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The Two Higgs Doublet

Model (2HDM)



Theoretical structure of the 2HDM

The 2HDM consist of two identical complex hypercharge-one,1

SU(2)L doublet scalar fields Φi(x) ≡ (Φ+
i (x) , Φ

0
i (x)), where

the “Higgs flavor” index i ∈ {1, 2} labels the two Higgs doublet

fields. The Higgs Lagrangian is given by,

L = LKE + V .

Explicitly, LKE = |DµΦ|2 , with

DµΦi =




∂µΦ
+
i +

[
ig

cW

(
1
2 − s2W

)
Zµ + ieAµ

]
Φ+

i +
ig√
2
W+

µ Φ0
i

∂µΦ
0
i −

ig

2cW
ZµΦ

0
i +

ig
√
2
W−

µ Φ+
i


 ,

and sW ≡ sin θW and cW ≡ cos θW .

1The U(1)Y hypercharge is normalized such that the electric charge is given by Q = T3 + Y/2.



The scalar potential is,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.]

+1
2λ1(Φ

†
1Φ1)

2 + 1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}
,

where m2
11, m

2
22, and λ1, · · · , λ4 are real and m2

12, λ5, λ6 and

λ7 are potentially complex.

After minimizing the scalar potential,2

〈Φ1〉 =
1√
2

(
0

|v1|

)
, 〈Φ2〉 =

1√
2

(
0

|v2| eiξ

)
,

where 0 ≤ |ξ| < 2π. In particular, v2 ≡ |v1|2 + |v2|2 = (246 GeV)2

and tanβ ≡ |v2|/|v1|.
2Without loss of generality, we have performed a U(1)Y transformation to remove the phase of v1 = 〈Φ0

1〉.



A choice of scalar field basis

In a general 2HDM, the parameters appearing in V are not

physical since they depend on a particular basis choice of the

two scalar fields (denoted as the Φ-basis).

The most general redefinition of the scalar fields that leaves LKE

invariant corresponds to a global U(2) transformation,3

Φi → Ui
jΦj ,

for i, j ∈ {1, 2}, where the 2 × 2 unitary matrix U satisfies

Ui
j(U †)jk = δki . The indices i and j run over the Higgs flavor

indices and take on two values in the 2HDM.

3Note that L is invariant under the hypercharge U(1)Y group, which is a subgroup of U(2).



It is convenient to introduce a notation for the Higgs flavor

indices such that

(U †)j
k = (Uk

j)∗ = Uk
j .

In this notation, we can write Ui
jUk

j = δki . Complex conjugation

has the effect of raising a lowered flavor index and lowering a

raised flavor index.

We shall also define a complex vector, v̂ = (̂v1,̂ v2), of unit norm

such that

〈Φi〉 =
v√
2


 0

v̂i


 , v ≃ 246 GeV, for i = 1, 2,

in the Φ-basis.



The complex conjugate of v̂i will be denoted with a raised index,

v̂ i ≡ (̂vi)
∗. A second unit vector ŵ can be defined that is

orthogonal to v̂:4

ŵj ≡ v̂ iǫij ,

where ǫ12 = −ǫ21 = +1 and ǫ11 = ǫ22 = 0. The complex

conjugate of ŵi will be denoted with a raised index, ŵ i ≡ (̂wi)
∗.

Under a unitary basis transformation Φi → Ui
jΦj, the unit

vectors v̂ and ŵ transform as

v̂i → Ui
j v̂j, which implies that ŵi → (detU)−1Ui

j ŵj.

Physical quantities must be basis-independent.

4Note that v̂ and ŵ are orthogonal due to the vanishing of the complex dot product, v̂ jŵj = v̂ j v̂ iǫij = 0.



The Higgs basis

Starting from a generic Φ-basis, the Higgs basis fields H1 and

H2 are defined by the linear combinations of Φ1 and Φ2 such

that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. That is,

H1 =


H+

1

H0
1


 ≡ cβΦ1 + sβe

−iξΦ2 ,

H2 =


H+

2

H0
2


 = eiη

(
−sβe

iξΦ1 + cβΦ2

)
,

where cβ ≡ cosβ, sβ ≡ sin β, and the complex phase factor eiη

accounts for the nonuniqueness of the Higgs basis.



In particular, eiη is a pseudoinvariant quantity that is rephased

under a unitary basis transformation, Φi → Ui
jΦj, as

eiη → (det U)−1eiη ,

where detU ≡ eiφ (such that φ ∈ R) is a complex number of

unit modulus.

Note that the Higgs basis fields are invariant fields,

H1 ≡ v̂ iΦi , H2 ≡ eiηŵ iΦi .

It follows that

Φi = H1̂vi + e−iηH2̂wi , for i = 1, 2.



In the Higgs basis, v̂ = (1 , 0) and ŵ = (0 , 1), and the scalar

potential is given by

V = Y1H†
1H1 + Y2H†

2H2 + [Y3e
−iηH†

1H2 + h.c.]

+ 1
2Z1(H†

1H1)
2 + 1

2Z2(H†
2H2)

2 + Z3(H†
1H1)(H†

2H2) + Z4(H†
1H2)(H†

2H1)

+
{

1
2Z5e

−2iη(H†
1H2)

2 +
[
Z6e

−iηH†
1H1 + Z7e

−iηH†
2H2

]
H†

1H2 + h.c.
}

.

where Y1, Y2, and Z1, . . . , Z4 are real parameters whereas Y3,

Z5, Z6, and Z7 are potentially complex parameters.

The minimization of the scalar potential in the Higgs basis yields

Y1 = −1
2Z1v

2 , Y3 = −1
2Z6v

2 .



To understand the significance of Higgs basis parameters, we

rewrite the scalar potential in the Φ-basis as follows

V = Y j
i (Φ

iΦj) +
1
2Z

kℓ
ij (Φ

iΦk)(Φ
jΦℓ) ,

where i, j, k, ℓ ∈ {1, 2} are Higgs flavor indices and the SU(2)L

indices of the scalar doublet fields have been suppressed.5 Above,

we have denoted the conjugated field by Φi ≡ (Φi)
†.

It is also convenient to define:

V i
j ≡ v̂iv̂j , W i

j ≡ ŵiŵj = δij − V i
j , Zkℓ

ij ≡ Zkℓ
ji = Zℓk

ij .

The elements of Y j
i , V

j
i , W

j
i , Z

kℓ
ij and Zkℓ

ij can be assembled into

three 2× 2 hermitian matrix and two 4× 4 hermitian matrices.
5Note that ΦiΦj ≡ Φ−

i Φ+
j + Φ

0†
i Φ0

j .



Y =


Y 1

1 Y 2
1

Y 1
2 Y 2

2


 =


 m2

11 −m2
12

−(m2
12)

∗ m2
22


 ,

Z =




Z11
11 Z12

11 Z21
11 Z22

11

Z11
12 Z12

12 Z21
12 Z22

12

Z11
21 Z12

21 Z21
21 Z22

21

Z11
22 Z12

22 Z21
22 Z22

22




=




λ1 λ6 λ6 λ5

λ∗
6 λ3 λ4 λ7

λ∗
6 λ4 λ3 λ7

λ∗
5 λ∗

7 λ∗
7 λ2




.

and Z = Z(λ3 ↔ λ4), Under a change of scalar field basis,

Φi → Ui
jΦj, the matrices Y (V , W ) and Z (Z) transform as

Y → UY U † , Z → (U ⊗ U)Z(U ⊗ U)† ,

where the Kronecker product of the 2 × 2 matrix A and the
matrix B is given by:

A ⊗ B =


A1

1B A2
1B

A1
2B A2

2B


 .



We can now identify the real coefficients of the scalar potential in

the Higgs basis in terms of manifestly basis-invariant quantities:

Y1 = Y j
i v̂

iv̂j = Tr(Y V ) , Y2 = Y j
i ŵ

iŵj = Tr(YW ) ,

Z1 = Zkℓ
ij Vk

iVℓ
j = Tr

[
Z(V ⊗ V )

]
= Tr

[
Z(V ⊗ V )

]
,

Z2 = Zkℓ
ij Wk

iWℓ
j = Tr

[
Z(W ⊗W )

]
= Tr

[
Z(W ⊗W )

]
,

Z3 = Zkℓ
ij Vk

iWℓ
j = Tr

[
Z(V ⊗W )

]
= Tr

[
Z(W ⊗ V )

]
,

Z4 = Zkℓ
ij Vk

jWℓ
i = Tr

[
Z(V ⊗W )

]
= Tr

[
Z(W ⊗ V )

]
.

The complex coefficients of the scalar potential in the Higgs

basis are not basis-invariant quantities. Instead, they are

pseudoinvariant quantities that change by a multiplicative phase

factor under a basis transformation.



Defining Xi
j ≡ v̂iŵj, which are elements of the matrix X that

transforms as X → (detU)−1X . We can then identify

Y3 = Y j
i v̂

iŵj = Tr(Y X) ,

Z5 = Zkℓ
ij Xk

iXℓ
j = Tr

[
Z(X ⊗X)

]
= Tr

[
Z(X ⊗X)

]
,

Z6 = Zkℓ
ij Vk

iXℓ
j = Tr

[
Z(X ⊗ V )

]
= Tr

[
Z(V ⊗X)

]
,

Z7 = Zkℓ
ij Xk

iWℓ
j = Tr

[
Z(X ⊗W )

]
= Tr

[
Z(W ⊗X)

]
.

Thus, Y3, Z5, Z6, and Z7 are complex pseudoinvariant quantities

that are rephased under a basis transformation Φi → Ui
jΦj as

[Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (det U)−2Z5 .



The scalar mass eigenstate fields

We parameterize the invariant fields H1 and H2 as follows,

H1 =

(
G+

1√
2

(
v + ϕ0

1 + iG0
)
)

, H2 =

(
H+

1√
2

(
ϕ0
2 + ia0

)
)

,

where G+ and its hermitian conjugate G− are the charged

Goldstone bosons and G0 is the neutral Goldstone boson.

The three remaining neutral fields mix, and the resulting neutral

Higgs squared-mass matrix in the ϕ0
1–ϕ

0
2–a

0 basis is:

M2
= v

2




Z1 Re(Z6e
−iη) − Im(Z6e

−iη)

Re(Z6e
−iη) 1

2

[
Z34 + Re(Z5e

−2iη)
]
+ Y2/v

2 −1
2 Im(Z5e

−2iη)

− Im(Z6e
−iη) −1

2 Im(Z5e
−2iη) 1

2

[
Z34 − Re(Z5e

−2iη)
]
+ Y2/v

2


 ,

where Z34 ≡ Z3 + Z4.



The squared-mass matrix M2 is real symmetric; hence it can be

diagonalized by a special real orthogonal transformation,

RM2RT = M2
D ≡ diag (m2

1 , m
2
2 , m

2
3) ,

where m2
i are the eigenvalues of M2. We parameterize R as,

R = R12R13R23 =




c12 −s12 0

s12 c12 0

0 0 1







c13 0 −s13

0 1 0

s13 0 c13







1 0 0

0 c23 −s23

0 s23 c23




=




c13c12 −s12c23 − c12s13s23 −c12s13c23 + s12s23

c13s12 c12c23 − s12s13s23 −s12s13c23 − c12s23

s13 c13s23 c13c23


 ,

where, e.g., cij ≡ cos θij and sij ≡ sin θij. Indeed, the angles

θ12, θ13 and θ23 are all invariant quantities since they are obtained

by diagonalizing M2, which is manifestly basis-invariant.



The neutral physical Higgs mass eigenstates, h1, h2 and h3, are

given by 


h1

h2

h3


 = R




ϕ0
1

ϕ0
2

a0


 = RW




√
2 Re H0

1 − v

H0
2

H0 †
2


 ,

which defines the unitary matrix W . The matrix RW is a

function of θ23 and the qij given in the table below,

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

The qkℓ are functions of θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij. The invariant

mixing angles θ12 and θ13 are defined modulo π, which are conventionally taken to lie in the

region −1
2π ≤ θ12 , θ13 ≤ 1

2π.



Explicitly,

RW =




q11
1√
2
q∗12 e

iθ23 1√
2
q12 e

−iθ23

q21
1√
2
q∗22 e

iθ23 1√
2
q22 e

−iθ23

q31
1√
2
q∗32 e

iθ23 1√
2
q32 e

−iθ23


 .

In summary, we have:

hk = qk1
(√

2 ReH0
1 − v

)
+

1√
2

(
q∗k2H0

2e
iθ23 + h.c.

)
,

G0 = v̂iΦ0
i , G+ = v̂iΦ+

i , H+ = eiηŵiΦ+
i .

It is convenient to define the positively charged Higgs field:

h+ ≡ eiθ23H+
2 .

The h± squared mass is given by

m2
± = Y2 +

1
2Z3v

2 .



Equivalently,

H1 =




G+

1√
2

(
v + iG+

3∑

k=1

qk1hk

)

 , eiθ23H2 =




h+

1√
2

3∑

k=1

qk2hk


 .

Although θ23 is an invariant parameter, it is not physical since it

can be eliminated by rephasing H2 → e−iθ23H2. Thus, without

loss of generality, we henceforth set θ23 = 0.

In the convention where θ23 = 0,

R =




c12c13 −s12 −c12s13

c13s12 c12 −s12s13

s13 0 c13


 =



q11 Re q12 Im q12

q21 Re q22 Im q22

q31 Re q32 Im q32


 .



Squared-mass sum rules

Using M2 = RRTM2
DR, we obtain

Z1 =
1

v2

3∑

k=1

m2
k(qk1)

2 , Z4 =
1

v2

[
3∑

k=1

m2
k|qk2|2 − 2m2

±

]
,

Z5e
−2iη =

1

v2

3∑

k=1

m2
k(q

∗
k2)

2 , Z6e
−iη =

1

v2

3∑

k=1

m2
k qk1q

∗
k2 ,

In particular, c13 Im(Z5e
−2iη) = 2s13Re(Z6e

−iη), and

s12c12c13 =
v2Re(Z6e

−iη)

m2
2 −m2

1

,

s13c13 =
v2 Im(Z6e

−iη)

m2
1 −m2

3 + s212(m
2
2 −m2

1)



In terms of the Φ-basis fields,

hk = 1√
2

[
Φ

0i
(qk1v̂i + qk2ŵie

−iη) + (qk1v̂
i + q∗k2ŵ

ieiη)Φ0
i

]

where the shifted neutral fields are defined by Φ0
i ≡ Φ0

i −vv̂i/
√
2

and Φ
0i ≡ (Φ0

i )
†.

We can invert the above formula to obtain:

Φi =




G+v̂i + h+e−iηŵi

v√
2
v̂i +

1√
2

(
iG+

3∑

k=1

(
qk1v̂i + qk2e

−iηŵi

)
hk

)

 .

Plugging these results into the Higgs Lagrangian previously given

yields the bosonic interactions of the Higgs mass eigenstates.



The interactions of the Higgs bosons and vector bosons are,

LV V H =

(
gmWW+

µ W µ− +
g

2cW
mZZµZ

µ

)
qk1hk ,

LV V HH =

[
1
4g

2
W

+
µ W

µ−
+

g2

8c2W
ZµZ

µ

]
hkhk +

[
1
2g

2
W

+
µ W

µ−
+ e

2
AµA

µ

+
g2

c2W

(
1
2 − s2W

)2

ZµZ
µ +

2ge

cW

(
1
2 − s2W

)
AµZ

µ

]
h+h−

+

{(
1
2egA

µW+
µ − g2s2W

2cW
ZµW+

µ

)
qk2h

−hk + h.c.

}
,

LV HH =
g

4cW
ǫjkℓqℓ1Z

µ
hk

↔
∂µ hj − 1

2g

[
iqk2W

+
µ h

−↔
∂

µ hk + h.c.

]

+

[
ieAµ +

ig

cW

(
1
2 − s2W

)
Zµ

]
h+↔

∂µ h− ,

where the sum over pairs of repeated indices j, k = 1, 2, 3 is

implied.



The cubic and quartic Higgs self-interactions are given by,

L3h = − v√
2
hjhkhℓ

[
qj1qk1qℓ1Z1 + qj2q

∗
k2qℓ1(Z3 + Z4) + qj1 Re(qk2qℓ2Z5 e

−2iθ23)

+3qj1qk1 Re
(
qℓ2Z6 e

−iθ23
)
+ Re(q∗

j2qk2qℓ2Z7 e
−iθ23)

]

−
√
2 v hkh

+
h
−
[
qk1Z3 + Re(qk2 e

−iθ23Z7)

]
,

L4h = −1
8hjhkhℓhm

[
qj1qk1qℓ1qm1Z1 + qj2qk2q

∗
ℓ2q

∗
m2Z2 + 2qj1qk1qℓ2q

∗
m2(Z3 + Z4)

+2qj1qk1 Re(qℓ2qm2Z5 e
−2iθ23) + 4qj1qk1qℓ1 Re(qm2Z6 e

−iθ23)

+4qj1 Re(qk2qℓ2q
∗
m2Z7 e

−iθ23)

]
− 1

2Z2h
+
h
−
h
+
h
−

−1
2hjhkh

+h−
[
qj2q

∗
k2Z2 + qj1qk1Z3 + 2qj1 Re(qk2Z7 e

−iθ23)

]
.

It is remarkable how compact the expressions are for the Higgs

boson interactions when written explicitly in terms of invariant

quantities that can be directly related to observables.



The Higgs alignment limit of the 2HDM

The tree-level couplings of the neutral field,

ϕ ≡
√
2 ReH0

1 − v ,

which resides in the scalar doublet H1 of the Higgs basis,

are precisely those of the neutral Higgs field of the Standard

Model (SM). However, the field ϕ is generally not a scalar mass

eigenstate due to its mixing with the neutral scalar states that

reside in H2.

The LHC Higgs data implies that the observed Higgs boson is

SM-like. That is, the Higgs alignment limit, in which one of the

Higgs mass eigenstates is aligned (in field space) with the Higgs

vacuum expectation value (vev), is approximately realized.



The LHC data favors a SM-like Higgs boson
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ttH

tH

 0 1 2  

1

 1 2 3 4  

0

1

2

3

4

5

6

 0 1 2  

1

 1 2 3  

0

1

2

3

4

5

6

 0 1 2  

1

5− 0 5 10

 0 1 2 3 4  

0

1

2

3

4

5

6

Run 2 ATLAS Data (Total uncertainty) Syst. uncertainty SM prediction

Ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and

decay processes, as observed by the ATLAS Collaboration (based on 139 fb−1 of data). The horizontal bar on

each point denotes the 68% confidence interval. The narrow grey bands indicate the theory uncertainties in the

SM cross section times the branching fraction predictions. The p-value for compatibility of the measurement

and the SM prediction is 72%. Taken from The ATLAS Collaboration, “A detailed map of Higgs boson

interactions by the ATLAS experiment ten years after the discovery,” Nature 607, no. 7917, 52-59 (2022)

[arXiv:2207.00092 [hep-ex]].
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The measured coupling modifiers of the Higgs boson to fermions and heavy gauge bosons, observed by the

CMS Collaboration, as functions of fermion or gauge boson mass, where v is the vacuum expectation value

of the Higgs field. For gauge bosons, the square root of the coupling modifier is plotted, to keep a linear

proportionality to the mass, as predicted in the SM. The p-value with respect to the SM prediction is 37.5%.

Taken from The CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after

the discovery,” Nature 607, no. 7917, 60-68 (2022) [arXiv:2207.00043 [hep-ex]].



In the alignment limit where h1 is identified as SM-like (m1 ≃ 125 GeV),

gh1V V

ghSMV V
= q11 = c12c13 ≃ 1 , where V = W or Z ,

it then follows that s12, s13 ≪ 1. Thus,

s12 ≡ sin θ12 ≃
Re(Z6e

−iη)v2

m2
2 −m2

1

≪ 1 ,

s13 ≡ sin θ13 ≃ −Im(Z6e
−iη)v2

m2
3 −m2

1

≪ 1 .

Im(Z5e
−2iη) ≃ (m2

2 −m2
1)s12s13

v2
≃ −Im(Z2

6e
−2iη)v2

m2
3 −m2

1

≪ 1 .

We also obtain the following approximate mass relations,

m2
1 ≃ v2

[
Z1 − s12Re(Z6e

−iη) + s13 Im(Z6e
−iη)

]
,

m2
2 −m2

3 ≃ v2
[
Re(Z5e

−2iη) + s12Re(Z6e
−iη) + s13 Im(Z6e

−iη)
]
,

m2
2 −m2

± ≃ 1
2v

2
[
Z4 +Re(Z5e

−2iη) + 2s12Re(Z6e
−iη)

]
.



Conditions for approximate Higgs alignment

1. The decoupling limit is achieved if m2, m3 ≫ v ≃ 246 GeV

(under the assumption that Z6 is at most an O(1) parameter).

That is, Y2 ≫ v2.

2. Approximate Higgs alignment without decoupling is achieved

if |Z6| ≪ 1, while all Higgs squared masses are of O(v2).6

Remark: Although the tree-level couplings of ϕ ≡
√
2ReH0

1− v coincide with

those of the SM Higgs boson, the one-loop couplings can differ due to the

exchange of the other Higgs states (if not too heavy). For example, the h±

loop contributes to the decays of the SM-like Higgs boson to γγ and γZ.

6More precisely, we require that |Z6| ≪ ∆m2
j1/v

2, where ∆m2
j1 ≡ m2

j − m2
1 for j = 2, 3.



Higgs-fermion Yukawa interactions

The Higgs–fermion Yukawa couplings (in the Φ-basis):

−LY = (̂yui)m
n
[
Φ0i ûm

L ûnR − (Φ−)i d̂
m

L ûnR

]
+ (̂yd

i)m
n
[
Φ+

i û
m
L d̂nR +Φ0

i d̂
m

L d̂nR

]

+ (̂ye
i)m

n
[
Φ+

i ν̂
m
L ênR +Φ0

i ê
m
L ênR

]
+ h.c. ,

where fR ≡ 1
2(1 + γ5)f and fL ≡ 1

2(1 − γ5)f [with four-

component fermion fields f = u, d, ν, e]. The hatted fields

correspond to the fermion interaction-eigenstates, and m, n are

fermion flavor labels. We have also defined

ŷf
i ≡ (̂yf i

)† , for f = u, d, e.



We can construct invariant matrix Yukawa couplings κ̂F and ρ̂F

(where F = U , D, E) as follows:

κ̂F ≡ v̂j ŷf j
, ρ̂F ≡ eiηŵj ŷf j

.

we end up with

−LY =
{
(̂κU)m

n
[
H0†

1 ûm
L
ûnR − H−

1 d̂
m
L ûnR

]
+ (̂ρU)m

n
[
H0†

2 ûm
L
ûnR − H−

2 d̂
m
L ûnR

]
+ h.c.

}

+
{
(̂κ

D
)
†
m

n
[
H+

1 ûm
L
d̂nR + H0

1 d̂
m
L d̂nR

]
+ (̂ρ

D
)
†
m

n
[
H+

2 ûm
L
d̂nR + H0

2 d̂
m
L d̂nR

]
+ h.c.

}

+
{
(̂κE)†m

n
[
H+

1 ν̂m
L
ênR + H0

1 ê
m
L
ênR

]
+ (̂ρE)†m

n
[
H+

2 ν̂m
L
ênR + H0

2 ê
m
L
ênR

]
+ h.c.

}
.

The fermion mass matrices can be identified by setting the scalar
fields to their vevs.

(M̂U)m
n =

v√
2
(̂κU)m

n , (M̂F )m
n =

v√
2
(̂κF )†m

n , for F = D, E.



Diagonalizations of the fermion mass matrices are accomplished

via the singular value decomposition of linear algebra.

Introducing the unitary matrices Lf and Rf (f = u, d, e), where7

f̂mL = (Lf)m
nfnL , f̂mR = (Ru)m

nfnR ,

the diagonalization equations are:

L†
u M̂U Ru ≡ MU = diag(mu , mc , mt) ,

L†
d M̂DRd ≡ MD = diag(md , ms , mb) ,

L†
e M̂E Re ≡ ME = diag(me , mµ , mτ) ,

where the diagonalized masses are real and nonnegative. Since

no right-handed neutrino field has been introduced so far, the

neutrinos are exactly massless.
7Since the neutrinos are massless (prior to introducing the neutrino mass generation mechanism), one is

free to define ν̂mL = (Le)m
nνnL.



To write out the corresponding Higgs–fermion Yukawa

interactions, it is convenient to define

κU ≡ L†
u κ̂

URu =

√
2

v
MU ,

κD ≡ L†
d κ̂

D†Rd =

√
2

v
MD ,

κE ≡ L†
e κ̂

E†Re =

√
2

v
ME ,

which are diagonal with positive entries by construction, and

ρU ≡ L†
u ρ̂

URu ,

ρD† ≡ L†
d ρ̂

D†Rd ,

ρE† ≡ L†
e ρ̂

E†Re ,

which are arbitrary complex coupling matrices that are

independent of the fermion masses.



That is,

κF =

√
2MF

v
= v̂iyf i , ρF = eiηŵiyf i ,

or equivalently,

yf i =

√
2

v
MF v̂i + e−iηρF ŵi .

The Yukawa Lagrangian in the Φ-basis in terms of fermion mass

eigenstates is therefore:

−LY = (yui)p
n
[
Φ0i δpmūm

L unR − (Φ−)i (K†)m
pd̄mL unR

]

+(yd
i)p

n
[
Φ+

i Km
pūm

L dnR + Φ0
i δ

p
md̄mL dnR

]

+(ye
i)m

n
[
Φ+

i ν̄
m
L enR + Φ0

i ē
m
L enR

]
+ h.c. ,

where K ≡ L†
uLd is the CKM mixing matrix.

Exercise: Rewrite LY above in terms of the Higgs basis fields H1 and H2.



In terms of the quark mass-eigenstate fields and the scalar mass eigenstate

fields, the Yukawa Lagrangian is given by:

−LY = U

{
MU

v
qk1 +

1√
2

[
q∗k2 ρ

UPR + qk2 ρ
U†PL

]}
Uhk −

i

v
UMUγ5UG0

+D

{
MD

v
qk1 +

1√
2

[
qk2 ρ

D†PR + q∗k2 ρ
DPL

]}
Dhk +

i

v
DMDγ5DG0

+E

{
ME

v
qk1 +

1√
2

[
qk2 ρ

E†PR + q∗k2 ρ
EPL

]}
Ehk +

i

v
EMEγ5EG0

+

{
U
[
KρD†PR − ρU†KPL

]
Dh+ +NρE†PREh+ + h.c.

}

+

{√
2

v
U
[
KMDPR −MUKPL

]
DG+ +

√
2

v
NMEPREG+ + h.c.

}
,

where there is an implicit sum over k ∈ {1, 2, 3}, PR,L ≡ 1
2(1 ± γ5), and

the mass-eigenstate fields of the down-type quarks, the up-type quarks,

the charged leptons and the neutrinos are D = (d, s, b)T, U ≡ (u, c, t)T,

E = (e, µ, τ)T, and N = (νe, νµ, ντ)
T, respectively.



In general, the matrices ρF are complex and flavor-nondiagonal,

resulting in flavor-changing neutral current (FCNC) processes

and new sources of CP violation (beyond the CKM matrix K)

mediated at tree level by the exchange of the hk.

REMARK: In the exact Higgs alignment limit where h1 is the SM-like Higgs

boson, s12 = s13 = 0, or equivalently

q11 = q22 = −iq32 = 1 and q21 = q31 = q12 = 0 .

One easily checks that h1 possesses the Yukawa couplings of the SM Higgs

boson:

−LY =
1

v

∑

F=U,D,E

F MFF h1 .

Nevertheless, tree-level FCNCs and CP violation mediated by h2 and h3 are

still present.



Eliminating the tree-level Higgs-mediated FCNCs

A phenomenologically acceptable model must provide an explanation for the

approximate flavor diagonality and reality of the ρF matrices.

A natural way8 to achieve this result is to impose a symmetry on the

dimension-four terms of the Higgs Lagrangian.9 This symmetry is manifestly

realized in a particular scalar field basis that henceforth defines the Φ-basis.

Example: Impose a Z2 discrete symmetry, Φ1 → Φ1 and Φ2 → −Φ2 on the dimension-four

terms of the Higgs Lagrangian in the Φ-basis, which sets λ6 = λ7 = 0 and sets two of the

four Higgs-quark Yukawa coupling matrices to zero. Two possible Z2 charge assignments for

the quark fields are shown in the table below.

Φ1 Φ2 UR DR UL, DL Yukawa couplings

Type I + − − − + yu
1 = yd

1 = 0

Type II + − − + + yu
1 = yd

2 = 0

8Natural means without fine-tuning the parameters of LY .
9We allow for soft symmetry-breaking dimension-two terms in LY , which will generate FCNCs at loop order

that are consistent with experimental constraints.



The corresponding basis-independent conditions are,

Type I: ǫij ydi yuj = 0 , =⇒ κDρU − ρDκU = 0 ,

Type II: δji yd
i yuj = 0 , =⇒ κDκU† + ρDρU† = 0 ,

In the Φ-basis, we define tanβ ≡ |v2/v1| and ξ ≡ arg(v2/v1),

v̂ = (cosβ , eiξ sin β) , ŵ = (−e−iξ sin β , cosβ) .

Using yf i =
√
2(MF/v)̂vi + e−iηρF ŵi, it follows that ρ

U and

ρD are diagonal matrices given by10

Type I: ρU =
ei(ξ+η)

√
2MU cot β

v
, ρD =

ei(ξ+η)
√
2MD cotβ

v
,

Type II: ρU =
ei(ξ+η)

√
2MU cotβ

v
, ρD = − ei(ξ+η)

√
2MD tanβ

v
.

10To obtain ρE, replace D with E in the formulae above.



REMARK: The Φ-basis defined above is not quite unique. One always has

the option to interchange the roles of Φ1 and Φ2 by defining a Φ′ basis via

Φ′ = UΦ, where

U =

(
0 e−iξ

eiζ 0

)
.

The softly broken Z2 symmetry is also manifestly realized in the Φ′-basis,

where the previously tabulated Z2 charges of Φ1 and Φ2 are interchanged. In

particular, in light of (
sinβ

eiζ cosβ

)
= U

(
cosβ

eiξ sinβ

)
,

we conclude that β′ = 1
2π − β and ξ′ = ζ. Moreover, due to the

pseudoinvariant nature of eiη, we see that eiη
′
= (det U)−1eiη. Using

detU = −ei(ζ−ξ), it follows that ei(ξ
′+η′) = −ei(ξ+η).

Thus, with respect to the parameters of the Φ′-basis, the results obtained

previously are modified by interchanging tanβ ↔ cotβ and multiplying the

resulting expressions by −1.



Conditions for a CP-conserving scalar potential and vacuum

Consider what happens if we transform between two Higgs bases.

To transform to another Higgs basis, we can employ Φi → Ui
jΦj,

where U = diag(1, eiχ), in which case η → η − χ. Hence,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 ,

whereas Y1, Y2 and Z1,2,3,4 are invariant.

The 2HDM scalar potential and vacuum are CP-invariant if one

can find a choice of χ such that all the coefficients of the scalar

potential in the Higgs basis are real after imposing the scalar

potential minimum conditions. This conditions is satisfied if and

only if Im(Z∗
5Z

2
6) = Im(Z∗

5Z
2
7) = Im(Z∗

6Z7) = 0.



The conditions for a CP-invariant scalar potential and vacuum

are Im(Z∗
5Z

2
6) = Im(Z∗

5Z
2
7) = Im(Z∗

6Z7) = 0, implying the

existence of a real Higgs basis (where all Higgs basis scalar

potential parameters are real). These conditions are satisfied if

1. Im(Z5e
−2iη) = Im(Z6e

−iη) = Im(Z7e
−iη) = 0 ,

or

2. Im(Z5e
−2iη) = Re(Z6e

−iη) = Re(Z7e
−iη) = 0 .

In both cases the neutral scalar squared-mass matrix assumes a

block diagonal form consisting of a 2×2 mass matrix that yields

the squared-masses of two neutral CP-even Higgs bosons and a

1×1 mass matrix corresponding to the squared mass of a neutral

CP-odd Higgs boson (identified as h3 or h2, respectively).



The CP-conserving 2HDM

Without loss of generality, we work in a real Higgs basis and any

associated Φ-basis in which all scalar potential parameters and

the corresponding scalar vevs are real (with tan β ≡ v2/v1 either

positive or negative). In particular, η = 0 mod π.11 Under a real

orthogonal basis transformation, Φi → Ri
jΦj,

[Y3, Z6, Z7, ε, tan β] → detR [Y3, Z6, Z7, ε, tan β] ,

where ε ≡ eiη = ±1 and detR = ±1. It is convenient to choose

ε ≡ eiη =




sgnZ6 , if Z6 6= 0,

sgnZ7 , if Z6 = 0 and Z7 6= 0.

11The case of Z6 = Z7 = 0 must be treated separately since in this case η = 0 mod 1
2π.



The neutral Higgs squared-mass matrix in a real Higgs basis is:

M2
=




Z1v
2 εZ6v

2 0

εZ6v
2 Y2 +

1
2(Z3 + Z4 + Z5)v

2 0

0 0 Y2 +
1
2(Z3 + Z4 − Z5)v

2


 .

Diagonalizing the neutral scalar squared-mass matrix, only one

nontrivial mixing angle θ12 is required, since θ13 = θ23 = 0. The

scalar mass eigenstates are identified as two neutral CP-even

scalars h1 and h2 and a CP-odd scalar h3

h1 =
(√

2 ReH0
1 − v

)
cos θ12 −

√
2 ReH0

2 sin θ12 ,

h2 =
(√

2 ReH0
1 − v

)
sin θ12 +

√
2 ReH0

2 cos θ12 ,

h3 =
√
2 ImH0

2 ,

with corresponding masses mi ≡ mhi
.



The squared masses of two neutral CP-even scalars, h1 and h2

and the CP-odd scalar h3 are:

m2
1,2 =

1
2

{
Y2 +

(
Z1 +

1
2Z345

)
v2 ±

√[
Y2 −

(
Z1 − 1

2Z345

)
v2
]2

+ 4Z2
6v

4

}
,

m2
3 = Y2 +

1
2(Z3 + Z4 − Z5)v

2 = m2
± + 1

2(Z4 − Z5)v
2 ,

where Z345 ≡ Z3 + Z4 + Z5, with no mass ordering of h1, h2,

h3 implied. The mixing angle θ12 (where |θ12| ≤ 1
2π) is obtained

from

sin2 θ12 =
Z1v

2 −m2
1

m2
2 −m2

1

,

sin θ12 cos θ12 =
εZ6v

2

m2
2 −m2

1

.



Conventional notation for the CP-conserving 2HDM

If h1 (identified as the SM-like Higgs boson) is the lighter of the
two CP-even scalars, then the standard CP-conserving 2HDM
conventions define

h ≡ h1 = −
(√

2 ReΦ0
1 − vcβ

)
sinα+

(√
2 ReΦ0

2 − vsβ
)
cosα ,

H ≡ −εh2 =
(√

2 ReΦ0
1 − vcβ

)
cosα+

(√
2 ReΦ0

2 − vsβ
)
sinα ,

A ≡ εh3 = −
√
2
[
ImΦ0

1sβ − ImΦ0
2cβ
]
,

H± ≡ εh± = −Φ±
1 sβ +Φ±

2 cβ .

where h and H are CP-even (with mh < mH), A is CP-odd,

and β − α = ε θ12 +
1
2π .

Define the quantities: sβ−α ≡ sin(β−α) and cβ−α ≡ cos(β−α).

By convention, |θ12| ≤ 1
2π which implies that 0 ≤ sβ−α ≤ π.



k qk1 qk2

1 sβ−α ε cβ−α

2 −ε cβ−α sβ−α

3 0 i

qkℓ for the CP-conserving 2HDM when h1 = h is identified with the SM-like Higgs boson.

Hence, the squared-mass sum rules previously derived imply that

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

sβ−αcβ−α = − Z6v
2

m2
H −m2

h

,

which yields an explicit expression for cβ−α,

εcβ−α =
−|Z6|v2√

(m2
H −m2

h)(m
2
H − Z1v2)

≤ 0 .



The Higgs alignment limit of the CP-conserving 2HDM

Approximate Higgs alignment corresponds to |cβ−α| ≪ 1, which

is achieved if mH ≫ v (decoupling limit) or if |Z6| ≪ 1 [Higgs

alignment without decoupling if mH ∼ O(v)].

|cβ−α| ≃
|Z6|v2

m2
H −m2

h

≪ 1 ,

m2
h ≃ v2(Z1 + Z6cβ−α) ,

m2
H −m2

A ≃ v2(Z5 − Z6cβ−α) ,

m2
H −m2

H± ≃ 1
2v

2(Z4 + Z5 − 2Z6cβ−α) .



LHC constraints on Higgs alignment in the 2HDM

Regions excluded by fits to the measured rates of the productions and decay of the Higgs

boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed bestfit values

for cos(β −α) are −0.006 for the Type-I 2HDM and 0.002 for the Type-II 2HDM. Taken

from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).



Higgs couplings of the CP-conserving 2HDM

Using the previous expressions obtained for the general 2HDM, one can derive

the Higgs couplings in the CP-conserving 2HDM. Here are a few examples:

LV V H =

(
gmWW

+
µ W

µ−
+

g

2cW
mZZµZ

µ

)[
sβ−αh + cβ−αH

]
,

LV HH =
g

2cW
AZ

µ↔
∂µ (cβ−αh − sβ−αH) +

g

2cW
Z

µ
G

↔
∂µ (sβ−αh + cβ−αH)

− 1
2g

{
iW

+
µ

[
G

−↔
∂

µ (sβ−αh + cβ−αH)

+H−↔
∂
µ (cβ−αh − sβ−αH + iA)

]
+ h.c.

}
,

LV V HH =

[
1
4g

2W+
µ W µ− +

g2

8c2W
ZµZ

µ

]
(hh + HH + AA)

+

{(
1
2egA

µW+
µ − g2s2W

2cW
ZµW+

µ

)[
G−(sβ−αh + cβ−αH)

+H
−
(cβ−αh − sβ−αH + iA)

]
+ h.c.

}
.



Yukawa couplings of the CP-conserving 2HDM

It is straightforward to derive the Yukawa couplings of the
physical Higgs bosons in the CP-conserving 2HDM.

LY = −1

v
(UMUU +DMDD + EMEE)(hsβ−α +Hcβ−α)

− 1√
2
ε
[
U
(
ρUPR + ρU†PL

)
U +D

(
ρDPL + ρD†PR

)
D

+E
(
ρEPL + ρE†PR

)
E
]
(hcβ−α −Hsβ−α

)

− i√
2
ε
[
U(ρU†PL − ρUPR)U + (DρD†PR − ρDPL)D

+E(ρE†PR − ρEPL)E
]
A

−ε

{
U
[
KρD†PR − ρU†KPL

]
DH+ +NρE†PREH+ + h.c.

}
.



If we impose the discrete Z2 symmetry to eliminate tree-level

Higgs-mediated FCNCs, one obtains the following relations12

Type I: ρU =

√
2MU ε cotβ

v
, ρD =

√
2MD ε cotβ

v
,

Type II: ρU =

√
2MU ε cot β

v
, ρD = −

√
2MD ε tan β

v
.

thereby promoting ε tan β to a physical parameter.

Plugging corresponding ρU and ρD into our previous formulae,

one can derive the Type-I and Type-II Yukawa couplings of the

CP-conserving 2HDM. For example,

12To obtain ρE, replace D with E in the formulae above.



LII = − h

v

{(
sβ−α + cβ−α cot β

)(
UMUU + h.c.

)

+
(
sβ−α − cβ−α tan β

)(
DMDD + EMEE + h.c.

)}

− H

v

{(
cβ−α − sβ−α cot β

)(
UMUU + h.c.

)

+
(
cβ−α + sβ−α tan β

)(
DMDD + EMEE + h.c.

)}

+ i
A

v

{
cot β UMUγ5U + tan β

(
DMDγ5D + EMEγ5E

)
+ h.c.

}

+

√
2

v

{
H

+

[
U
(
MUKPL cot β + KMDPR tan β

)
D + NMEPR tan βE

]
+ h.c.

}
.

REMARK: Note that LII is invariant under Φi → Ri
jΦj with detR = ±1.

In the 2HDM literature, it is conventional to restrict detR = +1 by taking

the Higgs vevs, or equivalently tan β, nonnegative (i.e., 0 ≤ β ≤ 1
2π), in

which case ε is fixed by the sign of cβ−α [recall that εcβ−α ≤ 0].



The MSSM Higgs Sector



Tree-level MSSM Higgs sector

The tree-level Higgs sector of the MSSM is a CP-conserving

Type-II 2HDM, with a scalar potential with quartic terms

constrained by supersymmetry. It is convenient to define

Hdi ≡ ǫijΦ
j
1 =

(
(Φ0

1)
† , −Φ−

1

)
, Hui = Φ2i =

(
Φ+

2 , Φ0
2

)
,

where i and j are SU(2) indices and Φj
1 ≡ (Φ1j)

†. Then the

MSSM scalar Higgs potential is given by

V = M2
dH

†
dHd +M2

uH
†
uHu + (M2

udǫ
ijHuiHdj + h.c.)

+ 1
8(g

2 + g′ 2)(H†
uHu −H†

dHd)
2 + 1

2g
2|H†

dHu|2 ,

where M2
d ≡ |µ|2 + m2

Hd
, M2

u ≡ |µ|2 + m2
Hu

, and M2
ud ≡ b

[cf. Stephen Martin’s lectures].



In particular,

ǫijHuiHdj = H+
u H−

d −H0
uH

0
d = −Φ†

1Φ2 .

The quartic Higgs couplings are related to the electroweak gauge
couplings g and g′:

λ1 = λ2 = −λ3 − λ4 =
1
4(g

2 + g′ 2) , λ4 = −1
2g

2 , λ5 = λ6 = λ7 = 0 .

The Φ-basis, where the above relations satisfied, corresponds

to the scalar field basis in which the supersymmetry of the

dimension-four terms of the scalar potential is manifestly realized.

The supersymmetry is softly broken by the scalar squared-mass

parameters, m2
Hd

, m2
Hu

, and b.

REMARK: Note that M2
ud, the only potentially complex parameter that

appears in the scalar potential, can be chosen real by an appropriate rephasing

of the Higgs doublet fields, which defines a real scalar field basis.



In the real scalar field basis, the minimum of the Higgs scalar potential is

〈H0
d〉 =

vd√
2
=

v cosβ√
2

, 〈H0
u〉 =

vu√
2
=

v sinβ√
2

,

where vd and vu are real, with v ≡ (v2d + v2u)
1/2 ≃ 246 GeV. Consequently,

the tree-level MSSM Higgs scalar potential and vacuum are CP-conserving.

Moreover, one can redefine Hd → −Hd or Hu → −Hu (if necessary) such

that vd and vu are nonnegative. In this case, the parameter tan β ≡ vu/vd is

nonnegative and 0 ≤ β ≤ 1
2π. One can now transform to a real Higgs basis

where

Y1 = −1
2Z1v

2 , Y2 = m2
A + 1

8(g
2 + g′ 2)v2 cos2 2β ,

Y3 = −1
2Z6v

2 , Z1 = Z2 =
1
4(g

2 + g′ 2) cos2 2β ,

Z3 = Z5 +
1
4(g

2 − g′ 2) , Z4 = Z5 − 1
2g

2 ,

Z5 =
1
4(g

2 + g′ 2) sin2 2β , Z7 = −Z6 =
1
4(g

2 + g′ 2) sin 2β cos 2β .



The properties of the tree-level MSSM Higgs sector can now be

derived using the results previously obtained in this lecture. For

example, the following tree-level mass bounds are satisfied:

m2
h ≤ min{m2

Z cos2 2β , m2
A +m2

Z sin2 2β} ,

m2
H ≥ max{m2

Z cos2 2β , m2
A +m2

Z sin2 2β} .

In particular, mh ≤ mZ, in conflict with the observed Higgs

boson mass of 125 GeV. We will see shortly that the radiative

corrections to above inequalities are significant in the MSSM,

and parameter regimes exist in which the upper bound on the

mass mh can be raised to a value above 125 GeV, thereby

restoring the consistency with the observed Higgs boson data.



The tree-level properties of the MSSM Higgs sector can be
rederived directly in the scalar field basis where supersymmetry

is manifestly realized. One immediately identifies the charged
Higgs bosons and the CP-odd neutral scalar,

H± = H±
d sinβ +H±

u cosβ ,

A0 =
√
2
(
ImH0

d sinβ + ImH0
u cosβ

)
.

Likewise, the two CP-even neutral scalars h and H ,

h0 = −(
√
2ReH0

d − vd) sinα+ (
√
2ReH0

u − vu) cosα ,

H0 = (
√
2ReH0

d − vd) cosα+ (
√
2ReH0

u − vu) sinα .

are obtained by diagonalizing the CP-even scalar squared-mass
matrix with respect to the basis {

√
2ReH0

d − vd ,
√
2ReH0

u − vu}

M2 =

(
m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A cos2 β +m2

Z sin2 β

)
.



All scalar masses and couplings can be expressed in terms of two

parameters, usually chosen to be mA and tan β. The masses of

the neutral CP-odd and charged Higgs bosons are given by

m2
A =

2M2
ud

sin 2β
= M2

d +M2
u ,

after using the scalar potential minimum conditions, and

m2
H± = m2

A +m2
W .

The squared masses of the CP-even Higgs bosons h0 and H0 are

eigenvalues of M2. The trace and determinant of M2 yield

m2
h +m2

H = m2
A +m2

Z , m2
hm

2
H = m2

Am
2
Z cos2 2β ,

where the CP-even Higgs squared masses are given by:

m2
H,h = 1

2

(
m2

A +m2
Z ±

√
(m2

A +m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
.



It is standard practice to choose the mixing angle α to lie in
the range |α| ≤ 1

2π. However, because the off-diagonal element

of M2 is negative, it follows that −1
2π ≤ α ≤ 0. Hence,

0 ≤ β − α ≤ π. The following formulae are easily derived:

cosα =

√
m2

A sin2 β +m2
Z cos2 β −m2

h

m2
H −m2

h

,

sinα = −
√

m2
H −m2

A sin2 β −m2
Z cos2 β

m2
H −m2

h

.

cos(β − α) =
m2

Z sin 2β cos 2β√
(m2

H −m2
h)(m

2
H −m2

Z cos2 2β)
,

sin(β − α) =

√
m2

H −m2
Z cos2 2β

m2
H −m2

h

.

The Higgs alignment limit is realized in the decoupling limit

when mH ≫ mh, which yields | cos(β − α)| ≪ 1.



Yukawa couplings of the MSSM Higgs sector

The MSSM Higgs sector employs Type-II Higgs–fermion Yukawa

couplings as a consequence of supersymmetry rather than a Z2

symmetry. Nevertheless, the dimension-four terms of the tree-

level MSSM Higgs Lagrangian respect the Z2 symmetry defined

by the Type-II Z2 charges previously given.13 Hence, the tree-

level MSSM Higgs–fermion Yukawa couplings are given by LII

of the CP-conserving 2HDM.

The tree-level Higgs couplings to charginos and neutralinos can

also be derived following the recipe given in Stephen Martin’s

lectures.

13In the MSSM, this Z2 symmetry is softly broken due to the nonzero parameter M2
ud in the scalar potential.



The One-Loop Corrected MSSM Higgs Masses

We begin by expanding the neutral components of the scalar

Higgs fields are expanded around their vevs:

H0
d,u ≡ hd,u + iad,u + vd,u√

2
,

and plugging this result into the MSSM scalar Higgs potential,

V = V0 + tdhd + tuhu + 1
2(M

2
e)ijhihj +

1
2(M

2
o)ijaiaj + · · · ,

where repeated indices i, j = d, u are summed over, and cubic

or quartic terms in the scalar fields are not explicitly shown.



Explicitly, the linear (tadpole) terms in the scalar potential are
given by

td ≡ ∂V
∂hd

∣∣∣∣
h=a=0

= vd

(
M2

d + 1
8G

2(v2d − v2u)− b
vu
vd

)
,

tu ≡ ∂V
∂hu

∣∣∣∣
h=a=0

= vu

(
M2

u + 1
8G

2(v2u − v2d)− b
vd
vu

)
,

where G2 ≡ g2 + g′ 2.

Likewise, the quadratic terms in the scalar fields yield 2× 2 CP-
even and CP-odd scalar squared-mass matrices [in the (hd, hu)
basis]:

M2
e ≡

∂2V

∂hi∂hj

∣∣∣∣
h=a=0

=

(
M2

d + 1
8G

2(3v2d − v2u) −1
4G

2vuvd − b

−1
4G

2vuvd − b M2
u + 1

8G
2(3v2u − v2d)

)
,



M2
o ≡

∂2V

∂ai∂aj

∣∣∣∣
h=a=0

=

(
M2

d + 1
8G

2(v2d − v2u) b

b M2
u + 1

8G
2(v2u − v2d)

)
.

All parameters appearing in the above formulae should be

interpreted as bare (unrenormalized) parameters. We ensure

that vu,d are stationary points of the full one-loop effective

potential by enforcing the tadpole cancellation condition:

−i(td,u + Td,u) = 0 ,

where −iTd,u consist of the sum of all Feynman diagrams

contributing to the one-point 1PI Green functions of hd and hu,

respectively.



φ −iTφ

The sum of all one-loop tadpole graphs at zero external momentum contributing to the

one-point 1PI Green function is denoted by −iTφ.

REMARK: For simplicity, we take the gaugino mass parameters, the µ

parameter, and the A-terms to be real, thus neglecting potential CP-violating

effects that could arise from CP-violating parameters in the sparticle sector.

Under this assumption, there is no mixing at one loop between CP-even and

CP-odd Higgs scalar eigenstates, and we can treat the analysis of the CP-even

and CP-odd scalar squared-mass matrices separately.

Using the tadpole cancellation condition, the CP-odd scalar

squared-mass matrix simplifies to

M2
o =




b
vu
vd

− Td

vd
b

b b
vd
vu

− Tu

vu


 .



Diagonalizing M2
o and expanding to leading order in Tu,d, the

bare masses for the CP-odd scalar A and the Goldstone boson

G are found:

m2
A =

v2

vuvd
b− v2u

v2
Td

vd
− v2d
v2

Tu

vu
, m2

G = − 1

v2
(Tdvd + Tuvu) .

Solving for b, M2
d and M2

u and making use of the tadpole
cancellation condition,

b =
(vuvd

v2

)
m2

A +
(vu
v

)4 Td

vu
+
(vd
v

)4 Tu

vd
,

M2
d =

(vu
v

)2
m2

A +

[(vu
v

)4
− 1

]
Td

vd
+
(vdvu

v2

)2 Tu

vu
+ 1

8G
2(v2u − v2d) ,

M2
u =

(vd
v

)2
m2

A +
(vuvd

v2

)2 Td

vd
+

[(vd
v

)4
− 1

]
Tu

vu
− 1

8G
2(v2u − v2d) .



Inserting these results into M2
e, we obtain

M2
e =


M2

dd M2
du

M2
du M2

uu


 ,

where

M2
dd = m2

As
2
β +m2

Zc
2
β +

Td

vd
(s4β − 1) +

Tu

vu
s2βc

2
β ,

M2
uu = m2

Ac
2
β +m2

Zs
2
β +

Td

vd
s2βc

2
β +

Tu

vu
(c4β − 1) ,

M2
du = −(m2

A +m2
Z)sβcβ − Tu

vu
c3βsβ − Td

vd
s3βcβ ,

with m2
Z ≡ 1

4G
2v2.



The eigenvalues of M2
e are the bare squared masses, m2

H and

m2
h, where

m2
H,h =

1

2

(
M2

dd +M2
uu ±

√
(M2

dd −M2
uu)

2 + 4
[
M2

du

]2
)
.

It is noteworthy that the tree-level sum rule,

TrM2
e = m2

Z + TrM2
o ,

still holds when vu,d are stationary points of the full one-loop

effective potential. In particular, one can check that

m2
h +m2

H = m2
Z +m2

A +m2
G ,

where m2
h+m2

H = M2
dd+M2

uu and m2
G = − (Tdvd + Tuvu) /v

2.



We can extend the above analysis to include the charged Higgs

boson and Goldstone boson fields. Starting from the MSSM

Higgs scalar potential, one can identify the terms that are

quadratic in the charged scalar fields by replacing H0
d,u with

their vacuum expectation values, 〈H0
d,u〉 = vd,u/

√
2:

V ⊃ (M2
±)ijH

+
i H

−
j ,

where repeated indices i, j = d, u are summed over and

M2
± =

(
M2

d + 1
4g

2v2u + 1
8G

2(v2d − v2u) b+ 1
4g

2vuvd

b+ 1
4g

2vuvd M2
u + 1

4g
2v2d +

1
8G

2(v2u − v2d)

)
.

We can eliminate M2
d and M2

u via the tadpole cancellation

equation.



We then end up with

M2
± =




(
b+ 1

4g
2vuvd

) vu
vd

− Td

vd
b+ 1

4g
2vuvd

b+ 1
4g

2vuvd
(
b+ 1

4g
2vuvd

) vd
vu

− Tu

vu


 .

Comparing with our previous expressions for m2
A and m2

G, it

immediately follows that

m2
H± = m2

A +m2
W , m2

G± = m2
G ,

after using m2
W = 1

4g
2v2.



It is convenient to replace the bare masses (denoted by a lower

case m) by physical masses (denoted by an upper case M) in

the one-loop approximation:

m2
φ = M2

φ − ReΣφφ(M
2
φ) , for φ = h,H,A,H± ,

m2
V = M2

V − ReAV V (M
2
V ) , for V = W±, Z ,

where −iΣφφ is the sum of all one-particle irreducible, connected

Feynman diagams contributing to the self-energy of the scalar

field φ, and the external legs are amputated, and AV V is the

coefficient of gµν that appears in the self-energy of the vector

boson V .



Although the physical Higgs masses are gauge invariant

quantities, it is convenient to work in the Landau gauge where

the gauge parameter ξ = 0 and the Goldstone boson pole masses

are zero. Thus, evaluating the equation for m2
φ with φ = G and

G±, respectively, with MG = MG± = 0, it follows that14

m2
G = M2

G − ΣGG(0) = −ΣGG(0) ,

m2
G± = M2

G± − ΣG+G−(0) = −ΣG+G−(0) ,

which implies that

ΣGG(0) = ΣG+G−(0) =
Tdcβ + Tusβ

v
.

14Note that the absorptive parts of ΣGG(0) and ΣG+G−(0) are zero. Thus in the CP-conserving limit,

ΣGG(0) and ΣG+G−(0) are both real quantities.



Working to one-loop accuracy, we end up with:

M2
H± = M2

W +M2
A +ReΣH+H−(M2

W +M2
A)

−ReAWW (M2
W )−ReΣAA(M

2
A) ,

since ΣH+H−(M2
W +M2

A) differs from ΣH+H−(M2
H±) by terms

of two-loop order in perturbation theory. To complete the

computation, one must explicitly evaluate the contributions of

the MSSM particle spectrum to the three one-loop self-energy

functions that appear in the equation above.



In contrast to the one-loop computation of mH±, the tree-

level expressions for the squared masses of the CP-even neutral

Higgs bosons depend on tan β. Consequently, the counterterms

associated with the parameters vu and vd are now relevant.

The renormalized VEVs are given in terms of the scalar wave

function renormalization constants, at one-loop accuracy, by

vd,r = Z
−1/2
Hd

vd = vd
(
1− 1

2δZHd

)
,

vu,r = Z
−1/2
Hu

vu = vu
(
1− 1

2δZHu

)
,

and the counterterms for the vevs are defined by

δvd ≡ vd,r−vd = −1
2vdδZHd

, δvu ≡ vu,r−vu = −1
2vuδZHu .



The neutral Higgs masses depend on the bare parameter tan β,

which can be replaced by a renormalized parameter and a

counterterm,

tan β → tan β − δ tan β ,

where

δ tan β

tan β
=

vd
vu

δ

(
vu
vd

)
=

δvu
vu

− δvd
vd

= 1
2

(
δZHd

− δZHu

)
.

Likewise, we can express the shifts of the parameters sβ and cβ

in terms of δ tan β:

sβ → sβ − δsβ = sβ − c3β δ tan β ,

cβ → cβ − δcβ = cβ + c2βsβ δ tanβ .



Using the above results,

M2
dd = M2

As
2
β +M2

Zc
2
β + δM2

dd ,

M2
uu = M2

Ac
2
β +M2

Zs
2
β + δM2

uu ,

M2
du = −(M2

A +M2
Z)sβcβ + δM2

du ,

where β is the one-loop renormalized parameter and

δM2
dd = −ReΣAA(M

2
A)s

2
β − ReAZZ(M

2
Z)c

2
β +

Td

vd
(s4β − 1) +

Tu

vu
s2βc

2
β

− 2sβc
3
β(M

2
A −M2

Z)δ tan β ,

δM2
uu = −ReΣAA(M

2
A)c

2
β − ReAZZ(M

2
Z)s

2
β +

Td

vd
s2βc

2
β +

Tu

vu
(c4β − 1)

+2sβc
3
β(M

2
A −M2

Z)δ tan β ,

δM2
du =

[
ReΣAA(M

2
A) + ReAZZ(M

2
Z)
]
sβcβ − Td

vd
s3βcβ − Tu

vu
c3βsβ

+(M2
A +M2

Z)c
2
βc2βδ tanβ .



Using
m2

H = M2
H − ReΣHH(M2

H) ,

m2
h = M2

h − ReΣhh(M
2
h) ,

one can perturbatively expand the expressions for m2
H and m2

h at

one-loop accuracy and rewrite the bare squared-mass parameters
in terms of physical (renormalized) parameters. In particular,

M2
H − ReΣHH(M̂2

H) = M̂2
H + 1

2

(
δM2

dd + δM2
uu

)

+
(M2

Z −M2
A)c2β(δM2

dd − δM2
uu)− 2(M2

Z +M2
A)s2βδM2

du

2(M̂2
H − M̂2

h)
,

M2
h − ReΣhh(M̂2

h) = M̂2
h + 1

2

(
δM2

dd + δM2
uu

)

− (M2
Z −M2

A)c2β(δM2
dd − δM2

uu)− 2(M2
Z +M2

A)s2βδM2
du

2(M̂2
H − M̂2

h)
,

where M̂2
H,h ≡ 1

2

(
M2

Z +M2
A ±

√
(M2

A −M2
Z)

2 + 4M2
AM

2
Zs

2
2β

)
.



Note that M̂2
H,h are the eigenvalues of the tree-level CP-even Higgs boson

squared-mass matrix with the bare parameters mA, mZ, and β replaced

by the corresponding physical (renormalized) masses MA and MZ and the

one-loop renormalized parameter β. One can also employ this squared-mass

matrix to define the mixing angle α, which can be expressed in terms of M2
A,

M2
Z, and the renormalized parameter β as follows:

cos 2α =
(M2

Z −M2
A)c2β

M̂2
H − M̂2

h

, sin 2α =
−(M2

Z +M2
A)s2β

M̂2
H − M̂2

h

.

Using the above expressions, one can derive the following useful identity:

M2
A sin[2(β − α)] = −M2

Z sin[2(β + α)] .

It then follows that

M2
H = M̂2

H + ReΣHH(M̂2
H) + δM2

dd cos
2α+ δM2

uu sin
2 α+ δM2

du sin 2α ,

M2
h = M̂2

h +ReΣhh(M̂2
h) + δM2

dd sin
2 α+ δM2

uu cos
2α− δM2

du sin 2α .



Plugging in the expressions previously obtained for δM2
dd, δM2

uu,

and δM2
du, into the above equations, we obtain

M
2
H = M̂2

H + ReΣHH(M̂2
H) − cos

2
(β + α) ReAZZ(M

2
Z) − s

2
β−α ReΣAA(M

2
A)

+
Td

vd

[
s
2
βs

2
β−α − cos

2
α
]
+

Tu

vu

[
c
2
βs

2
β−α − sin

2
α
]
+ 2m

2
Zc

2
β sin[2(β + α)]δ tan β ,

M
2
h = M̂2

h + ReΣhh(M̂
2
h) − sin

2
(β + α) ReAZZ(M

2
Z) − c

2
β−α ReΣAA(M

2
A)

+
Td

vd

[
s2βc

2
β−α − sin2 α

]
+

Tu

vu

[
c2βc

2
β−α − cos2 α

]
− 2m2

Zc
2
β sin[2(β + α)]δ tan β .

It is convenient to evaluate the one-loop tadpole functions with

respect to the neutral CP-even Higgs boson mass basis:15

TH ≡ Tu sinα+ Td cosα , Th ≡ Tu cosα− Td sinα .

15Since Tu and Td are one-loop quantities, it is consistent to define Th and TH at one-loop accuracy by
employing the mixing angle α whose definition is based on tree-level relations.



One can then rewrite the expressions for M2
H and m2

h in a more
useful form,

M2
H = M̂2

H +ReΣHH(M̂2
H)− cos2(β + α) ReAZZ(M

2
Z)− s2β−αReΣAA(M

2
A)

+ c2β−αΣGG(0)− 2cβ−α
TH

v
+ 2m2

Zc
2
β sin[2(β + α)]δ tan β ,

M2
h = M̂2

h +ReΣhh(M̂2
h)− sin2(β + α)ReAZZ(M

2
Z)− c2β−αReΣAA(M

2
A)

+ s2β−αΣGG(0)− 2sβ−α
Th

v
− 2m2

Zc
2
β sin[2(β + α)]δ tan β ,

where
ΣGG(0) =

1

v

[
THcβ−α + Thsβ−α

]
.

One also obtains the one-loop correction to the tree-level

squared-mass sum rule of the MSSM Higgs sector,

M2
h +M2

H = M2
A +M2

Z +ReΣhh(M̂2
h) + ReΣHH(M̂2

H)− ReΣAA(M
2
A)

−ReAZZ(M
2
Z)− ΣGG(0) .



A notable prediction of the MSSM is that the tree-level mass of the lightest

CP-even Higgs boson is bounded from above, and its maximal value is

achieved in the case of β = 1
2π and MA > MZ. In this limit, vd = 0 and

vu = v, in which case td = Td = 0 and there is no mixing of hu and hd (i.e.,

α = 0). It then follows that M̂h = MZ and M̂H = MA, and the expressions

for M2
h and M2

H simplify to

M2
h = M2

Z + ReΣhh(M
2
Z)− ReAZZ(M

2
Z)−

Th

v
,

M2
H = M2

A +ReΣHH(M2
A)− ReΣAA(M

2
A) ,

independently of the value of δ tanβ.



The MSSM Higgs Mass in the Decoupling Limit

In the Higgs decoupling limit where MA ≫ MZ, it follows that cβ−α = 0 and

sβ−α = 1. In this limit at one-loop accuracy16

M2
h = c22β

[
M2

Z − ReAZZ(M
2
Z)
]
+ ReΣhh(M

2
Zc

2
2β) −

Th

v
+ 4M2

Zc
2
βs2βc2βδ tan β ,

M2
H = M2

A + s22β
[
M2

Z − ReAZZ(M
2
Z)
]
+ ReΣHH(M2

A) − ReΣAA(M
2
A)

− 4M
2
Zc

2
βs2βc2βδ tan β .

It is instructive to look at the leading contributions to the one-loop radiatively

corrected mass of the SM-like Higgs boson of the MSSM. Numerically, the

leading effect is due to the loop contributions of the top quarks and the

supersymmetric top-quark partners. Because of the dependence on the

couplings of the top quark and top squarks that depend on the Higgs–top-

quark Yukawa coupling yt, it is sufficient to evaluate the leading m4
t behavior

of the self-energy functions that appear in the formulae above,

16At one-loop accuracy, one may replacem2
Z δ tanβ withM2

Z δ tanβ, since δ tanβ is a one-loop quantity.



One can check that there are no terms that behave like m4
t in neglect the

term in AZZ(M
2
Z) and in the expression for δ tanβ. Hence, we are left with

extracting the leading m4
t behavior of

M2
h = M2

Zc
2
2β +ReΣhh(M

2
Zc

2
2β)−

Th

v
,

due to loops of top quarks and their supersymmetric scalar partners. At

one-loop order in the limit of MZ ≪ Mt ≪ MA,MS, where MS is the

geometric mean of the two top-squark squared masses, M2
S ≡ mt̃1

mt̃2
,

M2
h ≃ M2

Zc
2
2β +

3g2m4
t

8π2m2
W

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

where mtXt ≡ v(atsβ − µytcβ)/
√
2 is the off-diagonal entry of the top-

squark squared-mass matrix, and at and µ have been assumed to be real (for

simplicity).



Taken from: from P. Slavich, S. Heinemeyer, et al., “Higgs-mass predictions in the MSSM

and beyond,” Eur. Phys. J. C 81, 450 (2021) [arXiv:2012.15629 [hep-ph]]. This review

article summarizes the efforts of the “Precision SUSY Higgs Mass Calculation Initiative” and

represents the state of the art of the radiatively corrected MSSM Higgs sector.



The observed Higgs mass of 125 GeV suggests that if the MSSM is realized

in Nature, then the effective scale of SUSY breaking (MS) is likely to be on

the heavy side (i.e., closer to 10 TeV) rather than of O(1 TeV) as initially

proposed for a solution to the hierarchy problem.



The MSSM Higgs Mass via the Renormalization Group

The leading logarithmic behavior of the radiatively corrected Higgs mass can

be understood quite easily using the renormalization group equations (RGEs)

of the SM. In the decoupling limit, there exists a scale MS below which the

effective field theory of the MSSM coincides with that of the SM. At the

scale MS, we can employ the MSSM relation M2
h = M2

Zc
2
2β. Equivalently,

λ(MS) =
1
8(g

2 + g′ 2)c22β , which serves as a boundary condition of the RGE

for λ,
dλ

dt
= βλ , where t ≡ lnµ.

In first approximation, we can take the right-hand side of above equation to

be independent of t, in which case

λ(mt) = λ(MS)− 1
2βλ ln

(
M2

S

m2
t

)
.



The one-loop beta function for λ in the Standard Model (SM) is given by

16π2βλ = 24λ2 + 3
8

[
2g4+

(
g2 + g′ 2

)2]− 2
∑

i

Nciy
4
i

−λ
(
9g2 + 3g′ 2− 4

∑

i

Nciy
2
i

)
,

with yi = gmfi/(
√
2mW ) and Nci = 3 [Nci = 1] for quarks [charged leptons].

To obtain the leading logarithmic behavior of the radiatively corrected Higgs

mass, it suffices to retain the term in βλ that is proportional to y4t :

βλ = − 3y4t
8π2

= − 3g4m4
t

32π2m4
W

.

Finally, we can identify

M2
h = 2λ(m2

t )v
2 = M2

Zc
2
2β +

3g2m4
t

8π2m2
W

ln

(
M2

S

m2
t

)
,

in agreement with the leading logarithmic behavior of the radiatively corrected

Higgs mass.



The MSSM Wrong-Higgs Couplings

The tree-level MSSM Lagrangian consists of SUSY-conserving

mass and interaction terms, supplemented by soft SUSY-breaking

operators. In particular, all tree-level dimension-four gauge

invariant interactions must respect supersymmetry.

When supersymmetry is broken, in principle all SUSY-breaking

operators consistent with gauge invariance can be generated in

the effective low-energy theory below the scale of SUSY breaking.

The MSSM Higgs sector provides an especially illuminating

example of this phenomenon.



In particular, if the masses of all the Higgs bosons lie below the

SUSY-breaking scale MS, then the low-energy effective theory

below MS, is the most general 2HDM.17

For simplicity, we will focus on the Higgs couplings to the third

generation of quarks (neglecting the generation indices and the

couplings to leptons). Using the MSSM Higgs field notation

and the two-component spinor formalism, the 2HDM Yukawa

Lagrangian (prior to imposing any symmetry constraints) is

given by:

LY = − yt(H
0
utt̄−H+

u bt̄)− wt(H
0†
d tt̄+H+

d bt̄)

− yb(H
0
dbb̄−H−

d tb̄)− wb(H
0†
u bb̄+H−

u tb̄) + h.c.
17Due to CP-violating effects generated by non-removable phases that may exist above MS in the MSSM,

the corresponding 2HDM scalar potential and Yukawa couplings may be CP-violating.



Imposing supersymmetry on the Yukawa Lagrangian implies that

we must eliminate the nonholomorphic couplings by setting

wt = wb = 0, which yields the Type-II Yukawa interactions.

Under the assumption that all SUSY particle masses

(characterized by a mass scale MS) are significantly heavier

than the heaviest scalar of the Higgs sector, one can formally

integrate out all the SUSY particles below the scale MS. The

resulting low-energy effective theory is the non-supersymmetric

2HDM. In this effective theory, the so-called wrong-Higgs Yukawa

couplings, wt and wb, are nonzero.



H0†
u

b b̄
g̃

b̃L b̃R

(a)

H̃+
u H̃−

d
×

H0†
u

b b̄

t̃R t̃L

(b)

One-loop MSSM contributions to the wrong-Higgs Yukawa couplings to bb̄. In diagram (b), the × serves as a

reminder that the exchanged charged higgsino is a Dirac fermion that is comprised of a pair of two-component
fermions, H̃+

u and H̃−
d
.

The Feynman rule for the H0†
u bb̄ vertex is −iwb. The dominant contributions

to this quantity are generated at one-loop order due to the two Feynman

diagrams exhibited in the figure above.18 We shall simplify the analysis by

ignoring squark mixing, although a more complete calculation must take this

into account since we will be assuming that µ, ab, and at are nonzero. Finally,

we shall ignore CP-violating effects by taking µ, ab, and at and M3 to be real

parameters. In what follows, we shall first assume that µ and M3 are positive

real parameters (a condition we shall later relax).

18We shall neglect subdominant corrections to wb/yb that are proportional to yb, g
2, and g′ 2.



We employ Feynman rules obtained from the following interaction

Lagrangians. First, the gluino–squark–quark Lagrangian is given by

Lint = −
√
2gs(T

a)j
k
∑

q

[
g̃aqk q̃

†j
L + g̃ †

aq
†j q̃Lk − g̃aq̄

j q̃Rk − g̃ †
a q̄

†
k q̃

†j
R

]
,

where the squark fields are taken to be in the same basis as the quarks.

Second, the couplings of Higgs bosons to squarks are given by

LHq̃q̃ = µ
[
yt(t̃

†
Lt̃RH

0
d + b̃†Lt̃RH

−
d ) + yb(̃b

†
Lb̃RH

0
u + t̃ †Lb̃RH

+
u )
]

− att̃
†
R(t̃LH

0
u − b̃LH

+
u )− abb̃

†
R(̃bLH

0
d − t̃LH

−
d ) + h.c.

Third, the higgsino couplings to qq̃ are given by:

LH̃qq̃ = − yt
[
H̃0

u(tt̃
†
R + t̄t̃L)− H̃+

u (bt̃ †R + t̄̃bL)
]

− yb
[
H̃0

d(bb̃
†
R + b̄b̃L)− H̃−

d (t̃b†R + b̄t̃L)
]
+ h.c.



Finally, in the approximation where the gauge couplings are neglected, the

chargino masses and the gluino mass are obtained from

Lmass = −1
2M3g̃g̃ −M2W̃

+W̃− − µH̃+
u H̃−

d + h.c.,

where the mixing of gauginos and higgsinos (proportional to g) is neglected.

The gluino of mass Mg̃ = M3 is a Majorana fermion, and the charged Dirac

fermion of mass MH̃± = µ comprises the pair of two-component higgsino

fields, H̃+
u and H̃−

d .

Under the assumption that MS ≫ mH±, one can compute the leading

contribution to the wrong-Higgs coupling diagrams by setting all external four-

momenta equal to zero. Performing the integration over the loop momentum

then yields the Passarino–Veltman function C0(0, 0, 0;m
2
a,m

2
b,m

2
c), where

the arguments of C0 are the squared masses of the particles appearing in the

loop.



The Passarino–Veltman function C0

We work in d = 4− 2ǫ dimensions and employ dimensional regularization.

C0(p
2
1, p

2
2, p

2;m2
a,m

2
b,m

2
c) = −16π2iµ2ǫ

∫
ddq

(2π)d
1

DC
,

where p = −(p1 + p2) and

DC ≡ (q2 −m2
a + iε)[(q + p1)

2 −m2
b + iε][(q + p1 + p2)

2 −m2
c + iε] ,

The following integral expression for C0 can be derived:

C0(p
2
1, p

2
2, p

2;m2
a,m

2
b,m

2
c) = −

∫ 1

0

dx

∫ x

0

dy

D − iε
,

after dropping terms of O(ǫ), where

D ≡ p2x2 + p22y
2 + (p21 − p22 − p2)xy + (m2

c −m2
a − p2)x

+(m2
b −m2

c + p2 − p21)y +m2
a .



Thus, we obtain

−iwbδjk = (iµyb)2g
2
s

(
T aT a

)
jk

i3M3
i

16π2
C0(0, 0, 0; ,M

2
3 ,m

2
b̃L
,m2

b̃R
)

+ (−iat)(−iyt)(−iyb)δjk i
3µ

i

16π2
C0(0, 0, 0; , µ

2,m2
t̃L
,m2

t̃R
) ,

where j, k are color indices and the factor of i3 derives from the numerators

of the three propagators in the loop.

The above result is usually expressed in terms of the function

I(ma,mb,mc) ≡ −C0(0, 0, 0;m
2
a,m

2
b,m

2
c)

=
m2

am
2
b ln(m

2
a/m

2
b) + m2

bm
2
c ln(m

2
b/m

2
c) + m2

cm
2
a ln(m

2
c/m

2
a)

(m2
a − m2

b)(m
2
b − m2

c)(m
2
a − m2

c)
,

where I(m,m,m) = 1/(2m2).



Hence, our final result for the wrong-Higgs coupling is

wb = yb

[
CFαsµM3

2π
I(Mg̃,mb̃L

,mb̃R
) +

µatyt
16π2

I(MH̃±,mt̃L
,mt̃R

)

]
,

where (T aT a)jk = CFδjk, with CF = 4/3, is the Casimir operator in the

fundamental representation of SU(3)C. The above result was derived under

the assumption that M3 and µ are positive. However, it can be shown that

this result remains valid if M3 and µ are real quantities of either sign.

A remarkable feature of the above result is that, in the limit of MS ≫ mH±,

expression for wb given above does not decouple if µ, M3, at ∼ O(MS).

That is, apart from the one-loop suppression factor, the contribution of wb to

the Yukawa interactions of the effective low-energy 2HDM theory can yield

significant deviations from the Type-II Yukawa interactions of the tree-level

MSSM Higgs sector.



For example, setting 〈H0
u〉 = vu/

√
2 and 〈H0

d〉 = vd/
√
2 yields

mb =
ybv√
2
cosβ

(
1 +

wb tan β

yb

)
≡ ybv√

2
cosβ(1 + ∆b) ,

which defines the quantity ∆b. The dominant contributions to ∆b are tanβ-

enhanced, with ∆b ≃ (wb/yb) tanβ. Thus, the tree-level relation between the

b-quark mass and the b-quark Yukawa coupling receives a significant radiative

correction if tanβ is large. This can significantly modify the tree-level

predictions for the couplings of bb̄ to the Higgs bosons of the MSSM.

Exercise: Derive the following expression for the hbb̄ coupling:

ghbb̄ = −mb sinα

v cosβ

[
1−

(
∆b

1 + ∆b

)
(1 + cotα cot β)

]
.

Show that ghbb̄ reduces to its SM value when mA ≫ mZ. Obtain the

corresponding expressions for gHbb̄, gAbb̄, and gH+bt̄.


