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Summarizing the previous
lectures on Supersymmetry



There is a theory that says
that, for each one of you,
there is a partner for you
somewhere out there.

Your partner simply

You may be alone now,
hasn't been found yet.

but there is hope.

It doesn’t matter what your

It doesn't matter what you look It doesn't matter how much s TTREREC

like; it doesn't matter whether you weigh; whether you're per§onaluty is like; whether

you're attractive or not. big or small. you're charming or strange.
According to this theory, there is Unfortunately, there is no So SUSY is probably wrong and
a partner out there for each and compelling evidence to you're all SOL.
every one of you. support this theory yet.
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Source material for these lectures

These lectures (with references
to the original literature) are
based on material found in: Herbi
K. Dreiner, Howard E. Haber and
Stephen P. Martin, From Spinors
to Supersymmetry (Cambridge
University Press, 2023).

See Sections 6.2, 13.8, 19.8 and 19.9

Photo taken on July 1, 2023 at
Maroon Lake [elevation: 2920 m],
located 10 miles from the Aspen
Center for Physics, in Colorado USA
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The Two Higgs Doublet
Model (2HDM)



Theoretical structure of the 2HDM

The 2HDM consist of two identical complex hypercharge-one,!

SU(2)r doublet scalar fields ®;(z) = (@ (x), ®(x)), where
the “Higgs flavor” index i € {1,2} labels the two Higgs doublet
fields. The Higgs Lagrangian is given by,

L = kg + V.
Explicitly, Zkxg = |D,®|*, with

9,0+ + [ﬁ (% - sfy) Z, + z‘eAM} o + - Lwta!
D & — Cw , , v2
wEi o ig o g ’
2ew v2

and sy = sin Oy and ¢y = cos Oy .

1The U(1)y hypercharge is normalized such that the electric charge is given by Q = T5 + Y /2.



The scalar potential is,

Y =m0 + m2,050y — [m2,®1 0y + hc]
+EM(R]D1)% + 2N (BIP2)? + A3 (D]D1) (DLD2) + Aa(D] Do) (DLD1)
+ {%%(@J{@z)z + [A6(®]D1) + A (D1D2)| D], + h'C°} )

where m?;, m3,, and Ay, -+, A4 are real and m?,, A5, \g and

A7 are potentially complex.

After minimizing the scalar potential,?

1 0 1 0
(®1) = ﬁ( ] ) ) (P2) = ﬁ < 0o € > ’

where 0 < €| < 2. In particular, v? = |v1]? + |v2]? = (246 GeV)?
and tan 8 = |va|/|v1].

2Without loss of generality, we have performed a U(1)y transformation to remove the phase of v{ = (<I> ).




A choice of scalar field basis

In a general 2HDM, the parameters appearing in )V are not
physical since they depend on a particular basis choice of the

two scalar fields (denoted as the ®-basis).

The most general redefinition of the scalar fields that leaves Zkg

invariant corresponds to a global U(2) transformation,?

(I)i — U@'jq)j,

for 2,7 € {1,2}, where the 2 x 2 unitary matrix U satisfies
U/ (UT);# = §F. The indices 7 and j run over the Higgs flavor

indices and take on two values in the 2HDM.

3Note that . is invariant under the hypercharge U(1)y group, which is a subgroup of U(2).



It is convenient to introduce a notation for the Higgs flavor

indices such that
(UN);* = (U) =U";.

In this notation, we can write UijUkj = §F. Complex conjugation
has the effect of raising a lowered flavor index and lowering a

raised flavor index.

We shall also define a complex vector, ¥ = (U1, U3), of unit norm

such that
(P;) = — v~ 246 GeV, fori=1,2,

in the ®-basis.



The complex conjugate of v; will be denoted with a raised index,
0" = (U;)*. A second unit vector @ can be defined that is
orthogonal to ¥:*

W; =05,
where €19 = —€g; = +1 and €17 = €99 = 0. The complex
conjugate of @; will be denoted with a raised index, W' = (W;)*.
Under a unitary basis transformation ®; — U/®;, the unit

vectors U and w transform as

v; — U ¥;, which implies that @; — (detU) ™ 'U @;.

Physical quantities must be basis-independent.

*Note that © and @ are orthogonal due to the vanishing of the complex dot product, fi?jf&}j = f’u\jﬁieij = 0.



The Higgs basis

Starting from a generic ®-basis, the Higgs basis fields H; and

Ho are defined by the linear combinations of ®; and ®5 such
that (HY) = v/v/2 and (HY) = 0. That is,

2" »
Hq, = — 65@1 + Spge€ D, |
Hi
HT . .
Ho = 2 = 6“7(—356%5@1 + CBCI)Q) :
Hs

where cg = cos 3, sz = sin 3, and the complex phase factor ¢

accounts for the nonuniqueness of the Higgs basis.



In particular, €' is a pseudoinvariant quantity that is rephased

under a unitary basis transformation, ®; — Uz-jCIDj, as
— (det U) e,

where det U = €*? (such that ¢ € R) is a complex number of

unit modulus.

Note that the Higgs basis fields are invariant fields,
Hi =0, Ho = 0D, .
It follows that

(I)i - Hl@\z -+ 6_7;777'[21/1\]@' , for 1 = 1, 2.



In the Higgs basis, ¥ = (1, 0) and w = (0, 1), and the scalar
potential is given by

V = YiHIH + YoH Ho + [Vae " HIH, + hoc]
+ 120 (HIH1)? + 3 Zo(HIH:)? + Zs(MIH) (MAH2) + Za(HIH) (M)
4 {%Z56_2m(7‘[17‘[2)2 4+ [ZGG—iWHWiHl 4+ Z76_inH$H2}HJ{H2 + h.C.} :

where Y7, Y5, and Z4,...,Z, are real parameters whereas Y3,
Zs5, Zg, and Z~; are potentially complex parameters.

The minimization of the scalar potential in the Higgs basis yields

Yl — —%Zlv2, Yg — —%ZGU2 .



To understand the significance of Higgs basis parameters, we

rewrite the scalar potential in the ®-basis as follows

V =Y/ (9'®;) + 52} (D' ®y,) (D7 D),

271

where 7, j, k, £ € {1,2} are Higgs flavor indices and the SU(2),
indices of the scalar doublet fields have been suppressed.> Above,

we have denoted the conjugated field by ®* = (®;)T.

It is also convenient to define:

B
I
<
S
I

~7~ ¢l ) ké ké Lk

The elements of Y7, V7, W7, fo and fo can be assembled into

three 2 X 2 hermitian matrix and two 4 X 4 hermitian matrices.

5 id . — d—Ft 0 50
Note that ® CIDJ = CIDi <I>j +CI>7; <I>j.



and 7 = Z()\g < )\4),

2 2
. My Ty
—(mi,)"  ma,

)

Z2 722 (A1 As As Xs )
Zh Zh | [ A A A
VASENV At )V D VIRD PP

z2 z2)  \xoa X

Under a change of scalar field basis,

®; — U;/®;, the matrices Y (V, W) and Z (Z) transform as

Y - UYUT,

7 - (UeU)Z({UeU),

where the Kronecker product of the 2 x 2 matrix A and the

matrix B is given by:
Ao B~ (

AlB

A’B
AlB  A2B|



We can now identify the real coefficients of the scalar potential in

the Higgs basis in terms of manifestly basis-invariant quantities:

Y1 =Y, = Te(YV),

7y =ZZVi'V =Te[Z(Ve V)] =Te[Z(Ve V)],

Yo =Y 0'w; = Te(YW),

Zy = ZHEWi'W¢ = Te[Z(W @ W) = Te[Z(W @ W)],

Zs=ZFVi'Wd =Te[Z(V o W)

azzﬁmwzﬂfw®w[

= 1r
= T1r

Z(WeV)

ZW V).

)

The complex coefficients of the scalar potential in the Higgs

basis are not basis-invariant quantities.

Instead, they are

pseudoinvariant quantities that change by a multiplicative phase

factor under a basis transformation.



Defining X; = 0'@;, which are elements of the matrix X that

transforms as X — (det U)~1X . We can then identify

Yy = Y0'w; = Tr(V X),

Zs=2X'X) =Tr[Z(X ® X)] = Tr[Z(X ® X)),
Zo=ZFVi' X/ =Tr[Z(X @ V)] =Tr[Z2(V ® X)],
Zr=ZX,'W) =Te[Z(X @ W)] =Tr[Z(W ® X)) .

Thus, Y3, Z5, Zg, and Z7 are complex pseudoinvariant quantities

that are rephased under a basis transformation ®; — Uz-jcbj as

Y3, Zg, Z7] — (det U) 'Y, Z¢, Z7] and Zs — (det U) *Zs.



The scalar mass eigenstate fields

We parameterize the invariant fields 7{; and Hs as follows,

G* HT
Hi = ) , Ho = . )
= e drion S R

where G* and its hermitian conjugate G~ are the charged

Goldstone bosons and GV is the neutral Goldstone boson.

The three remaining neutral fields mix, and the resulting neutral

Higgs squared-mass matrix in the ©{—p5—a® basis is:

71 Re(Zge ) — Im(Zge ™)
M2 =42 Re(ZGe_“?) %[Z34 + Re(Z5e_27“77)J + Y2/v2 —% Im(Z5e_.27“77) ,
—Im(Zge ") —% Im(Z5e_27“77) %[Z34 - Re(Z5e_2“7)} + Y2/v2

where Z34 = Z3 + Z;4.



The squared-mass matrix M? is real symmetric; hence it can be

diagonalized by a special real orthogonal transformation,

RM?R" = M3, = diag (mf, m3, m3),

where m? are the eigenvalues of M?. We parameterize R as,
C12 —S12 0 C13 0 —S13 1 0 0
R = Ri2R13R23 = | s12 c12 O o 1 0 0 co3 —s23
0 0 1 S13 0 C13 0 S923 C23
C13C12 —812C23 — C128135S23 —C12813C23 + S12523
— | ci3s12 C12€23 — 512513523  —S512513C23 — C12523 ’
S13 C13S23 C13C23

where, e.g., ¢;; = cos0;; and s;; = sinf;;. Indeed, the angles
012, 013 and 653 are all invariant quantities since they are obtained

by diagonalizing M?, which is manifestly basis-invariant.



The neutral physical Higgs mass eigenstates, hi, ho and hg, are

iven b
5 Y hq 0 V2 Re H} —v
ho | =R| o) | =RW HY :
hg ao HgT

which defines the unitary matrix W. The matrix RW is a

function of 023 and the g;; given in the table below,

k dk1 qi:2
L || ci2¢13 | —S12 — 1C12513
2 || s12¢13 | €12 — 1512513
3 S13 1C13

The gi, are functions of 012 and 0;3, where ¢;; = cos 0;; and s;; = sin 0;;. The invariant
mixing angles 612 and 613 are defined modulo 7r, which are conventionally taken to lie in the

: 1 1
region —5m < 012, 013 < 5.



Explicitly,

Lk ,ib3 1 —1023 \
d11 /2412 € 112 €
RW = 1 x  5i023 1 —1623
421 /2422 € 2422 €
1 0 1 —i6
\ 31 %Q:;‘z e’z sdz2e )

In summary, we have:

1 :
hi = qkl(\/i Re H! — v) + ﬁ(q};z%gew% + h.c.) :

GY = 7'®Y, Gt =v'®d;, HT ="' D .

It is convenient to define the positively charged Higgs field:
ht = e
The h* squared mass is given by

2 2
myy = Y2 —I—%Zg’l} .



Equivalently,

Gt ht
Hi=| 1 k , ey = 1
— | v+iG+ Y qgrihk — > Qr2hy

Although 653 is an invariant parameter, it is not physical since it
can be eliminated by rephasing Ho — e~ "23H,. Thus, without

loss of generality, we henceforth set 6535 = 0.

In the convention where 055 = 0,

C12C13 —S12 —C12513 q11 Re q12 Im g2
R=1 c¢i13512 C19 —S12513 | = | q21 Re @22 Im go2

$13 0 C13 q31 Re g¢32 Im g32



Squared-mass sum rules

Using M? =

3
1
A 2 E mi(Qk1)27
k=1

iy 1 .
Zse 2" = 2 Zm%(ka)Zv

In particular, ¢;3Im(Z5e=2"") = 2513 Re(Zge™""), and

512C12C13 =

513C13 —

RR" M%R, we obtain

Zy=— Zm/%\QMP —2m2
| k=1

3
i 1 )
Zge " = 2 Z M 4k19g2

v? Re(Zge ™)

5
ma

9 ,

v Im(Zge ")

3
my

5 5
— M3+ 312(m2

2

2

)




In terms of the ®-basis fields,

hi = \% 50%%1@ + groWie™ ") + (k10" + g e m)@o}

where the shifted neutral fields are defined by ®) = ®? —v7; /1/2
and & = (B9)1.

We can invert the above formula to obtain:

/ GT0; + hTe™"w; \
—Uz (ZG - Z levz + Qr2€ Zn@i) hk)
\ V2 = /

Plugging these results into the Higgs Lagrangian previously given

yields the bosonic interactions of the Higgs mass eigenstates.



The interactions of the Higgs bosons and vector bosons are,

Lyvha = <9mWW:W” + Cg mZZuZ“> qr1hi
%
2
LyvvHH = [%QQW:W”_ — 8i2 Z,Z" | hphi + [%QQW:WM_ + 6214”14”
(%
2 ) 9
+5- (3= sh) Zu2" + == (5 - sy AMZ“] REh
Ci Cw
2 2
_|_{ (%GQAMW: _ ZﬂZ“W:) qroh hi + h.C.} ,
cw
— , PR
Lvag = . €jkeqn Z"hy 8, hj — 39 [’L%2W:h o hy + h-C}
17
+ [ieA“ + % (% — s%v) Z“] h+%>u h

where the sum over pairs of repeated indices 5,k = 1,2,3 is

implied.



The cubic and quartic Higgs self-interactions are given by,

(¥

V2

+3q;1qr1 Re (QE2Z6 €_i923) + Re(q;2qk2q02Z7 €i923)]

L3y, = h;ihihy [%‘1%1%121 + 429,5901(Z3 + Z4) + qj1 Re(qraqeZs 6_2i023)

—V2vhhh™ |:qk123 + Re(qu2 e‘w23Z7)} ,

Lan = —%hjhkhghm [leleQ£1Qm1Z1 + qukangq:ngzz + 2%1%1(1132(1:12(23 + Z4)

—2i6 —if
+2q;1911 Re(qragmaZs e 2023y 4 4q;1qk1q01 Re(qmaZe e 723)

+4q;1 Re(qraqedt s Zr ew%)} —1Zh " hhT
_%hjhkh—i_h_ [%’29;222 + qj19x1Z3 + 2q;1 Re(qr2Z7 €i923)] :
It is remarkable how compact the expressions are for the Higgs

boson interactions when written explicitly in terms of invariant

quantities that can be directly related to observables.



The Higgs alignment limit of the 2HDM

The tree-level couplings of the neutral field,

» = V2 Re 7—[(1) — v,
which resides in the scalar doublet H; of the Higgs basis,
are precisely those of the neutral Higgs field of the Standard
Model (SM). However, the field ¢ is generally not a scalar mass

eigenstate due to its mixing with the neutral scalar states that

reside in Ho.

The LHC Higgs data implies that the observed Higgs boson is
SM-like. That is, the Higgs alignment limit, in which one of the
Higgs mass eigenstates is aligned (in field space) with the Higgs

vacuum expectation value (vev), is approximately realized.



The LHC data favors a SM-like Higgs boson

ATLAS Run?2 |- Data (Total uncertainty) Syst. uncertainty ¥ sM prediction
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Ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and
decay processes, as observed by the ATLAS Collaboration (based on 139 b1 of data). The horizontal bar on
each point denotes the 68% confidence interval. The narrow grey bands indicate the theory uncertainties in the
SM cross section times the branching fraction predictions. The p-value for compatibility of the measurement
and the SM prediction is 72%. Taken from The ATLAS Collaboration, “A detailed map of Higgs boson
interactions by the ATLAS experiment ten years after the discovery,” Nature 607, no. 7917, 52-59 (2022)
[arXiv:2207.00092 [hep-ex]].



CMS 138 b (13 TeV)
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The measured coupling modifiers of the Higgs boson to fermions and heavy gauge bosons, observed by the
CMS Collaboration, as functions of fermion or gauge boson mass, where v is the vacuum expectation value
of the Higgs field. For gauge bosons, the square root of the coupling modifier is plotted, to keep a linear
proportionality to the mass, as predicted in the SM. The p-value with respect to the SM prediction is 37.5%.
Taken from The CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after
the discovery,” Nature 607, no. 7917, 60-68 (2022) [arXiv:2207.00043 [hep-ex]].



In the alignment limit where hy is identified as SM-like (my ~ 125 GeV),

gh, VvV
Jhg\iVV

= (11 = Cc12C€13 >~ 1, where V. =W or 7,

It then follows that s19, s13 < 1. Thus,

Re(Zge ") v?

S192 = sin 912 ~ 5 5 < 1,
my —my
, Im(Zge™)v?
813581I19132— 5 5 < 1.
m3z —mj
2 2 2_—2in\,,2
Y (m3 — m7)s12513 Im(Zge "o
v ms — mj

We also obtain the following approximate mass relations,



Conditions for approximate Higgs alignment

1. The decoupling limit is achieved if mo, m3 > v ~ 246 GeV
(under the assumption that Zg is at most an O(1) parameter).

That is, Y5 > v2.

2. Approximate Higgs alignment without decoupling is achieved

if | Zs| < 1, while all Higgs squared masses are of O(v?).°

Remark: Although the tree-level couplings of ¢ = v/2Re H?— v coincide with
those of the SM Higgs boson, the one-loop couplings can differ due to the
exchange of the other Higgs states (if not too heavy). For example, the h*
loop contributes to the decays of the SM-like Higgs boson to v+ and v~Z.

More precisely, we require that | Zg| < Am?l/qﬂ, where Am?l = m? — m% for j = 2, 3.



Higgs-fermion Yukawa interactions

The Higgs—fermion Yukawa couplings (in the ®-basis):

AN

Dy = i) [CIDO’uLunR—(CI)_)ic_lm } (G " [ an+q>0denR}

+ (G)m" [<I>+v"ﬁenR + Y é"[‘@nR} +hee.,

where fr = 2(1 + v)f and fr = (1 — ;) f [with four-
component fermion fields f = wu,d,v,e]. The hatted fields
correspond to the fermion interaction-eigenstates, and m, n are

fermion flavor labels. We have also defined

@‘}E (’y‘f.)T, for f =u,d,e.



We can construct invariant matrix Yukawa couplings £ and p*
(where ' =U, D, F) as follows:

KT =11y, pr =W Yy,

we end up with

~ 2y ={®RV)n" M) WP TR — My AL Tnr| + BV | HY @GR — Hy A Tng| + hec.
H @)™ (1A dag + MY dEdur| + D) 0" | HI TP dur + Hy dT dyg| + hec. |
+{(aE)Tm” [%fﬁgaﬂ +#HY Eg%anR} + B [%ﬁgaw +H) ETLnanR} + h.c.}.

The fermion mass matrices can be identified by setting the scalar
fields to their vevs.



Diagonalizations of the fermion mass matrices are accomplished
via the singular value decomposition of linear algebra.

Introducing the unitary matrices Ly and Ry (f = u,d, e), where'

for = (L)m™fors k= (R)m" faR

the diagonalization equations are:
L,L MU Ru = MU — dlag(mua Mme, mt) y
LZ;MD Rqs= Mp = diag(mdv ms, mb) 9
LZMERe = Mg = diag(mev My, mT)’

where the diagonalized masses are real and nonnegative. Since

no right-handed neutrino field has been introduced so far, the

neutrinos are exactly massless.

"Since the neutrinos are massless (prior to introducing the neutrino mass generation mechanism), one is
free to define U,,,7, = (Le)m " vy I,




To write out the corresponding Higgs—fermion Yukawa
Interactions, it i1s convenient to define

V2

I-i',U — LL EURU — —MU,
v

V2

kP =LIRPTR; = ~—~Mp,
U
2
kP =LIRFIR, = £ME,
U

which are diagonal with positive entries by construction, and
p” = LI pYR,,
pPt =L pPT Ry,
pT=LIp" R,

which are arbitrary complex coupling matrices that are
independent of the fermion masses.



That is,

F \/§MF ~1 F _ fm ~1

K = y = UVUYs,;; P WYrsr,

or equivalently,

2
Yr;, = £MF/U’L —+ G—an wz
(V)

The Yukawa Lagrangian in the ®-basis in terms of fermion mass

eigenstates is therefore:
~ Ly = (Yui)p" | O LT n — (@) (K)o
+(yDy" [0 Kl updr + ©F 68, d7dyg]

+ (YD m" [ 7P enr + B P enr] + hic.,

where K = L1 L, is the CKM mixing matrix.

Exercise: Rewrite %y above in terms of the Higgs basis fields 71 and Hs.



In terms of the quark mass-eigenstate fields and the scalar mass eigenstate

fields, the Yukawa Lagrangian is given by:

(M 1 71—
— %y = U{ Y e + ﬁ (455 PY Pr + qr2 pU1 PL} }Uhk — ;UMU75UGO

7 —
{ Q1 + —= {%2 pETPp 4 g, PEPL} }Ehk + ZEME%EGO

i
[qkz pP1Pr + g}, pDPL} }th + —~DMpy; DG"

U[KpDTP _ pUTKPL} Dht + NpBt PRERY + hec, }

3 5
+{£U K MpPp— MyK Py | DG* + Y N M PREG + h.c.} ,
(V) (Y

where there is an implicit sum over k € {1,2,3}, Pr = 3(1 £ ~;), and
the mass-eigenstate fields of the down-type quarks, the up-type quarks,
the charged leptons and the neutrinos are D = (d,s,b)", U = (u,c,t)7,

E=(e,u,7)", and N = (ve,v,, ;)" respectively.



In general, the matrices p¥" are complex and flavor-nondiagonal,
resulting in flavor-changing neutral current (FCNC) processes

and new sources of CP violation (beyond the CKM matrix K)

mediated at tree level by the exchange of the hy.

REMARK: In the exact Higgs alignment limit where hq is the SM-like Higgs

boson, s12 = s13 = 0, or equivalently

qi1 = @22 = —tgz32 =1 and ¢21 =¢q31 = q12=0.

One easily checks that h; possesses the Yukawa couplings of the SM Higgs

boson:

1 —
~ % == Y FMgFh.
Y y F FF hl
F=U,D,E

Nevertheless, tree-level FCNCs and CP violation mediated by hs and hg are

still present.



Eliminating the tree-level Higgs-mediated FCNCs

A phenomenologically acceptable model must provide an explanation for the

approximate flavor diagonality and reality of the p¥ matrices.

A natural way® to achieve this result is to impose a symmetry on the

dimension-four terms of the Higgs Lagrangian.® This symmetry is manifestly

realized in a particular scalar field basis that henceforth defines the ®-basis.

Example: Impose a Zs discrete symmetry, ®; — ®; and $o — —P5 on the dimension-four

terms of the Higgs Lagrangian in the ®-basis, which sets A\¢ = A7 = 0 and sets two of the

four Higgs-quark Yukawa coupling matrices to zero. Two possible Zs charge assignments for

the quark fields are shown in the table below.

O P, Up Dy U, Dy, Yukawa couplings
Type | + — — - + Yu =Yg =0
Type Il + — — + + Yu =Yg =0

8Natural means without fine-tuning the parameters of %y .

YWe allow for soft symmetry-breaking dimension-two terms in .Z5-, which will generate FCNCs at loop order
that are consistent with experimental constraints.




The corresponding basis-independent conditions are,
Type | eijydiyuj:(), —  rPpY - pPkY =0,

Type Il 5,{ yéyuj =0, = rPrUT4+pPpYT =0,
In the ®-basis, we define tan 5 = |vy/v1| and £ = arg(vy/vy),

v = (cos 3, e sin B), W= (—e “sinf, cosf).

Using yf, = V2(MFp/v)0; + e "pFw;, it follows that pU and

pP are diagonal matrices given by'°

o eETMV2M; cot B b TN V2Mp cot 3
Type l: p~ = . : p- = . :

o eETMV2M; cot B D e &+ /2 M p tan 8
Type ll: p~ = . : p- = — . :

1074 obtain pE, replace D with E in the formulae above.



REMARK: The ®-basis defined above is not quite unique. One always has

the option to interchange the roles of ®; and ®5 by defining a ®’ basis via

®" = U®P, where
0 e
U=| :

The softly broken Zs symmetry is also manifestly realized in the ®'-basis,
where the previously tabulated Zs charges of ®; and ® are interchanged. In

particular, in light of

we conclude that 8/ = m — 3 and ¢ = (. Moreover, due to the

pseudoinvariant nature of ¢, we see that e = (det U)~le®. Using
det U = —e*(¢=8) it follows that (€ +7) = _¢i(&+m),

Thus, with respect to the parameters of the ®’-basis, the results obtained
previously are modified by interchanging tan 5 <> cot 5 and multiplying the
resulting expressions by —1.



Conditions for a CP-conserving scalar potential and vacuum

Consider what happens if we transform between two Higgs bases.
To transform to another Higgs basis, we can employ ®; — U,/ ®;,

where U = diag(1, e'X), in which case n — n — x. Hence,
Y3, Zg, Z7] — e "X[Y3, Zg, Z7] and  Z5 — e *XZs,
whereas Y7, Y5 and Z7 2 3 4 are invariant.

The 2HDM scalar potential and vacuum are CP-invariant if one
can find a choice of x such that all the coefficients of the scalar
potential in the Higgs basis are real after imposing the scalar

potential minimum conditions. This conditions is satisfied if and
only if Im(Z2Z%) = Im(Z:Z2) = Im(Z; Z7) = 0.



The conditions for a CP-invariant scalar potential and vacuum
are Im(Z:72) = Im(Z:Z%) = Im(ZtZ;) = 0, implying the
existence of a real Higgs basis (where all Higgs basis scalar

potential parameters are real). These conditions are satisfied if

1. Im(Zse ?") = Im(Zge ") = Im(Z7e~ ") =0,
or

2. Im(Zse ?"") = Re(Zge ") = Re(Z7e ") = 0.

In both cases the neutral scalar squared-mass matrix assumes a
block diagonal form consisting of a 2 X 2 mass matrix that yields
the squared-masses of two neutral CP-even Higgs bosons and a
1 X 1 mass matrix corresponding to the squared mass of a neutral

CP-odd Higgs boson (identified as hg or ho, respectively).



The CP-conserving 2HDM

Without loss of generality, we work in a real Higgs basis and any
associated ®-basis in which all scalar potential parameters and
the corresponding scalar vevs are real (with tan 5 = vy /v; either
positive or negative). In particular, n = 0 mod 7.1! Under a real

orthogonal basis transformation, ®; — RijCIDj,
[Yg, ZG; Z7, g, tan 5] — det R [Yg, ZG; Z7, g, tan 5] ;

where ¢ = ¢ — +1 and det R = +1. It is convenient to choose

y

sgn A , if Zg # 0,
sgn Z7 , if Z¢ =0 and Z7 # 0.
\

£ =e"l =

1The case of Zg = Zr7 = 0 must be treated separately since in this case 7 = 0 mod %71'.



The neutral Higgs squared-mass matrix in a real Higgs basis is:

Zv? e Zv? 0
M* = | eZgw? Yo+ L(Zs+ Zs+ Zs)0? 0
0 0 Y2 —+ %(Zg —+ Z4 — Z5)’U2

Diagonalizing the neutral scalar squared-mass matrix, only one
nontrivial mixing angle 615 is required, since 613 = 633 = 0. The
scalar mass eigenstates are identified as two neutral CP-even

scalars hy and ho and a CP-odd scalar hs
hi = (\/5 ReH(lj — v) cos B0 — V2 Reﬂg sin 612,
ho = (\/5 Re”H(l) — v) sin 015 + V2 Re?—[g cos 012,
hs = v2 ImH],

with corresponding masses m; = my,,.



The squared masses of two neutral CP-even scalars, A1 and hs
and the CP-odd scalar hs are:

m%g — %{Y2 + (Zl + %2345)’02 + \/[Y2 - (Zl - %2345)1’2]2 - 4Zﬁ2v4 } ’

ms = Yo+ 2(Zs+ Zy — Zs)v° = m3 + 5(Zy — Zs)v”,

where Zsus = Z3 + Z4 + Z5, with no mass ordering of hy, ho,

hs implied. The mixing angle 612 (where |015] < 27) is obtained

from
. 9 Z1v? —mj
S111 (912 — 5 5
my — 1y
. SZGU2
S1T1 (912 COS (912 = 5 5 -




Conventional notation for the CP-conserving 2HDM

If hq (identified as the SM-like Higgs boson) is the lighter of the

two CP-even scalars, then the standard CP-conserving 2HDM
conventions define

h=h;=—(V2Re®) — veg) sina + (V2 Re @) — vsg) cos
H = —¢chy = (\/5 Re @) — ’UCﬁ) cos o + (\/5 Re @) — vsﬁ) sin
A =chy = —V2[Im ®{s5 — Im ®Jcp]
H* =ch®™ = —®Fs5+ dFcy.

where h and H are CP-even (with m;, < mpg), A is CP-odd,

and 5—0426(9124—%7(.

Define the quantities: sg_, = sin(8—a) and cg_, = cos(f—a).
By convention, [0:5] < %w which implies that 0 < sg_, < 7.



SB—« € CR—q

N =

—ECB—q SB—a
3 0 (

qre for the CP-conserving 2HDM when h; = h is identified with the SM-like Higgs boson.

Hence, the squared-mass sum rules previously derived imply that

2 2 2 2 2
2107 = mpSg_ + MECE_y,
Z6U2
8 _ac —Q — —
ST

which yields an explicit expression for cg_,

| 7|02
ECR—q = ‘ 6‘?} <0

v (my —mi)(m3 — Z1v?) ~




The Higgs alignment limit of the CP-conserving 2HDM

Approximate Higgs alignment corresponds to |cg_o| < 1, which
is achieved if my > v (decoupling limit) or if |Zs| < 1 [Higgs

alignment without decoupling if myg ~ O(v)].

‘26"02
ol < 1,
€6~ mQH — m%



LHC constraints on Higgs alignment in the 2HDM

ATLAS Preliminary Ry ATLAS Preliminary o
Vs =13TeV, 36.1-139 b1 -—-- Expected 95%CL Vs =13TeV, 36.1-139 b~ ! ---- Expected 95%CL
my = 125.09 GeV, |yy| <2.5 —— Observed 95%CL my = 125.09 GeV, |yy| <2.5 —— Observed 95%CL
2HDM Type-I 2HDM Type-lI

o« 10 T T o 10! : \

C I c ] N\

S s s N

10° 100 |
10—1 ................... i 10—1 PRI S (S S S S N S S SR S : ...................
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 . 0.25 0.50 0.75 1.00
cos(B—a) cos(B — a)

Regions excluded by fits to the measured rates of the productions and decay of the Higgs
boson (assumed to be h of the 2HDM). Contours at 95% CL. The observed bestfit values
for cos(8 — «) are —0.006 for the Type-l 2HDM and 0.002 for the Type-1l 2HDM. Taken
from ATLAS Collaboration, ATLAS-CONF-2021-053 (2 November 2021).



Higgs couplings of the CP-conserving 2HDM

Using the previous expressions obtained for the general 2HDM, one can derive
the Higgs couplings in the CP-conserving 2HDM. Here are a few examples:

g
Cw

gVVH — (ngW:W“ _|_ mZZMZ“> [Sﬁ—ahf —|— Cg_aH] 5

J AZ“%M (Cﬁ_ah — Sﬁ_aH) —+ J Z'G %2 (Sg_ah —+ Cﬁ_aH)

cw 2cw

- %g{iW: [G%?“ (s5-ah + cooH)

HH =

+ H_%m (Cg_ah — Sg_aH -+ ZA):| + h.C.},
2

Lovan = [%g2WjW“_ + ;%ZMZ“} (hh + HH + AA)
w

2 2
+4 [ Legarwt — L2W Zuyy+ [G(Sﬁ—ah + cpatl)
H# QCW H

+ H_(Cg_ah — Sg—oH + ’I,A):| -+ h.C.}.



Yukawa couplings of the CP-conserving 2HDM

It is straightforward to derive the Yukawa couplings of the
physical Higgs bosons in the CP-conserving 2HDM.

1 — _ _
(UMyU + DMpD + EMEgFE)(hsg—o + Hcp—0)

(V)

| [— _
75° [U(pY P+ pYTPL)U + D(p®PL + pPTPg)D

Ly =

+E(pEPL + pETPR) E} (hcg—a — Hsﬁ_a)
1 — __
—Eé‘[U(pUTPL — pUPR)U + (DpDTPR — pDPL)D
L E(pPt Py — pBP,)E] A

—s{U[KpDTPR — pUTKPL} DHT + NpP'PRrEH™ + h.c.}.



If we impose the discrete Zs; symmetry to eliminate tree-level

Higgs-mediated FCNCs, one obtains the following relations®?

U V2My; € cot 3 D V2Mp e cot 8
Type l: p~ = : p- = :
(V) (V)
V2My; € cot 3 V2Mp e tan 8
Type Il: pY = » : pP = — » :

thereby promoting €tan 5 to a physical parameter.

Plugging corresponding pV and pP into our previous formulae,
one can derive the Type-lI and Type-ll Yukawa couplings of the
CP-conserving 2HDM. For example,

1276 obtain pE, replace D with E in the formulae above.



h _
L = — ;{ (35_a + cg—q COt 5) (UMUU + h.c.)

+ (8p—a — cp—atan B) (DMpD + EMEgE + h.c.)}

_ E{ (¢5-a — 850 cot 8) (UMyU + h.c.)

(¥

+ (cg—a + sp—atan B) (DMpD + EMEgE + h.c.)}

A _ _ _
+ i—{cot BUMy~sU + tan 8(DMp~y;D + EMEgv;E) + h.c.}
(v
V2 [ L [— —
+—< H"|U(MyKPpcot 8+ KMpPrtan 3)D + NMgPrtan BE| + h.c. ».
v

REMARK: Note that ./ is invariant under ®; — R,/ ®; with det R = +1.
In the 2HDM literature, it is conventional to restrict det’ R = +1 by taking

the Higgs vevs, or equivalently tan 8, nonnegative (i.e., 0 < 8 < %7‘(‘) in

which case ¢ is fixed by the sign of cg_, [recall that ecg_,, < 0].



The MSSM Higgs Sector



Tree-level MSSM Higgs sector

The tree-level Higgs sector of the MSSM is a CP-conserving
Type-IIl 2HDM, with a scalar potential with quartic terms

constrained by supersymmetry. It is convenient to define

where i and j are SU(2) indices and ®] = (®,)T. Then the
MSSM scalar Higgs potential is given by

Y = MC%HCJEHCZ -+ MELHJ:HUJ -+ (MidEinuinj + h'C°)
+ 59" + g2V HIHy — HyHa)* + 30°|HyHu|?,

where M7 = |ul* + m3;,, Mi = |ul* +my,, and My, =

[cf. Stephen Martin's lectures].



In particular,

€9 H,Hy = HH; — H'H) = —o10, .
The quartic Higgs couplings are related to the electroweak gauge
couplings g and ¢':

M=X=-Xd-M=10"+97), M=—30", A=X=Ar=0.

The ®-basis, where the above relations satisfied, corresponds
to the scalar field basis in which the supersymmetry of the
dimension-four terms of the scalar potential is manifestly realized.
The supersymmetry is softly broken by the scalar squared-mass

parameters, m%_[d, m%{u, and b.

REMARK: Note that M?,, the only potentially complex parameter that
appears in the scalar potential, can be chosen real by an appropriate rephasing

of the Higgs doublet fields, which defines a real scalar field basis.



In the real scalar field basis, the minimum of the Higgs scalar potential is

Vg  vcosf 0 _v_u_’usinﬁ
<Hd> \/5_ \/§ ) <Hu>_\/§_ \/é )

where vy and v, are real, with v = (v + v2)1/2 ~ 246 GeV. Consequently,
the tree-level MSSM Higgs scalar potential and vacuum are CP-conserving.
Moreover, one can redefine H; — —Hy or H,, — —H, (if necessary) such
that vy and v, are nonnegative. In this case, the parameter tan g = v, /v, is

nonnegative and 0 < 8 < %7‘(‘. One can now transform to a real Higgs basis

where

Y, = —%Zlfuz , Yo = m4 + %(g2 + ¢’ *)v* cos® 213,
Yy = —1Z60°, Zy = Zy=%(g>+ ¢'?) cos” 28,
Zs=Zs+ (9> —¢'?) Z4:Z5—%9,



The properties of the tree-level MSSM Higgs sector can now be
derived using the results previously obtained in this lecture. For

example, the following tree-level mass bounds are satisfied:

m7 < min{m?% cos*23, m% + m7sin® 28},
m3; > max{m? cos” 2, m% + mzsin“23}.

In particular, m; < my, in conflict with the observed Higgs
boson mass of 125 GeV. We will see shortly that the radiative
corrections to above inequalities are significant in the MSSM,
and parameter regimes exist in which the upper bound on the
mass mp can be raised to a value above 125 GeV, thereby

restoring the consistency with the observed Higgs boson data.



The tree-level properties of the MSSM Higgs sector can be
rederived directly in the scalar field basis where supersymmetry

Is manifestly realized. One immediately identifies the charged
Higgs bosons and the CP-odd neutral scalar,

Hi:HjsinBJercosB,
A® = 2 (Im H) sin 8 + Im HY cos 3) .
Likewise, the two CP-even neutral scalars h and H,
h' = —(V2Re H) — vy)sina + (V2Re HY — v,) cos o,
H® = (V2Re H? — vg) cosa + (V2Re H? — v,)sin o .

are obtained by diagonalizing the CP-even scalar squared-mass
matrix with respect to the basis {v/2Re H} — v4, vV2Re H? — v, }

—(m?% + m%) sin S cos 8 m? cos? 8 +m? sin® 3

e ( m? sin® B + m% cos? 3 —(m? + m%) sin 3 cos B)



All scalar masses and couplings can be expressed in terms of two
parameters, usually chosen to be m 4 and tan 3. The masses of
the neutral CP-odd and charged Higgs bosons are given by

2M?2
sin 23
after using the scalar potential minimum conditions, and

m?él: :Mc%_l_Miv

2 2 2
mHi—mA—l—mW.

The squared masses of the CP-even Higgs bosons h" and H"Y are

eigenvalues of M?. The trace and determinant of M? yield

2 2 2 2 2. 2 2 2 2
miy + mi = my +my, m;mi = mym>, cos” 23,

where the CP-even Higgs squared masses are given by:

mi, =1 (mi +my + \/(m?4 + m?%)? — 4m%m? cos? 2f3 ) .



It is standard practice to choose the mixing angle o to lie in
the range |a| < sm. However, because the off-diagonal element
of M? is negative, it follows that —%w < a < 0. Hence,

0 < B —a < mw. The following formulae are easily derived:

2 2 ’

2 oin2 2 o2 2
_[m%sin” B+ m7 cos® § — my
Cos v =
My =My

2 2

2 2 i 2 a2
, m4, — m45 sin” 8 — m?, cos® 3
sina = — H A4 Z :

m?, sin 23 cos 23

V(mgy —m3)(mi; — m7 cos?2B)

, m2, —m?2 cos? 203
Sm(ﬁoz)Z\/ =z :

cos(f — a) =

Mg — My,
The Higgs alignment limit is realized in the decoupling limit

when mpg > my,, which yields | cos(8 — a)| < 1.



Yukawa couplings of the MSSM Higgs sector

The MSSM Higgs sector employs Type-Il Higgs—fermion Yukawa
couplings as a consequence of supersymmetry rather than a Zs
symmetry. Nevertheless, the dimension-four terms of the tree-
level MSSM Higgs Lagrangian respect the Zs symmetry defined
by the Type-1l Zs charges previously given.!®> Hence, the tree-
level MSSM Higgs—fermion Yukawa couplings are given by .Z7;
of the CP-conserving 2HDM.

The tree-level Higgs couplings to charginos and neutralinos can
also be derived following the recipe given in Stephen Martin's

lectures.

131n the MSSM, this Zo symmetry is softly broken due to the nonzero parameter Mz%d in the scalar potential.



The One-Loop Corrected MSSM Higgs Masses

We begin by expanding the neutral components of the scalar

Higgs fields are expanded around their vevs:

hd,u + Z.acl,u + Ud,u
V2 |

and plugging this result into the MSSM scalar Higgs potential,

0
Hd,u

V =V + tahg + tuhy + 5(M2)ijhihy + 5(M2)ijaa; + - - -

where repeated indices 7,7 = d,u are summed over, and cubic

or quartic terms in the scalar fields are not explicitly shown.



Explicitly, the linear (tadpole) terms in the scalar potential are
given by

oV v
tg = —— =g | M7+ 1G?(v5 —v?) — b2
’ Ohg h=a=0 o ( a7 (Ud Uu) vq )’
ty = _(91/ = Uy MEL + %GQ(’UZ — v2) — bﬁ :
ah“ h=a=0 Uy

where G? = ¢ + ¢'?.

Likewise, the quadratic terms in the scalar fields yield 2 x 2 CP-

even and CP-odd scalar squared-mass matrices [in the (hg, hy)
basis]:

02V
2 pr—
Me = Bhion;

o M+ 5G*(303 — v2) —2G*v,vq4 — b
h=a=0 ) |

—2G?vyvq — b M2+ 2G*(3v2 — 03



0°V

2
MO aai(‘?aj

( M3+ LG2 (03— v2) b
)

h=a=0 b M2 + 2G* (vl — 3

All parameters appearing in the above formulae should be
interpreted as bare (unrenormalized) parameters. We ensure
that v, 4 are stationary points of the full one-loop effective

potential by enforcing the tadpole cancellation condition:

_i(td,u =+ Td,u) =0 9

where —iT};, consist of the sum of all Feynman diagrams
contributing to the one-point 1Pl Green functions of iy and h,,

respectively.



ng —iT¢
The sum of all one-loop tadpole graphs at zero external momentum contributing to the
one-point 1P| Green function is denoted by —¢T%.

REMARK: For simplicity, we take the gaugino mass parameters, the u
parameter, and the A-terms to be real, thus neglecting potential CP-violating
effects that could arise from CP-violating parameters in the sparticle sector.
Under this assumption, there is no mixing at one loop between CP-even and
CP-odd Higgs scalar eigenstates, and we can treat the analysis of the CP-even

and CP-odd scalar squared-mass matrices separately.

Using the tadpole cancellation condition, the CP-odd scalar
squared-mass matrix simplifies to



Diagonalizing M2 and expanding to leading order in T, 4, the

bare masses for the CP-odd scalar A and the Goldstone boson

(G are found:

2 2 2
v b_Uqu_UdTu

1
2 5 —— (Tyvg + Tyvy,) -
VU V2vg v,

V2

m?, = m2,

)

Solving for b, M7 and M? and making use of the tadpole
cancellation condition,

b = (qud) 777/124 + (/U_u)él& + (%)45 :

v? v/ vy v/ vy

M = () i | () - (M) T+ dG o).
2 N2 T 4 T,

M? = (%) m% + (U sd) 44 [(%) — 1] —= — 3G (vl —v]) .
v v Uy v Uy



Inserting these results into M2, we obtain

2 2
M2 L Mdd Mdu
e y
/\/l?lu /\/liu
where
Ty T
Mz, = mis% —- m%c% —- —(8% — 1)+ —us%c% :
(Op] Vu
T T
2 2 2 2 2 d 2 92 4
M = miycs +mzss + 555 + —(c5— 1),
d Uy
T T
2 2 2 3 d 3
Mg, = —(miy +myz)ssgcs — U_ZCBSB = 0, B

G202,

: 2 _ 1
WlthmZ:Z



The eigenvalues of M? are the bare squared masses, m?% and

m}% where

Y

1
i = 5 (Mo + M= V(M5 — 237 1 MAT)
It is noteworthy that the tree-level sum rule,

TrM?2 = m3, + TrM?2,

still holds when v,, 4 are stationary points of the full one-loop

effective potential. In particular, one can check that

2 9 2 2 2
mp + My = Mz + My + Mg,

where m3 +m7; = Mz, + M2, and mZ, = — (Tyvg + Tyvy) [v°.



We can extend the above analysis to include the charged Higgs
boson and Goldstone boson fields. Starting from the MSSM
Higgs scalar potential, one can identify the terms that are
quadratic in the charged scalar fields by replacing Hy , with

their vacuum expectation values, (Hy ) = vq,u/V2:
VD (ML) H H;

where repeated indices 7,7 = d, u are summed over and

M2 — M3 + 1g*v2% + 5G*(v3 — v2) b+ $9%04,04
b+ 920,04 M + 19705 + 5G* (vl — v3)

We can eliminate M? and M? via the tadpole cancellation

equation.



We then end up with

Uy Td
(b - %gzvuvd) — - — b+ ig%uvd
M?l: — Ud Ud v T
d
b =+ igzvuvd (b + igzvuvd) — - =
Uy Uy

Comparing with our previous expressions for m% and m%, it

immediately follows that

2 02 2 2 02
M+ = M4 + My, Mmea+ = Mg,

after using m, = 19°v.



It is convenient to replace the bare masses (denoted by a lower
case m) by physical masses (denoted by an upper case M) in

the one-loop approximation:

m; = M; — ReXyy(M7), for¢=hH A H",

m? = Mz —Re Ayy(M2), forV=W=% 2,

where —i2J,4 Is the sum of all one-particle irreducible, connected
Feynman diagams contributing to the self-energy of the scalar
field ¢, and the external legs are amputated, and Ay is the

coefficient of g, that appears in the self-energy of the vector
boson V.



Although the physical Higgs masses are gauge invariant
quantities, it is convenient to work in the Landau gauge where
the gauge parameter £ = 0 and the Goldstone boson pole masses
are zero. Thus, evaluating the equation for mi with ¢ = G and

G*, respectively, with Mg = Mg+ = 0, it follows that!'*

mé = MCZ; — Egg(O) — —Egg(O) ,

mGi = M¢ ot — Bg+a-(0) = —Xg+g-(0)

which implies that

Tdcﬁ -+ TuSB
. .

Yaa(0) =XYgrg-(0) =

1%Note that the absorptive parts of S (0) and Y a+a—(0) are zero. Thus in the CP-conserving limit,
Yaa(0) and X 4 ~—(0) are both real quantities.



Working to one-loop accuracy, we end up with:

Méi = My, + M3 + ReX g+ g (My, + M3)
—Re Aww(Mj;) —ReXaa(M3),

since X+ - (M7, + M3) differs from X - (M7,1) by terms
of two-loop order in perturbation theory. To complete the
computation, one must explicitly evaluate the contributions of
the MSSM particle spectrum to the three one-loop self-energy

functions that appear in the equation above.



In contrast to the one-loop computation of my+, the tree-
level expressions for the squared masses of the CP-even neutral
Higgs bosons depend on tan 3. Consequently, the counterterms

associated with the parameters v,, and v, are now relevant.

The renormalized VEVs are given in terms of the scalar wave

function renormalization constants, at one-loop accuracy, by

Ud,r = Z;;mvd = Ud(l — %5ZHd) ,
Vor = Z;imvu — vu(l — %5ZHM) :

and the counterterms for the vevs are defined by

_ 1 _ 1
0V = Vq,r—Vq = —5V40ZH, OVy = Vy,r—Vy = —50,04H, -



The neutral Higgs masses depend on the bare parameter tan j3,
which can be replaced by a renormalized parameter and a

counterterm,

tan 3 — tan S —dtan (3,

where

dtanf3 g va ¢ 5% 0vq
Ud

tan 0 Vo Vo Vd

Likewise, we can express the shifts of the parameters sz and cg

In terms of o tan G:

85%85—585285—6%5138115,

65%65—565265%-0%855&%116.



Using the above results,
Mg = M3ss+ Mzcs + M3,
M, = Mich+ Mzss + oM., ,
M3, = —(M3 + Mz)sges + M3, ,

where [ is the one-loop renormalized parameter and

Ty T.

M5, = —Re EAA(Mi)S% — Re Azz(M%)C% + ( — 1)+ U—us%c%

Vd
— 235035’(]\431 — MZ)dtan 3,
Ty Ty
Mz, = —ReEAA(MA) ReAZZ(MZ)sﬁ—F—sBcﬁ—I— = ( %—1)

+ 285035’(]\431 — M3Z)dtan 3,
T, T
5./\/12 [Re EAA(MA) -+ Re AZZ(Mz)] SpCR — —d8565 — —6585

+ (M3 + M3)cheop0 tan 3 .



Using
m3; = Mz — ReXpu(Mz),

mi — M}% — Re Ehh(M}%) :

one can perturbatively expand the expressions for m%; and m3 at
one-loop accuracy and rewrite the bare squared-mass parameters
in terms of physical (renormalized) parameters. In particular,

Mp — ReSpu(ME) = ME + 4 (6M7;+ 0M3,)

n (M% _ Mi)CQ»B((SM?ld o 5M3u) — Z(M% =+ Mi)8255M?lu
2(M3 — M3)

Y

M? — ReXpp(M2) = M2 + L (M3, +5M2)
(M3 — M3)cap(6 M35, — fMiu)A— 2(M7 + M3)s2530 M3,
2(Mp — M3)

Y

(ME+ M3 % /(M3 — M3)? + AM3MZs3, ).

~ 1
where M7, = 5



Note that ]\A@[’h are the eigenvalues of the tree-level CP-even Higgs boson
squared-mass matrix with the bare parameters m 4, mz, and 5 replaced
by the corresponding physical (renormalized) masses M4 and My and the
one-loop renormalized parameter 3. One can also employ this squared-mass
matrix to define the mixing angle «, which can be expressed in terms of Mi,
M?%, and the renormalized parameter 3 as follows:

(M% — Mi)czﬁ

A — A2

]\42 M2

Cos 2a = : sin 2a =

Using the above expressions, one can derive the following useful identity:
M3 sin[2(8 — a)] = —Mzsin[2(8 + )] .
It then follows that

M3 = MI%, +ReXpu(M 2) + 6 M35, cos® a+ dM2, sin® a + M3, sin 2a,
M? = M,% + Re Ehh(M%) + dM?3, sin® a4+ M2, cos® o — M3, sin 2ax .



Plugging in the expressions previously obtained for s M2, M2 |

and M3 | into the above equations, we obtain

MJQLI = M2 4+ ReXpup(M}) — cos’(B + ) Re AZZ(ME) — s%_a Re ZAA(Mi)

Ti; o o 2 Tyw: 9 o .2 2 2 .
— | 858 — cos” « —|chs — sin” « 2m’,c, sin|2 a)ld tan 3,
+Ud[/3/3—a ]+UU[66—a | +2mycssin[2(8 + )] 6

M; = M} + ReSpp(M3) — sin®(8 + a) Re Azz(My) — c;_, Re Saa(M})

T T,
+ 2d [s%cé_a — sin? a] + — [c%c%_a — cos? oz} — 2m2Zc% sin[2(8 + «)]d tan 3.
Vu

Vd

It is convenient to evaluate the one-loop tadpole functions with

respect to the neutral CP-even Higgs boson mass basis:®

ITg=1T,sina—+ 1 cosa, 1y, =1, cosa—1Tysina.

Since T, and T; are one-loop quantities, it is consistent to define T}, and T’ at one-loop accuracy by

employing the mixing angle o whose definition is based on tree-level relations.



One can then rewrite the expressions for M7 and m3 in a more
useful form,

M7 = M} + ReSpu(Mp) — cos®(B+ @) Re Azz(MZ) — s5_, ReXa4(M3)

T
+ C%_azgg(O) — 205_QTH + QmZZc% sin2(8 + «a)]d tan 3,

M7 = M3 + ReSpn(M3) —sin®(8 + a)Re Azz(M3) — c5_,ReZaa(M3)
1h,

+ S%_azgg(O) — 255_047 — 2mQZC% sin[2(6 + «)|d tan 3,

where
1

Za6(0) = -

[THCB_Q + ThSB—Oc] :
One also obtains the one-loop correction to the tree-level
squared-mass sum rule of the MSSM Higgs sector,

M;% + MI%I = Mi + M% + Re Zhh(M%) + Re ZHH(M[%[) — RGEAA(Mi)

—ReAzz(M3) — Xaa(0).



A notable prediction of the MSSM is that the tree-level mass of the lightest

CP-even Higgs boson is bounded from above, and its maximal value is

1

achieved in the case of § = 5m and My > Mz. In this limit, v4 = 0 and

vy, = v, in which case t; = T; = 0 and there is no mixing of h, and hy (i.e.,
a = 0). It then follows that Mh = M, and MH = M 4, and the expressions
for M7 and M3, simplify to

1]
M;% = M% -+ ReEhh(M%) — ReAzz(M%) — Fh ,

M% =M% +ReXgu(M3) —ReXaa(M3) ,

independently of the value of d tan 3.



The MSSM Higgs Mass in the Decoupling Limit

In the Higgs decoupling limit where M 4 > Mz, it follows that cs_, = 0 and
Sg_o = 1. In this limit at one-loop accuracy'®

Ms = 35 [M — Re AZZ(MZ)] + Re Zhh(M 626) — —|— 4M2653256256 tan 3,
M% = M?% + s2,[MZ — Re Azz(M2)] + Re ZHH(MA) — Re Zau(M?)

— 4MZ668256255 tan (3 .

It is instructive to look at the leading contributions to the one-loop radiatively
corrected mass of the SM-like Higgs boson of the MSSM. Numerically, the
leading effect is due to the loop contributions of the top quarks and the
supersymmetric top-quark partners. Because of the dependence on the
couplings of the top quark and top squarks that depend on the Higgs—top-
quark Yukawa coupling ¥, it is sufficient to evaluate the leading m} behavior

of the self-energy functions that appear in the formulae above,

16t one-loop accuracy, one may replace m2Z d tan B with M% d tan (3, since d tan (3 is a one-loop quantity.



One can check that there are no terms that behave like m} in neglect the
term in Azz(M#%) and in the expression for 0 tan 3. Hence, we are left with
extracting the leading m} behavior of

2 2 1
due to loops of top quarks and their supersymmetric scalar partners. At
one-loop order in the limit of My < M; < M, Mg, where Mg is the

geometric mean of the two top-squark squared masses, M3 = my, My,
1 2

3g2m4 2 2 2
2 L As2 .2 t Mg X X

mt

where m; Xy = v(arsg — ,uytcﬁ)/\@ is the off-diagonal entry of the top-
squark squared-mass matrix, and a; and p have been assumed to be real (for

simplicity).
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Figure 1: The lighter CP-even Higgs mass in the MSSM as a function of a common SUSY mass
parameter Mg and of the stop mizing parameter X; (normalized to Mg). Both parameters
are defined in the DR scheme at the scale Q = Msg.

Taken from: from P. Slavich, S. Heinemeyer, et al., “Higgs-mass predictions in the MSSM
and beyond,” Eur. Phys. J. C 81, 450 (2021) [arXiv:2012.15629 [hep-ph]]. This review
article summarizes the efforts of the “Precision SUSY Higgs Mass Calculation Initiative” and
represents the state of the art of the radiatively corrected MSSM Higgs sector.



The observed Higgs mass of 125 GeV suggests that if the MSSM is realized
in Nature, then the effective scale of SUSY breaking (Mg) is likely to be on
the heavy side (i.e., closer to 10 TeV) rather than of O(1 TeV) as initially
proposed for a solution to the hierarchy problem.

FeynHiggs, M) = 125.1 GeV

10° T

tanf =5

103 1 1 1
-3 —2 -1 0 1 2 3

X,/Ms

Figure 2: Values of the SUSY mass parameter Mg and of the stop mizing parameter X; (normalized
to Mg) that lead to the prediction My = 125.1 GeV, in a simplified MSSM scenario with
degenerate SUSY masses, for tan 3 = 20 (blue) or tan S =5 (red).



The MSSM Higgs Mass via the Renormalization Group

The leading logarithmic behavior of the radiatively corrected Higgs mass can
be understood quite easily using the renormalization group equations (RGEs)
of the SM. In the decoupling limit, there exists a scale Mg below which the
effective field theory of the MSSM coincides with that of the SM. At the
scale Mg, we can employ the MSSM relation M? = M%cgﬁ. Equivalently,
AN Ms) = (9 + g'?)c3 5, which serves as a boundary condition of the RGE

for ),
dx

— = [\, where t = In u.
7 B f
In first approximation, we can take the right-hand side of above equation to

be independent of ¢, in which case

A(my) = A(Ms) — 56, In (%§> .



The one-loop beta function for A in the Standard Model (SM) is given by
2
16728y = 24)2 + 3 [294—|— (g% + ') } — 23 N
—)\(992 + 39/2_ 4ZNCzy'L2)7

with y; = gmfi/(\@mw) and N.; = 3 [N,; = 1] for quarks [charged leptons].
To obtain the leading logarithmic behavior of the radiatively corrected Higgs
mass, it suffices to retain the term in 3y that is proportional to ¥}

3yi _ 3g'my

82 32m2miy,

B =

Finally, we can identify
3 2,.,4 M2
b (1)
8memyy, ms;

in agreement with the leading logarithmic behavior of the radiatively corrected

Mﬁ = 2A(mf)v2 = M%cgﬁ

Higgs mass.



The MSSM Wrong-Higgs Couplings

The tree-level MSSM Lagrangian consists of SUSY-conserving
mass and interaction terms, supplemented by soft SUSY-breaking
operators. In particular, all tree-level dimension-four gauge

Invariant interactions must respect supersymmetry.

When supersymmetry is broken, in principle all SUSY-breaking
operators consistent with gauge invariance can be generated in
the effective low-energy theory below the scale of SUSY breaking.
The MSSM Higgs sector provides an especially illuminating

example of this phenomenon.



In particular, if the masses of all the Higgs bosons lie below the
SUSY-breaking scale Mg, then the low-energy effective theory
below Mg, is the most general 2HDM.!’

For simplicity, we will focus on the Higgs couplings to the third
generation of quarks (neglecting the generation indices and the
couplings to leptons). Using the MSSM Higgs field notation
and the two-component spinor formalism, the 2HDM Yukawa
Lagrangian (prior to imposing any symmetry constraints) is

given by:
Py = —y,(HE — HFbt) — wy(HO'tt + H bt)
—yp(H3bb — Hth) — wy(HTbb + H, tb) + h.c.

"Due to CP-violating effects generated by non-removable phases that may exist above Mg in the MSSM,
the corresponding 2HDM scalar potential and Yukawa couplings may be CP-violating.




Imposing supersymmetry on the Yukawa Lagrangian implies that
we must eliminate the nonholomorphic couplings by setting

w; = wp = 0, which yields the Type-Il Yukawa interactions.

Under the assumption that all SUSY particle masses
(characterized by a mass scale Mg) are significantly heavier
than the heaviest scalar of the Higgs sector, one can formally
integrate out all the SUSY particles below the scale Mg. The
resulting low-energy effective theory is the non-supersymmetric
2HDM. In this effective theory, the so-called wrong-Higgs Yukawa

couplings, w; and wyp, are nonzero.



/I;L* \Y/ {/I;R :E]; \Y/ {%VL
4 HOt L HOt
(a) (b)

One-loop MSSM contributions to the wrong-Higgs Yukawa couplings to bb. In diagram (b), the X serves as a
reminder that the exchanged charged higgsino is a Dirac fermion that is comprised of a pair of two-component

fermions, H, and H .

The Feynman rule for the HOTbb vertex is —iwy,. The dominant contributions
to this quantity are generated at one-loop order due to the two Feynman
diagrams exhibited in the figure above.!® We shall simplify the analysis by
ignoring squark mixing, although a more complete calculation must take this
into account since we will be assuming that u, ap, and a; are nonzero. Finally,
we shall ignore CP-violating effects by taking p, ap, and a; and M3 to be real
parameters. In what follows, we shall first assume that 1 and M3 are positive

real parameters (a condition we shall later relax).

18\We shall neglect subdominant corrections to wy /y; that are proportional to yy, g2, and 9’2.



We employ Feynman rules obtained from the following interaction

Lagrangians. First, the gluino—squark—quark Lagrangian is given by
Lt = —V20,(T*);* Y [gan: 077 + 344" Gk — Go@ Qe — 9iaL 41 |

where the squark fields are taken to be in the same basis as the quarks.

Second, the couplings of Higgs bosons to squarks are given by
Loz = p[pE TrH + b iR HL ) + yp (0L b HO + 1 b H )]
— at%v]];(%vLHS — ELHJ) — ang(ELHg — %VLHCl_) + h.c.
Third, the higgsino couplings to qq are given by:

Lt = — Ut [HO(tt], + ) — HF (bt} +tbr)]

— yp[HY(bbY, + bby,) — H (tbl, + bt1)] + h.c.



Finally, in the approximation where the gauge couplings are neglected, the

chargino masses and the gluino mass are obtained from
Linass = —%Mgﬁg — MQ/W—i_W_ — uf]if]d_ + h.c.,

where the mixing of gauginos and higgsinos (proportional to g) is neglected.
The gluino of mass Mz = M3 is a Majorana fermion, and the charged Dirac

fermion of mass Mz, = p comprises the pair of two-component higgsino
fields, f[:; and fld_.

Under the assumption that Mg > mg+, one can compute the leading
contribution to the wrong-Higgs coupling diagrams by setting all external four-
momenta equal to zero. Performing the integration over the loop momentum

then yields the Passarino-Veltman function Cy(0,0,0;mZ, m3, m?

), where
the arguments of Cy are the squared masses of the particles appearing in the

loop.



The Passarino—Veltman function Cj

We work in d = 4 — 2¢ dimensions and employ dimensional regularization.
d%q 1
(27T)d DC ’

Co(p%pg,p%mg,mg,mg) — —167T2iu2€/
where p = —(p1 + p2) and

Dc = (¢7 — m; +1ie)[(qg + p1)° — mi +ie][(q + p1 + p2)” — m_ + ie],

The following integral expression for Cy can be derived:

Co > d
(p17p27p maamba / ZC/ D—’L€

after dropping terms of O(¢), where

D = p*z® + p3y” + (py — p3 — pH)ay + (m2 —m?2 — p*)x

+(mi —m2+p* —phy +m?2.



Thus, we obtain

—iwpdin = (ipp)29° (T“T“)jkiSMg Co(o 0 O,,M3,m ,m= )

br

1672

CO(OOOH:LL m m2)

R

+ (—iay) (—iy) (—iye) 0k i 16
where 7, k are color indices and the factor of i3 derives from the numerators

of the three propagators in the loop.

The above result is usually expressed in terms of the function

T(ma, my, me) = —Co(0,0,0; m2, m?, m?)

_ mgmy In(myg /my) + mymIn(my,/m;) + mimg, In(mg/m,)

(mg — mg)(mi — m2)(mg — m3?) |

where Z(m, m, m) = 1/(2m?).



Hence, our final result for the wrong-Higgs coupling is

CrasuMs
2T

HatYe
1672

I(Mﬁi7 mrt}/’ m’{R) )

wy = Yo (Mg, mg ,mg )+

br

where (T*T?),, = Crpdji, with Crp = 4/3, is the Casimir operator in the
fundamental representation of SU(3)c. The above result was derived under
the assumption that M3 and u are positive. However, it can be shown that

this result remains valid if M3 and pu are real quantities of either sign.

A remarkable feature of the above result is that, in the limit of Mg > m g+,
expression for wy given above does not decouple if u, Ms, a; ~ O(Mg).
That is, apart from the one-loop suppression factor, the contribution of wy to
the Yukawa interactions of the effective low-energy 2HDM theory can yield
significant deviations from the Type-ll Yukawa interactions of the tree-level
MSSM Higgs sector.



For example, setting (H) = v, /v/2 and (HY) = v4//2 yields

YpU
My = ——= COS 1+
V2 (

wp tan 5) YpV
= Z—cosfB(1+ Ay),
m 5 ( b)

which defines the quantity A,. The dominant contributions to A are tan (-
enhanced, with Ay >~ (wp/yp) tan 8. Thus, the tree-level relation between the
b-quark mass and the b-quark Yukawa coupling receives a significant radiative
correction if tan 3 is large. This can significantly modify the tree-level
predictions for the couplings of bb to the Higgs bosons of the MSSM.

Exercise: Derive the following expression for the hbb coupling:

mp SIn & Ay
R 1 + cot acot B)] .
Ihb v cos B [ (1+Ab>( + cot accot )

Show that g¢;;; reduces to its SM value when m4 > myz. Obtain the

corresponding expressions for gi15, 9aps: anNd gr+pz-



