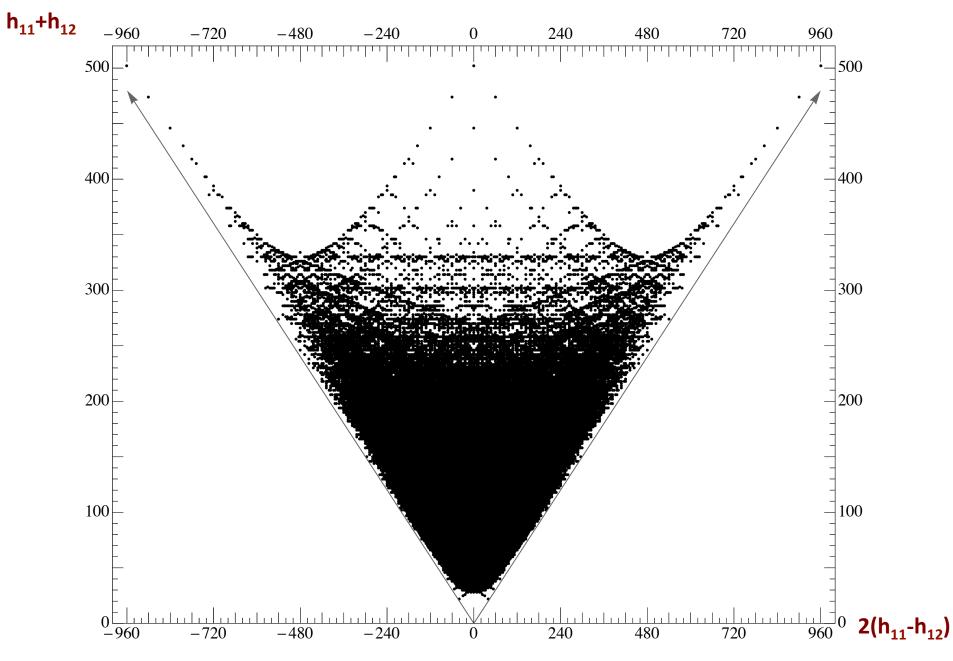
- Blow-up toroidal orbifolds
- Surfaces in Projective spaces (algebraic geometry) e.g. $P \equiv z_1^{12} + z_2^{12} + z_3^6 + z_4^6 + z_5^2 = 0$ $\mathbb{P}_{(k_0,k_1,k_2,k_3,k_4)}^4$ (1,1,2,2,6)
- Hypersurfaces in Toric varieties, etc.

Database and tools:

http://hep.itp.tuwien.ac.at/~kreuzer/CY/

https://cy.tools/

Mirror Symmetry



Realistic Model Building

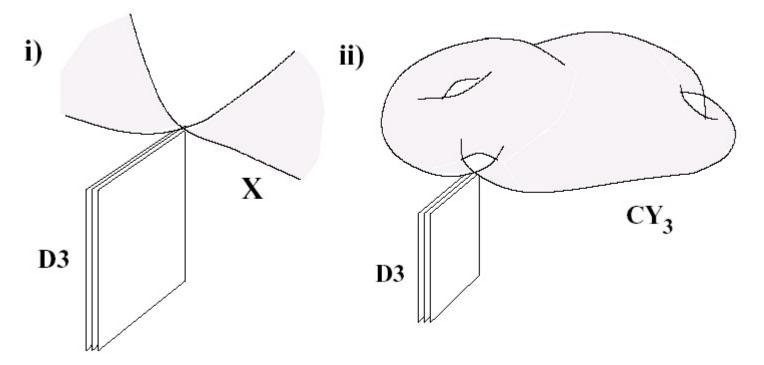
Challenges for String Models

- Gauge and matter structure of SM
- Hierarchy of scales + masses (including neutrinos)
- Flavor CKM, PMNS mixing, CP no FCNC
- Hierarchy of gauge couplings (unification?)
- 'Stable' proton + baryogenesis
- Inflation or alternative for CMB fluctuations
- Dark matter (+ avoid overclosing)
- Dark radiation (N_{eff}~3.04)
- Dark energy

N.B. If ONE of them does not work, rule out the model!!!

String Model Building:

- Global Models (e.g. Heterotic)
- Local Brane Models (e.g. IIB, F-theory)



Calabi-Yau Spaces and Brane World

Compactification

New tools: Machine Learning

• Machine (supervised and reinforcement) learning

Lukas et al 2018-2019

Genetic algorithms

Abel et al et al 2021

- 1. For model selection
- 2. Computing explicit metrics of Calabi-Yau manifolds

Anderson et al, Douglas et al, Jejjala et al 2020

Review Ruehle Phys Rep. 2020

Recent Progress

- N =10¹⁵ F-theory models with MSSM spectrum Cvetic et al 2019
- N>10²³ heterotic models with MSSM spectrum

Constantin et al 2019

BUT

Big problem: moduli stabilization

(hundreds of massless gravitationally coupled scalar fields, 5th force constraints rules them out)

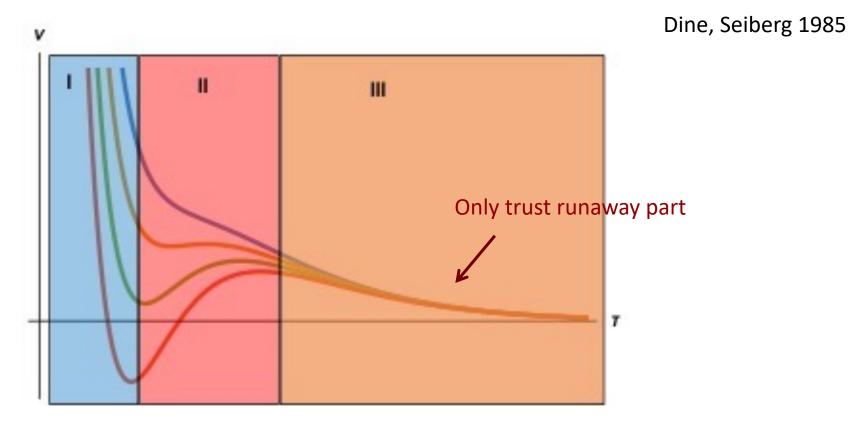
Moduli Stabilisation and Supersymmetry Breaking

MODULI STABILISATION

4-cycle size: *τ* (Kahler moduli)

3-cycle size: U (Complex structure moduli)

Dine-Seiberg Problem



V → 0 at weak coupling and large volume, then minimum may be at strong coupling/small volume beyond control of string perturbation theory

Approaches to DS Problem

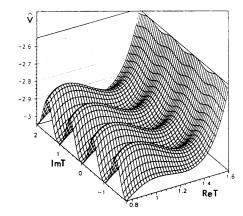
1980s Racetrack models

$$W = Ae^{-\frac{2\pi S}{N}} + Be^{-\frac{2\pi S}{M}}$$

• 1990s T or S Duality

$$S = \frac{NM}{M - N} \log\left(-\frac{MB}{NA}\right)$$

Krasnikov 1987



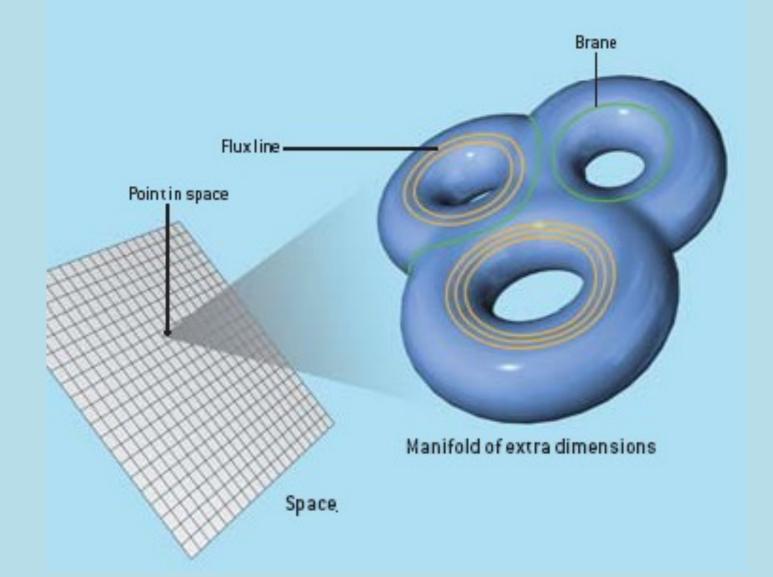
$$W(S,T) \sim \eta(iT)^{-6} \exp(-3S/8\pi b)$$

Font et al, Ferrara et al 1990

• 2000s Flux compactifications

Sethi et al., Giddings et al 2002...

Flux compactifications



4D Moduli

10D massless spectrum:

• NSNS sector:
$$g_{MN}, B_2 (dB_2 = H_3), \ \varphi (e^{\langle \varphi \rangle} = g_s)$$

• **RR sector**: $C_0, C_2 (dC_2 = F_3), C_4$

4D moduli:

• Axio-dilaton:

$$S = e^{-\varphi} + i C_0$$

 $(U_{\alpha}) \alpha = 1, ..., h_{1,2}^{-}$

- Complex structure moduli:
- Kahler moduli:

$$\begin{aligned} \hline T_i &= \tau_i + i \, b_i^+, \quad \tau_i = \operatorname{Vol}(D_i), \quad b_i^+ = \int_{D_i} C_4, \quad i = 1, \dots, h_{1,1}^+, \\ G_j &= c_j - i S b_j^-, \quad c_j = \int_{\hat{D}_j} C_2, \quad b_j^- = \int_{\hat{D}_j} B_2, \quad j = 1, \dots, h_{1,1}^-, \end{aligned}$$

Fluxes in IIB Compactifications

• Tree-level Kahler potential:

$$K_{tree} = -2\ln V(T_i + \overline{T}_i) - \ln(S + \overline{S}) - \ln\left(i \int_{CY} \Omega(U) \wedge \overline{\Omega}\right)$$

Tree-level superpotential:

$$W_{tree} = \int_{CY} G_3 \wedge \Omega(U) \qquad G_3 = F_3 + iSH_3$$

• Flux quantisation:

$$\frac{1}{2\pi\alpha'} \int_{\Sigma_3^k} H_3 = n_k \qquad \frac{1}{2\pi\alpha'} \int_{\Sigma_3^k} F_3 = m_k \qquad k = 1, \dots, n = 2h^{1,2} + 2$$

2n free parameters (n_k, m_k)

W_{tree} does not depend on T because of axion shift symmetry + holomorphicity

Tree-level moduli stabilisation (GKP)

• Tree-level scalar potential:

$$V_{tree} = e^{K} \left[K^{I\bar{J}} D_{I} W D_{\bar{J}} \overline{W} - 3 |W|^{2} \right] \qquad D_{I} W = W_{I} + W K_{I}$$
$$= e^{K} \sum_{S,U} K^{\alpha \overline{\beta}} D_{\alpha} W D_{\overline{\beta}} \overline{W} + e^{K} \left[\sum_{T} K^{i\bar{j}} D_{i} W D_{\bar{j}} \overline{W} - 3 |W|^{2} \right]$$
$$= e^{K} \sum_{S,U} K^{\alpha \overline{\beta}} D_{\alpha} W D_{\overline{\beta}} \overline{W} + e^{K} \left[\sum_{T} K^{i\bar{j}} K_{i} K_{\bar{j}} - 3 \right] |W|^{2} \ge 0$$
$$= 0 \qquad \text{No-scale cancellation !}$$

• Fix S and U supersymmetrically:

$$D_{S}W = 0 \qquad D_{U_{\alpha}}W = 0 \implies W_{0} \equiv \langle W_{tree} \rangle$$

n real non-linear eqs. in n unknowns with 2n parameters enough freedom to find solutions

• Number of solutions: if each flux quanta can take 10 different values (D3 tadpole cancell.)

$$N_{sol} \approx 10^{2n} = 10^{4(h^{1,2}+1)} \approx 10^{400}$$
 for $h^{1,2} \approx O(100)$ Flux landscape

Minkowski vacuum with SUSY breaking since F^T ≠ 0 but T-moduli are flat!

$$m_{3/2} = e^{K/2} |W| \approx \frac{W_0}{V} M_P$$
 Naturally $W_0 \sim O(1)$ but can tune $W_0 <<1$

Perturbative vs Non perturbative

• In general: $\mathcal{K} = \mathcal{K}_0 + \mathcal{K}_p + \mathcal{K}_{np} \approx \mathcal{K}_0 + J,$ $W = W_0 + W_{np} \approx W_0 + \Omega,$

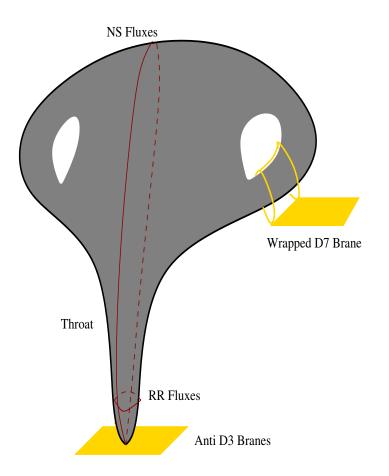
 $V = V_0 + V_J + V_\Omega + \cdots,$

• Then:

 $V_0 \sim W_0^2$, $V_J \sim J W_0^2$, $V_\Omega \sim \Omega^2 + W_0 \Omega$,

- Usually V₀ dominates but V₀=0 no-scale $G_{i\bar{k}}^{-1}\mathcal{K}_i\mathcal{K}_{\bar{k}} = 3$
- Dominant term is V_J (e.g. LVS)
- Unless $W_0 <<1$ (e.g. KKLT)

KKLT Scenario



Warning: The control status of these approaches is under heated debate !

KKLT

Nonperturbative effects:

$$W_{np} = \sum A_i e^{-a_i T_i}$$

SUSY AdS Vacua: DW=0

Anti D3 brane (SUSY breaking+uplift)

$$V_{\text{uplift}} = \frac{D^2}{\left(T + T^*\right)^{\alpha}} = \frac{D^2}{\mathcal{V}^{2\alpha/3}} \quad \begin{cases} \alpha = 3 & \text{KKLT} \\ \alpha = 2 & \text{KKLMMT} \end{cases}$$

Can be supersymmetrised in EFT by a goldstino nilpotent superfield X, X²=0 !

Large Volume Scenario (LVS)

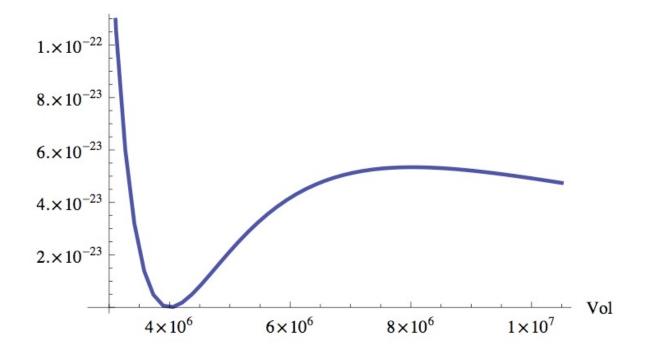
- Flux superpotential $W_0(U,S)$
- **Perturbative corrections to K** $K = -2\ln\left(\mathcal{V} + \frac{\hat{\xi}}{2}\right)$
- Nonperturbative contributions to W: $W_{np} = \sum A_i e^{-a_i T_i}$

$$V_F \propto \left(\frac{K^{S\bar{S}}|D_SW|^2 + K^{a\bar{b}}D_aW\bar{D}_{\bar{b}}\bar{W}}{\mathcal{V}^2}\right) + \left(\frac{Ae^{-2a\tau}}{\mathcal{V}} - \frac{Be^{-a\tau}W_0}{\mathcal{V}^2} + \frac{C|W_0|^2}{\mathcal{V}^3}\right)$$
$$\mathcal{V} \sim e^{a\tau} \quad \text{with} \quad \tau \sim \text{Re S} \sim 1/g_s > 1.$$

Exponentially large volume for weak coupling !

dS Kahler Moduli Stabilisation

$$V_F^{\text{tot}} = V_{\text{np}} + V_{\alpha'} + \dot{V}_{\text{uplift}}$$



Relevant Scales

• String scale $Ms=M_P/V^{1/2}$

- Kaluza-Klein scale $M_{KK}=M_P/V^{2/3}$
- Gravitino mass $m_{3/2}=W_0 M_P/V$
- Volume modulus mass $M_V = M_p / V^{3/2}$
- Lighter (fibre) moduli $M_I = M_p / V^{5/3}$

e.g. SUSY Breaking

	KKLT		LVS
Soft term	D3		D3
$M_{1/2}$	$\pm \left(\frac{3}{2a\mathcal{V}^{2/3}}\right) m_{3/2}$	$\pm \left(\frac{3s^{3/2}\xi}{4\mathcal{V}}\right) m_{3/2}$	
m_0^2	$\left(\frac{s^{3/2}\xi}{4\mathcal{V}}\right)m_{3/2}^2$	$\left(\frac{5s^{3/2}\xi}{8\mathcal{V}}\right) m_{3/2}^2$	
A_{ijk}	$-(1-s\partial_s\log Y_{ijk})M_{1/2}$	$-(1-s\partial_s\log Y_{ijk})M_{1/2}$	
	KKLT		LVS
Soft term	D7		D7
$M_{1/2}$	$\pm \left(\frac{1}{a\mathcal{V}^{2/3}}\right)m_{3/2}$		$\pm \left(\frac{3}{4a\tau_s}\right) m_{3/2}$
m_0^2	$(1 - 3\omega) m_{3/2}^2$		$\left(\frac{9(1-\lambda)}{16a^2\tau_s^2}\right) m_{3/2}^2$
A_{ijk}	$\frac{3}{2}(2\lambda - 1 - s\partial_s \log Y_{ijk}) M_{1/2}$		$-3(1-\lambda)M_{1/2}$

e.g. SUSY Breaking

• Split Supersymmetry $m_0^{50} M_{1/2}$ $m_0^{1000} M_{1/2}$

M_{1/2}~ 1 TeV

(Concrete realisation of split susy in a framework including landscape, relative scales fixed, matching well with experiments...)

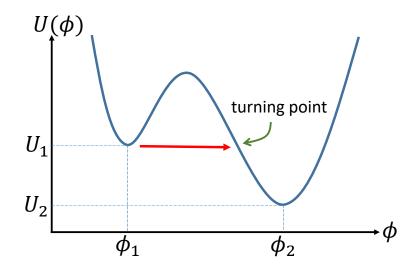
• High energy SUSY $m_0 \sim M_{1/2} \sim 10^{11} \text{ GeV}$

Axions

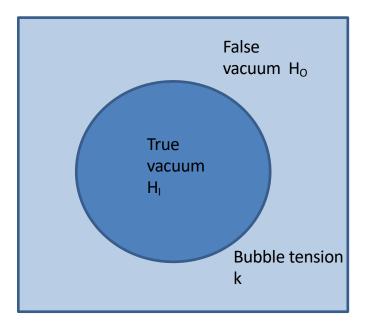
- Model independent axion partner of volume, mass≈exp(-V^{2/3}) ≤ 10⁻²² eV (dark energy, matter, radiation).
- Some massive by Stuckelberg effect
- Others massive from non-perturbative effects
- Open string axions (model dependent)

String Landscape

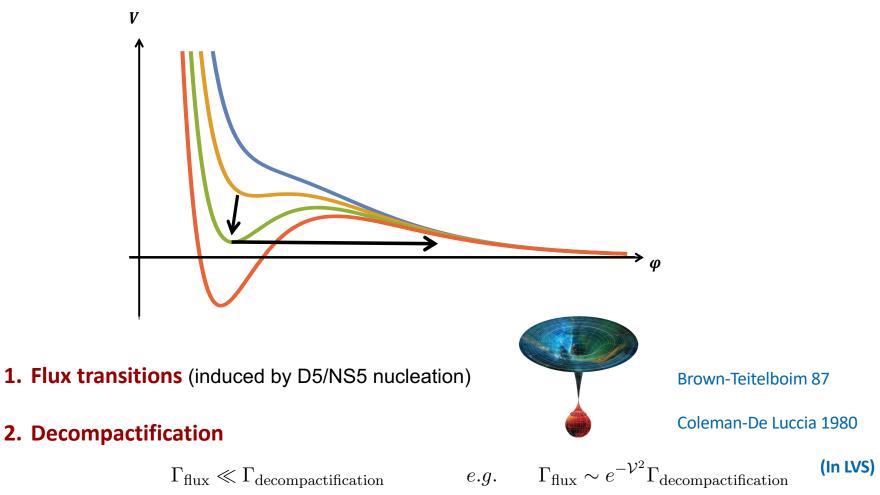
Vacuum transitions



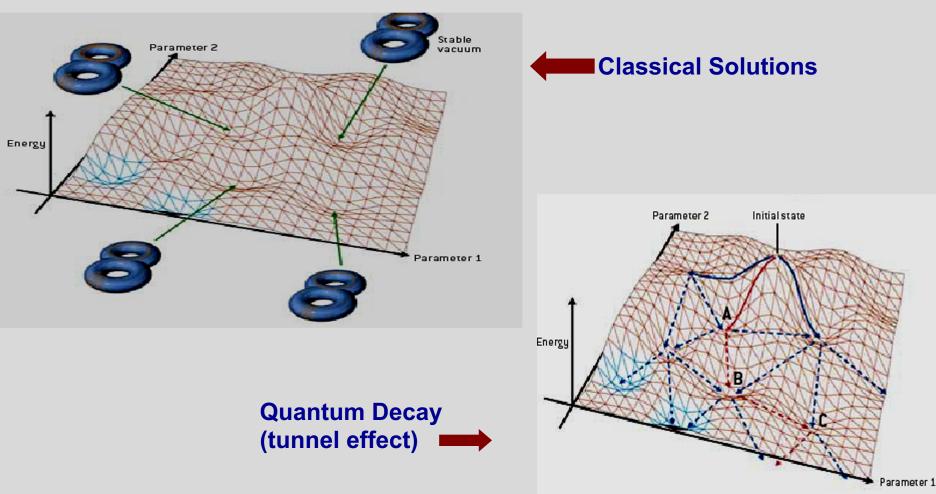
Bubble nucleation



Transitions in the landscape



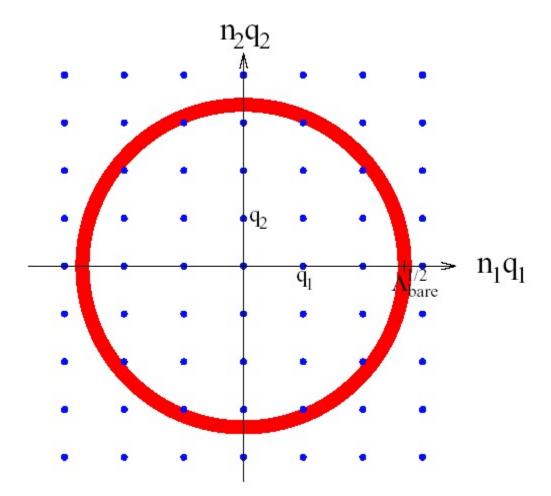
The String Landscape



Warning: just a cartoon!

Bousso+Polchinski

Cosmological Constant (?)



Bousso-Polchinski 2000, Weinberg 1987

The String Landscape and Dark Energy

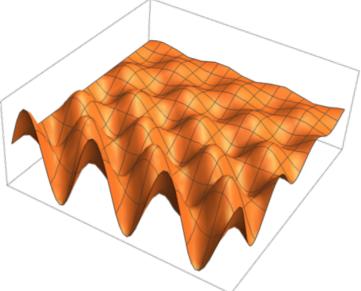
- Anthropic prediction $\Lambda \sim 10^{-120}$ (Weinberg 1987)
- Concrete proposal (Bousso-Polchinski 2000)
- Explicit String realization (KKLT, LVS,... 2003)

The worst solution to the dark energy problem with the exception of all the others! (smallness of Λ not a good question)

Predictions from the landscape?

Bubble nucleations imply open universe!?

• Not possible to tunnel up from Minkowski nor anti de Sitter?



The Landscape

• Good: A `solution' of dark energy and allows for the first time to trust calculations for low-energy SUSY breaking.

 Bad: missed opportunity to have new physics at low energies from small Λ.

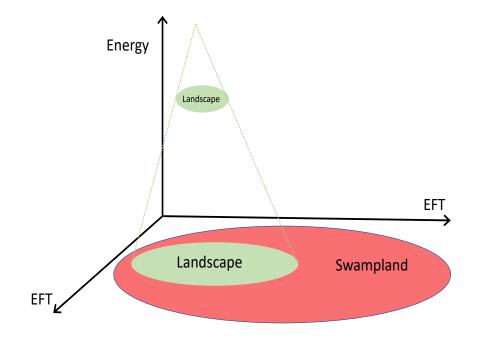
• Ugly: It may also be used to `solve' other problems (Split SUSY, High-energy SUSY,...) in unnatural ways.

NOT yet a solution to dark energy

- Not yet concrete models with so many fluxes (so far only a handful of moduli, need 100s or thousands)
- Need to populate the landscape
- Distribution of fluxes (measure problem, etc.)

The Swampland

The Swampland



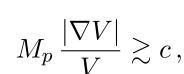
Set of consistent low-energy EFTs without UV completion

Swampland conjectures

Vafa et al.

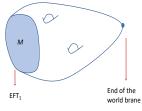
- Swampland: Quantum gravity vs EFT !
- Weak gravity conjecture
- No global symmetries
- Cobordism conjecture
- Distance conjecture
- 'anti'- de Sitter conjecture:

(It would imply quintessence and no de Sitter and hard to have inflation!).?



• TransPlanckian Conjecture, emergence conjecture,...

So far, the more rigorous the less relevant phenomenologically.



String Cosmology

Before inflation?

Wave functions of the universe

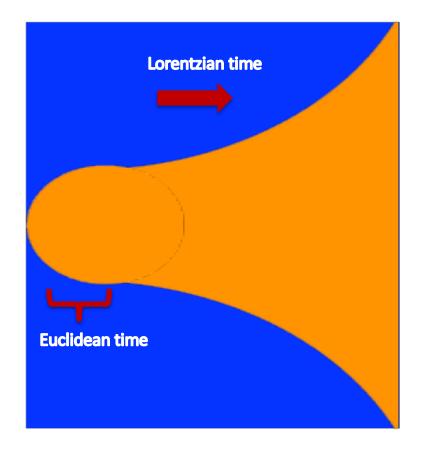
Mini-superspace

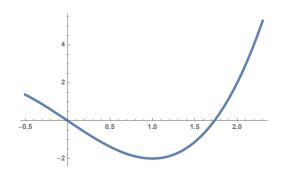
$$ds^{2} = -N^{2}(t)dt^{2} + a^{2}(t)(dr^{2} + \sin^{2}rd\Omega_{2}^{2})$$

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)

$$\mathcal{P}_{\rm HH}(\text{Nothing} \to dS) = \|\Psi_{\rm HH}(H_{\rm dS})\|^2 \propto e^{\frac{\pi}{GH_{\rm dS}^2}} = e^{+S_{\rm dS}}$$
$$\mathcal{P}_{\rm T}(\text{Nothing} \to dS) = \|\Psi_{\rm T}(H_{\rm dS})\|^2 \propto e^{-\frac{\pi}{GH_{\rm dS}^2}} = e^{-S_{\rm dS}}$$

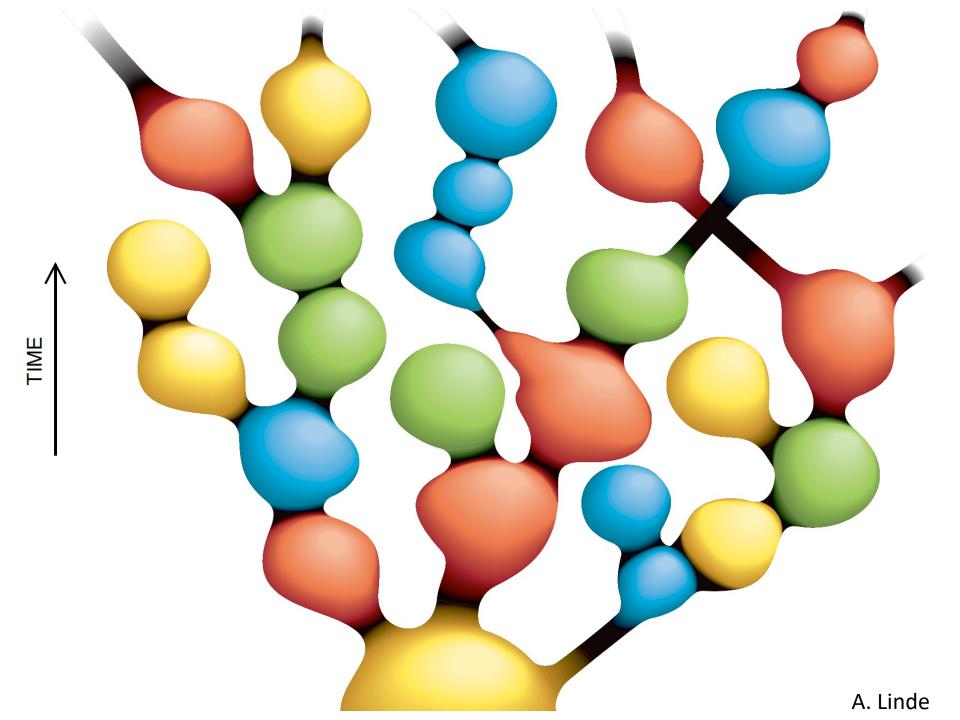
Transition from nothing?



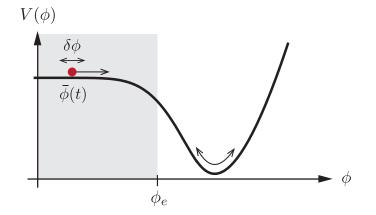


$$\mathcal{H} = -\frac{\pi_a^2}{12a} - 3a + a^3\Lambda$$

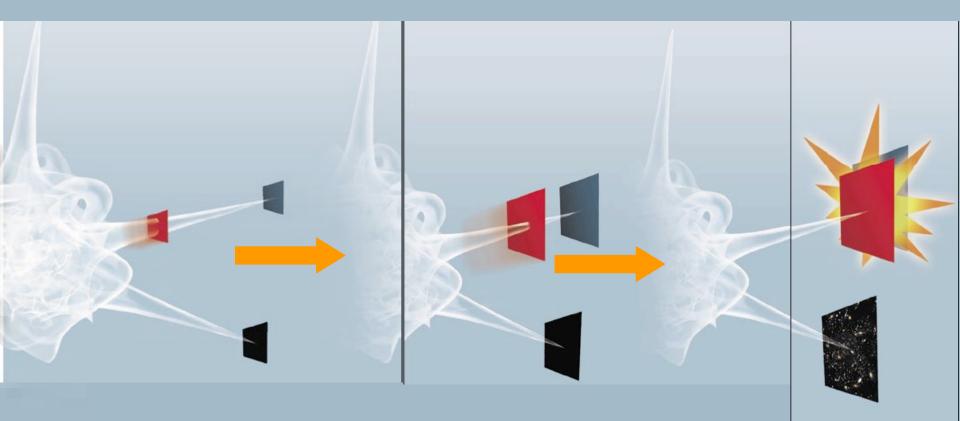
Wheeler-DeWitt, Vilenkin, Hartle-Hawking



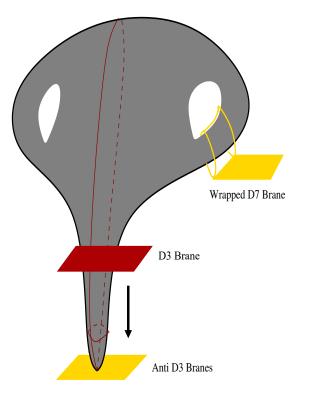
String Inflation



e.g. Brane/antibrane inflation

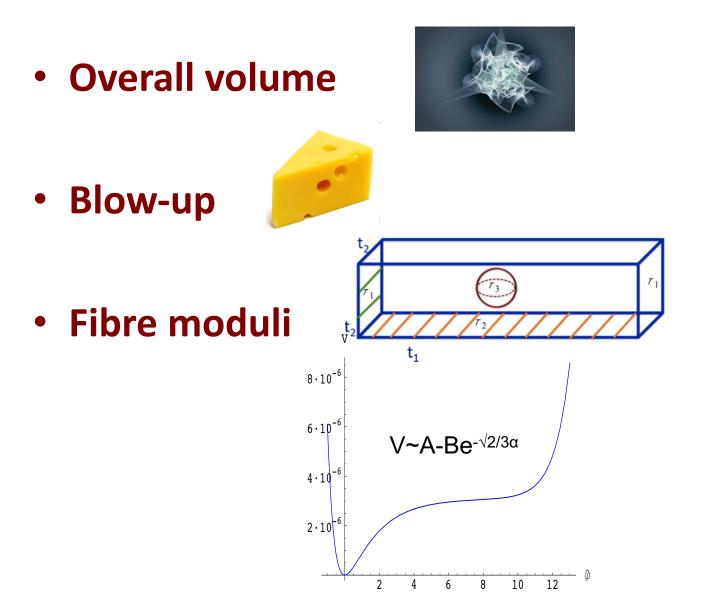


e.g. Brane/Antibrane Inflation



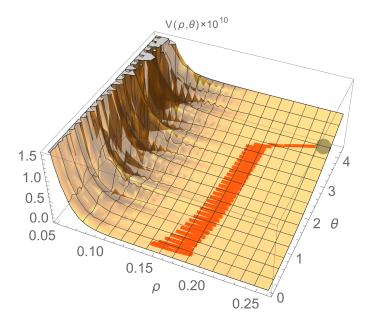
e.g. Moduli inflation

e.g. Kahler moduli



e.g. Axion Monodromy

$$V = \frac{M^2}{\beta} \left(\rho^2 + \theta^2 + \frac{2\lambda}{M} e^{-b\rho} \left[\theta \cos(b\theta) + \rho \sin(b\theta) + \frac{\lambda}{2M} e^{-b\rho} \right] \right),$$

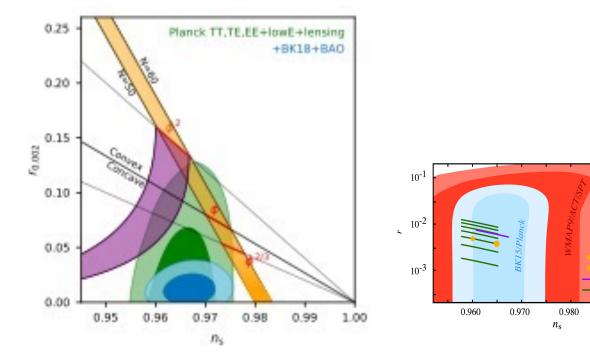


Predictions of String Inflation Models

String model	<i>n</i> _s	r
Fibre Inflation	0.967	0.007
Blow-up Inflation	0.961	10 ⁻¹⁰
Poly-instanton Inflation	0.958	10 ⁻⁵
Aligned Natural Inflation	0.960	0.098
<i>N</i> -Flation	0.960	0.13
Axion Monodromy	0.971	0.083
D7 Fluxbrane Inflation	0.981	5×10^{-6}
Wilson line Inflation	0.971	10 ⁻⁸
$D3-\overline{D3}$ Inflation	0.968	10 ⁻⁷
Inflection Point Inflation	0.923	10 ⁻⁶
D3-D7 Inflation	0.981	10 ⁻⁶
Racetrack Inflation	0.942	10 ⁻⁸
Volume Inflation	0.965	10 ⁻⁹
DBI Inflation	0.923	10 ⁻⁷

Recent BICEP/KECK 2021 results

 $r_{0.05} = 0.014^{+0.010}_{-0.011} \ (r_{0.05} < 0.036 \ \text{at} \ 95\% \ \text{confidence})$



From Flauger 2021 (see Kallosh-Linde)

 $N_{*} = 50$

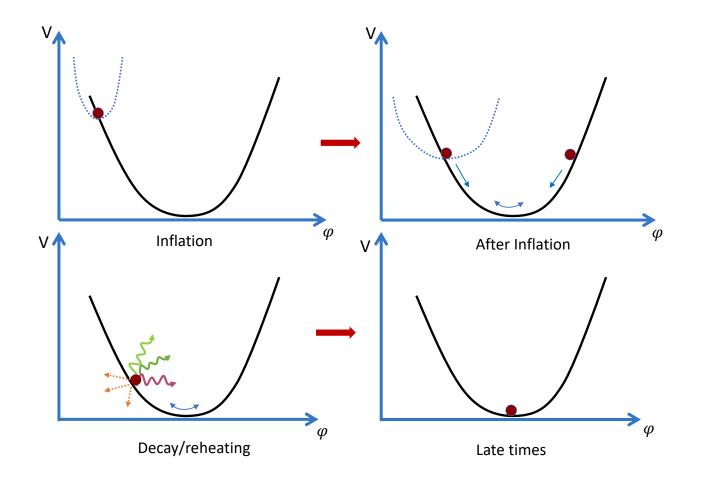
1.00

Higgs inflation $N_* = 57$ Fibre inflation $47 < N_* < 57$ Poincaré disks $47 < N_* < 57$

0.990

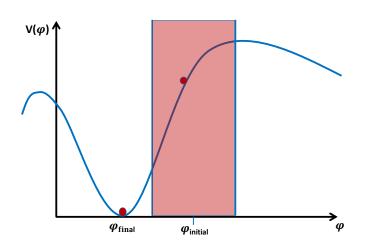
After Inflation

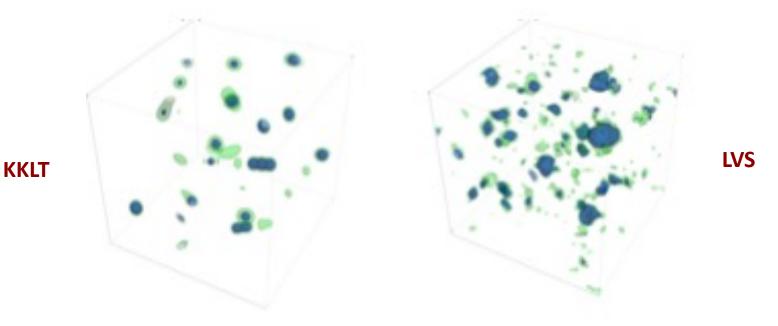
Moduli Domination



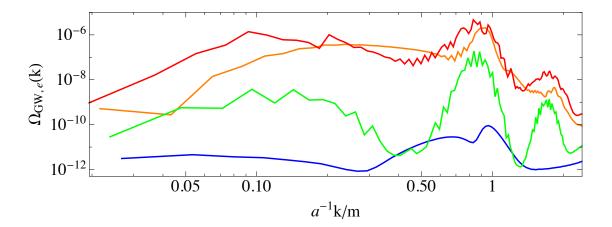
Reheating from latest moduli to decay NOT from inflaton!

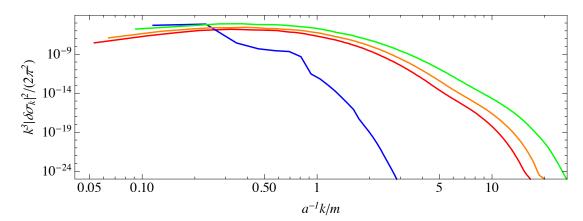
Oscillons/Moduli stars?





Gravitational Waves Spectrum





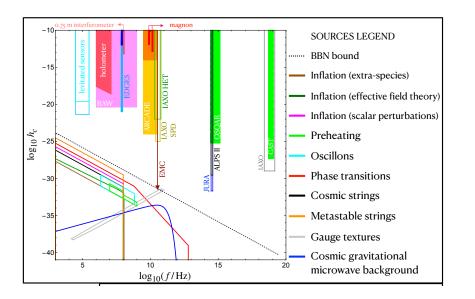
Gr

juency

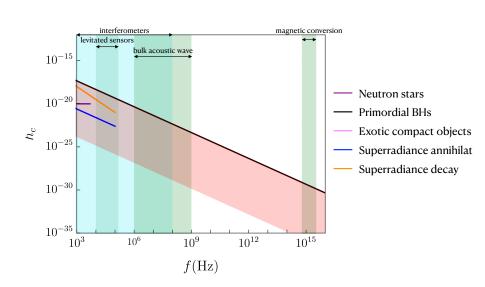
Figure 14: Three dimensional energy density distribution in units of the average energy density. Is from a lattice simulation of the KKLT modph with eW surfaces to the spond on the dimensional the transformed density of the dimensional the transformed density of the dimensional the transformed density density density density density density density density $\langle \rho \rangle$ while the dimensional times the average energy density $\langle \rho \rangle$ while the

indicate $\rho/\langle \rho \rangle = 12$. The energy density distribution is shown at four different

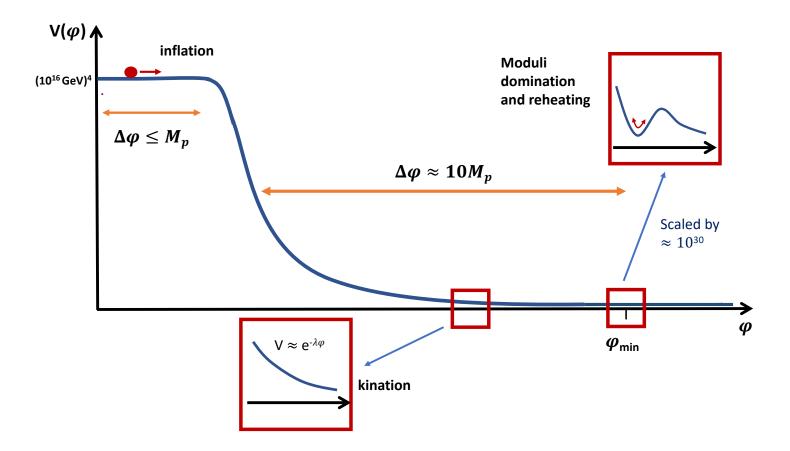
time denoted by the corresponding scale factor.



29

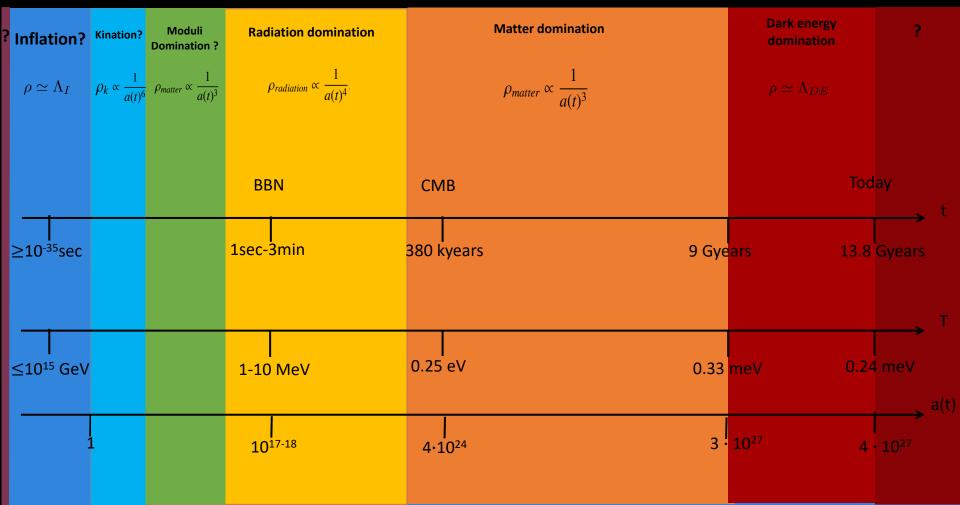


Kination scenario



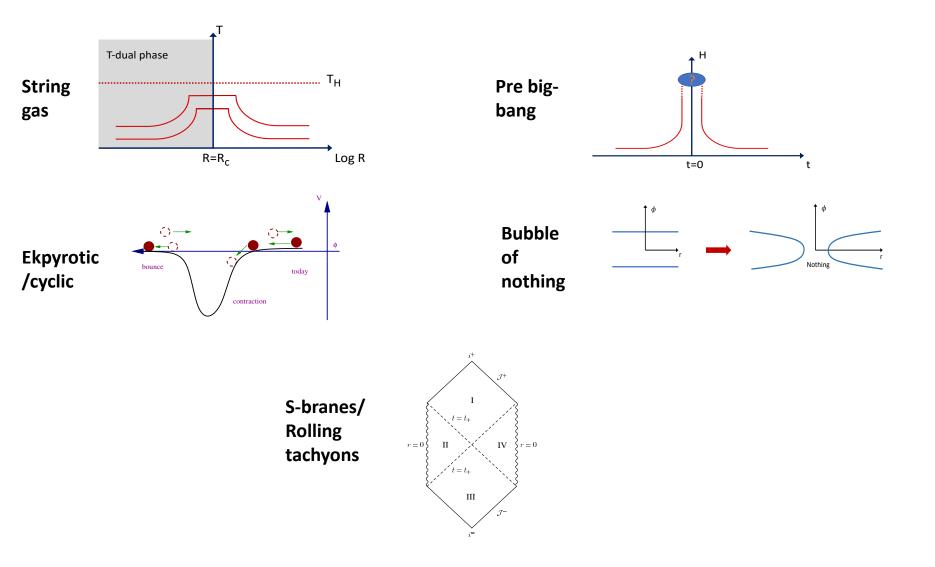
Alternative Histories?

Alternative histories of our Universe



Alternatives to String Inflation

Alternatives to String Inflation



Thank You!