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Disclaimer
I cannot really teach you Machine Learning and go through thorough 
examples in model building in 2 x 45 min

My hope is to teach you some important take-home concepts and leave 
you with some pointers on where to go next
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Today:

● Introduction to 
Machine Learning

● Types of Learning
● Some Models
● Machine Learning 

Workflow
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Tomorrow:

● Classifier-guided 
Parameter Space 
Search

● Observable 
Prediction with a 
Regressor

● Evolutionary Strategy 
for Exploration



Code & Data
Code: https://gitlab.com/miguel.romao/ml-for-model-building-susy-2023

Data: https://zenodo.org/record/8146636
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Lecture 1: Introduction to 
Machine Learning
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“ Artificial Intelligence is the 
quest of creating machines 
that think and act intelligently
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Machine 
Learning is the 
subfield of 
Artificial 
Intelligence that 
concerns how a 
machine learns 
from 
experience

Machine Learning

Artificial 
Intelligence
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Classical 
Programming

Machine 
Learning

Rules Answers

RulesAnswers
Answers

New

= Decision 
Function

= Data
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“ The current paradigm of 
learning is that of Statistical 
Learning: The machine learns 
functions over the distributions 
of the data
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Learning from Data 
has Consequences

● Bound to the quality and 
quantity of the data

● Bound to the (by definition) 
compact support of the data

● Bigger and more complex 
models require more and 
better data

● Machine Learning excels at 
interpolation, not so much at 
extrapolation
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Bad

Better

Even better
Here be 
dragons

The Unreasonable Effectiveness of Data - Alon Halevy, Peter Norvig, Fernando Pereira (2009)



               
Taxonomy
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Machine Learning
Taxonomy: Types of Learning

The main differentiator is the type of learning, i.e. by task

● Supervised
○ Data includes the answers

● Unsupervised
○ Algorithm embodies the answers

● Other types
○ Semi-supervised
○ Self-supervised
○ Reinforcement
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Machine Learning
Taxonomy: Supervised Learning

● The training data include the answer we 
want to reproduce

○ X: Independent Variables/Features
○ y: Target Variables/Labels

● Assume (hope?) a map exists such that

● The model will approximate f,
● The type of y defines two sub-classes

○ y is a real variable: Regression
○ y is categorical: Classification

X y

X y
f

new X ŷ
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Machine Learning
Taxonomy: Unsupervised Learning

● The training data do not include the 
answer we want to reproduce

● The answer is embodied in the Learning 
Algorithm

● The model will learn how to map X to 
the desired answers

● Answers define the type of model
○ Clustering
○ Density Estimation
○ Dimensional Reduction
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Machine Learning
Taxonomy: Other Types of Learning

● Reinforcement learning:
○ An agent interacting with 

environment
● Self-supervised:

○ Representation learning
○ Generative models

Prompt: An astronaut riding a 
horse in a photorealistic style
https://stablediffusionweb.com/#demo

Wikipedia
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Machine Learning
Taxonomy: Other AI Approaches

▪ Search
○ Travel salesman problem
○ Combinatorics

▪ Optimisation
○ Bayesian optimisation
○ Genetic and evolutionary 

algorithms 

Wikipedia

https://interestingengineering.com/innovation/evolutionary-algorithms-how-natural-selection-beats-human-design 16



               
Simple Parametric Supervised 
Models
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Regression Example
Linear Regression

x

y

18

● Pairs (xi, yi) that appear linearly related
● The hypothesis function space is 

composed of all linear functions

w: weight, b: bias: learnable parameters
● Convenient to rewrite as

Exercise: Convince yourself that the 
generalisation to multivariate linear 
regression is trivial



Regression Example
Solving the Linear Regression: Normal Equation

19

x

y
● Intuitively: Green line is better than 

Orange line
● Quantify this using a loss function
● For regression problems, we use 

Mean Square Error

Exercise: Show that MSEi can be obtained from the minus log-likelihood of N(ŷi, σ) 
with constant σ



Regression Example
Solving the Linear Regression: Normal Equation
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● We have to minimise the loss with respect to the model parameters, w
● It can be shown (exercise) that there is a closed form solution: Normal 

Equation

where 

● But this has many issues:
○ The XT.X matrix needs to be invertible
○ Computationally prohibitive for large datasets
○ It does not exist for more complicated (non-linear) models



Regression Example
Solving the Linear Regression: Gradient Descent
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● Iterative first order method that uses the gradient of the loss to 
minimise it

where η is called the learning rate

Let’s go to the first notebook of examples!

https://www.kaggle.com
/code/bhatnagardaksh/g
radient-descent-from-sc
ratch



Classification Example
Logistic Regression

x1

x2
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● Pairs (xi, yi) where yi = star or triangle
● We will define one class as 1 and the 

other as 0, e.g.

with probability

● Naively: Bernoulli trial. 5 triangles, 6 
stars. Chance, p, of being triangle is 5/11 

● But it is clear that p=p(xi)!



Classification Example
Logistic Regression

23

● We want to find a map, p(xi), from xi to [0,1] that maximises the 
(Bernoulli) likelihood

or, conversely, that minimises the negative log-likelihood

● This is known as binary cross-entropy, and it is the loss for binary 
classification



Classification Example
Solving Logistic Regression

x1

x2

z

σ

0.5
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● Following the Linear Regression 
example, we want to learn a function

● We assume a linear learner

● Where the surface z=0 is known as 
decision boundary

1



Classification Example
Solving Logistic Regression
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● Logistic Regression has no closed form solution => Gradient Descent

with

Exercise: Compute 

Let’s go back to the first notebook of examples!



               
The Scikit-Learn Package
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Machine Learning
Scikit-Learn

● Scikit-Learn (scikit-learn.org) is 
the go-to ML package for 
python

● Has defined the best practices 
for ML API development

● Has great documentation and 
tutorials

● You can learn ML from 
Scikit-Learn documentation!
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Machine Learning
Scikit-Learn

● We will start by implementing Linear and Logistic regressions

○ sklearn.linear.LinearRegression

○ sklearn.linear.LogisticRegression

● Not estimator modules worth remembering:

○ sklearn.preprocessing

○ sklearn.model_selection

○ sklearn.metrics

Let’s go back to the first notebook of examples!
28



               
Trees and Ensembles
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Decision Tree
Classification Example

● Split the data with recursive partitions with 

half-spaces

● Isolate each class in an end node, a leaf 

● Quantify class isolation using Gini impurity 

or Entropy

● Repeat until no more splits can be made
30

2

x1
5

x2

X1>5

X2>2



Ensembles
Strength in Numbers

● Trees can memorise the training set
○ Bad for generalisation to new data
○ Computationally forbidding for large datasets

● Ensembles are a way of combining many small 
trees

● The idea: many weaker learners perform better 
together, producing a stronger learner

● Example: Random Forest is a collection of smaller 
trees (with a maximum depth) trained on 
subsamples of the data
○ The final prediction: average of the predictions

Let’s go back to the first notebook of examples! 31



               
A Taste of Deep Learning
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Deep Learning 
is a subclass of 
Machine 
Learning 
algorithms that 
train Neural 
Networks to 
perform tasks

Machine Learning

Artificial 
Intelligence

Deep 
Learning

33



● Notice that we can represent a Logistic 
(or linear) Regression diagrammatically 

This has a historical name: perceptron and it 
is the first “neural network”

Deep Learning and Neural Networks
Terrible name, great idea

34
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● By allowing 
we can extend this to multiple outputs, e.g. multi-label classification

Deep Learning and Neural Networks
Terrible name, great idea
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● What if I continue to chain n layers with  
where dli are the number of neurons in layer i

Deep Learning and Neural Networks
Terrible name, great idea
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● And finally collapse on a single output
● The output is a non-trivial highly non-linear function of the inputs 

This neural network is called multi-layer perceptron or dense neural 
network

Deep Learning and Neural Networks
Terrible name, great idea
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● Differentiable models
○ Can be trained with (Stochastic) Gradient Descent

● Highly compositional functions
○

● Universal Function Approximators
● Have unmatched representational power and are capable of 

feature abstraction
○ Each layer can be seen as a data transformation step

● Extremely versatile and can take in data of many different shapes 
and formats

Deep Learning and Neural Networks
Terrible name, great idea

38

Exercise: Show that if we do not use a non-linear function between layers, that NN is 
only performing a single affine transformation



● Define how many layers and their size 
(number of neurons)

● Choose a non-linear activation for the 
hidden layers

● Output and loss defined by task
○ Classification: sigmoid and binary 

cross-entropy
○ Regression: identity function and 

mean square error
● Iteratively train on mini-batches of data 

using (Stochastic) Gradient Descent
Let’s go back to the first notebook of 
examples!

Deep Learning and Neural Networks
Defining and Training

39

wikipedia



               
Machine Learning Workflow 
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Machine Learning Workflow
Choosing a Model

● We have seen many models
○ Which one is better?
○ How do we define better?
○ “No free lunch” theorem

● Some models are more complex than others
○ Many hyperparameters to choose

■ E.g. Number of estimators in a forest, number of layers in 
a neural network, etc

○ Complex models have high capacity to memorise the training 
data and perform badly on new data

● What are the principled steps to choose a machine learning model?
41



Machine Learning Workflow
Choosing a Model: the Bias-Variance Trade-Off
A model with insufficient capacity will fail to fit: underfitting
A model with too much capacity will fit the noise: overfitting.

x

y

x

y

x

y

42
High Bias Just Right High Variance



Machine Learning Workflow
Choosing a Model: Data Split

● Split the dataset into three sets
○ Train: for fitting the model
○ Validation: for model 

selection
○ Test: to assess the final 

performance
● Never use the Test set at any 

stage of your training or validation 
=> Information Leakage (a.k.a. 
cheating)

Full Dataset

Train Validation Test

The relative proportions vary across 
the literature and application. We’ll 

work with 0.6-0.2-0.2
43



● There are many metrics in the 
Machine Learning literature that 
help you assess the 
performance of a classifier

● We will focus on the Area under 
ROC (Receiver operator 
characteristic) curve
○ Values between 0 and 1
○ Easy to implement and 

intuitive
○ Sample-wide statistics

p(y=1|w)

TP
R

FPR

44

Machine Learning Workflow
Choosing a Model: Classification Metric

True Positive Rate

False Positive Rate



● Likewise, there are many metrics that let 
you assess the performance of a regressor

● A common one is the Coefficient of 
Determination
○ Normalised Error, i.e. usually between 

0 and 1
○ Easy to implement and intuitive
○ Sample-wide statistics

45

Machine Learning Workflow
Choosing a Model: Regression Metric

wikipedia



Machine Learning Workflow
Steps for Success

46

● Define the task
● Get plenty of good data
● Split into three datasets

○ Train, Validation, Test
● Choose a model

○ Start with a simple baseline
○ Upgrade to a more complex model
○ Tune hyperparameters

● Assess the final performance
● Deploy to production to perform the task on new data

Let’s go back to the first notebook of examples!



               
Lecture 2: Machine Learning for 
(not only) SUSY Model Building
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Machine Learning in HEP
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Machine Learning in HEP
A flourishing area of research

https://iml-wg.github.io/HEPML-LivingReview/

Impossible to cover everything here…

49

https://iml-wg.github.io/HEPML-LivingReview/


Machine Learning in HEP
Shameless self-promotion
● Generic Searches for New Physics

○ Transferability of Deep Learning Models in Searches for New Physics at 
Colliders, Phys. Rev. D 101, 035042 (2020), 1912.04220

○ Finding New Physics without learning about it: Anomaly Detection as a 
tool for Searches at Colliders, Eur.Phys.J.C 81 (2021), 2006.05432

● Grouping Events Together
○ Use of a Generalized Energy Mover's Distance in the Search for Rare 

Phenomena at Colliders, Eur. Phys. J. C 81, 192 (2021), 2004.09360
● Jet Quenching by the Quark Gluon Plasma

○ Deep Learning for the classification of quenched jets, JHEP 11 (2021) 
219, 2106.08869

○ Jet substructure observables for jet quenching in Quark Gluon Plasma: a 
Machine Learning driven analysis, 2304.07196

● Quantum Machine Learning in HEP
○ Fitting a Collider in a Quantum Computer: Tackling the Challenges of 

Quantum Machine Learning for Big Datasets, 2211.03233

50



               
Supervised Learning for 
Parameter Space Scans
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● Parameter space scanning is usually computationally- and 
time-consuming

● Difficulty increases for highly constrained cases: low parameter 
sampling efficiency

For more difficult scans one usually adapts for simplicity

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

52

Machine Learning in SUSY Model Building
Applications to Parameter Space Scans



Machine Learning in SUSY Model Building
Supervised Learning for Parameter Space Scans
● Considering that the observable computation is the heavy step, try to replace it, 

either by predicting the observables (regression) or predicting if a point is valid 
(classification)

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

Caron, et al [1605.02797]; Ren, et al 
[1708.06615]; Staub [1906.03277]

Kronheim, et al 
[2007.04506] 53



● Application 1: Supervised Classifier to predict 
whether a point is valid
○ Physics case: cMSSM
○ Software: SPheno, MicrOMEGAS
○ Constraints: Higgs Mass and Dark Matter 

relic density
● Application 2: Supervised Regressor to predict 

Dark Matter relic density
○ Physics case: cMSSM
○ Software: SPheno, MicrOMEGAS
○ Constraints: Higgs Mass and Dark Matter 

relic density
Let’s go to the second notebook of examples!
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Machine Learning in SUSY Model Building
Supervised Learning for Parameter Space Scans

m0(MGUT) [0,10] TeV

m1/2(MGUT) [0,10] TeV

A0(MGUT) [-10,10] TeV

tan(ꞵ)(MSUSY) [1.5,50]

mh [122,128] GeV

hΩDM [0.08,0.14]



               
Exploring Parameter Spaces with 
Search Algorithms
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Exploring Parameter Spaces with AI/ML
Shortcomings of Previous Attempts
● These methodologies require large amounts of training data to cover the 

whole parameter space
● Predicting whether a point is valid using a classifier:

○ If training data do not cover the whole parameter space: wrong guess
● Predicting the observables using a regressor:

○ If training data do not cover the whole parameter space: might map 
the parameter to observables incorrectly

● For highly constrained and realistic scans, it is computationally prohibitive 
to get enough valid points to use some of these methods

56



Exploring Parameter Spaces with AI/ML
Problem (re)framing: face the sampling
● The “aha” moment was to consider: what if we change the sampling 

itself

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ Valid?
Yes 
or No

Sample a 
point θ

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

57

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



Exploring Parameter Spaces with AI/ML
Problem (re)framing: BSM as a Black-Box
● We do not attempt to predict the observables or whether a point is 

valid
● Instead, we look at how far a point is from being valid
● Let C(O) be a function of a observable O

● The set of valid points

● Equivalently

=> Finding the valid points is the same as minimising C(O)
58

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



Exploring Parameter Spaces with AI/ML
Problem (re)framing: BSM as a Black-Box
● Since O=O(θ) we can close the loop and optimise with regards to the 

parameters C(O)=C(O(θ)). From the outside, C(O(θ)) is a Black-Box => 
Black-Box Optimisation Problem

Computational 
Routine
(SPheno, SoftSUSY, 
MicrOMEGAS, 
Calchep, etc)

O(θ)θ C(O(θ))

Optimisation 
Algorithm

Constraints 
(experimental 
measures, 
limits, 
theoretical, etc)

Black Box

59

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



Exploring Parameter Spaces with AI/ML
Meet the Algorithms
● The fields of Artificial Intelligence and Machine Learning have a multitude 

of search algorithms for black-box optimisation
● We explored three different classes of algorithms to see their differences

○ A Bayesian Optimisation Algorithm: Tree-Parzen Estimator (TPE)
○ A Genetic Algorithm: Non-dominated Sorting Genetic Algorithm II 

(NSGA-II)
○ An (non-genetic) Evolutionary Algorithm: Covariant Matrix 

Approximation Evolution Strategy (CMA-ES)
● The algorithms are sequential, i.e. a new suggested point depends on the 

points seen so far
● All algorithms do not require prior data 

○ => They adapt the search dynamically
60

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



Exploring Parameter Spaces with AI/ML
Meet the algorithms: TPE
● Sample randomly an initial set of points

○ Sort the parameter points by their loss 
○ Split points between good and bad 

through a moving quantile heuristic
○ Fit a Gaussian Mixture Model (learnable 

component of the algorithm) on each 
good and bad set

○ Sample a point from the good, and keep it 
if its likelihood is greater than being bad

○ Repeat

Loss

θ

GMM 
llh

θ

61

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



Exploring Parameter Spaces with AI/ML
Meet the algorithms: NSGA-II
● Encode parameter space point (a vector) as genes

● Prepare initial population
○ Evaluate their fitness (i.e. the loss)
○ Sort them by their fitness
○ Keep the best, discard the rest
○ Create offspring from the best (crossover)
○ Apply random mutations
○ Repeat

62

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223



● Initialise a multivariate normal with random mean and 
identity covariance matrix
○ Sample a population
○ Evaluate members of population and sort  by loss
○ Use the best and compute their statistics

■ Mean
■ Covariance

○ Update mean and covariance matrix with weighted 
rolling updates

○ Repeat

Exploring Parameter Spaces with AI/ML
Meet the algorithms: CMA-ES

63

Exploring Parameter Spaces with Artificial 
Intelligence and Machine Learning Black-Box 
Optimisation Algorithms
Fernando Abreu de Souza, MCR, Nuno Filipe 
Castro, Mehraveh Nikjoo, Werner Porod
Phys.Rev.D 107 (2023) 3, 035004
https://arxiv.org/abs/2206.09223

θ1

θ2

θ1

θ2

θ1

θ2



● Application 3: Covariant Matrix Approximation 
Evolutionary Strategy for Parameter Space 
Exploration
○ Physics case: cMSSM
○ Software: SPheno
○ Constraints: Higgs Mass and muon (g-2)

Let’s go to the third notebook of examples!
64

Exploring Parameter Spaces with AI/ML
Evolutionary Strategy for Parameter Space Scans

m0(MGUT) [0,10] TeV

m1/2(MGUT) [0,10] TeV

A0(MGUT) [-10,10] TeV

tan(ꞵ)(MSUSY) [1.5,50]

mh [122,128] GeV

Δaμ [7.4,42.8] 10-10



               
Ongoing work
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Exploring Parameter Spaces with AI/ML
Scotogenic explanation to muon (g-2)
● Additional states can generate 

radiative neutrino masses as 
well as a BSM contribution to 
muon (g-2) 

● 46 free parameters 🤯 (we have 
complex numbers)

● 30 constraints
○ Higgs mass, neutrino data, 

muon (g-2), flavour violation 
bounds

66

[No working title yet]
Fernando Abreu de Souza, MCR, Andreas Karle, 
Nuno Filipe Castro, Werner Porod
230X.ABCDE

Based on: Leptogenesis and muon (g − 2) in a 
scotogenic model, A. Alvarez, A. Banik, R. 
Cepedello, B. Herrmann, W. Porod, M. Sarazin, 
M. Schnelke [2301.08485]



Exploring Parameter Spaces with AI/ML
Scotogenic explanation to muon (g-2)
● Exploring a new approach: Multi-Objective 

Optimisation
○ Instead of optimising to the sum of the 

objectives, optimise all the objectives 
jointly

○ NSGA-3: a bettered NSGA-II, for many 
objectives

○ Beyond Casas-Ibarra parametrisation
● So far:

○ Random sampling: no valid points after 1 
Million points

○ NSGA-3: Valid points after O(10^4) steps

67

[No working title yet]
Fernando Abreu de Souza, MCR, Andreas Karle, 
Nuno Filipe Castro, Werner Porod
230X.ABCDE

Based on: Leptogenesis and muon (g − 2) in a 
scotogenic model, A. Alvarez, A. Banik, R. 
Cepedello, B. Herrmann, W. Porod, M. Sarazin, 
M. Schnelke [2301.08485]

Wikipedia



Exploring Parameter Spaces with AI/ML
Highly Constrained 3HDM
● 16 free parameters
● 60 constraints 🤯

○ Oblique STU parameters
○ Boundedness from Below
○ Perturbative Unitarity
○ LHC Higgs couplings 

constraints
○ B-> S gamma

● Random search efficiency: Around 
1:10 billion (1 week on 16 cores 
produces O(10) points)
○ Model builders often focus 

around alignment limits
68

[No working title yet]
Jorge C. Romao, MCR
23WX.ABCDE

Based on: BFB conditions on a class of 
symmetry constrained 3HDM
Rafael Boto, Jorge C. Romao, Joao P. Silva 
[2106.11977]

ATLAS-CONF-2018-031



Exploring Parameter Spaces with AI/ML
Highly Constrained 3HDM
● Go beyond alignment limits
● We find valid points very quickly: Around 1 after 1000 attempts (c.f. 1 to 10 billion) in <O(10) 

minutes
● Algorithm tends to find the same region regularly => Adapt for exploration [current WIP]

69

[No working title yet]
Jorge C. Romao, MCR
23WX.ABCDE

Based on: BFB conditions on a class of 
symmetry constrained 3HDM
Rafael Boto, Jorge C. Romao, Joao P. Silva 
[2106.11977]



Exploring Parameter Spaces with AI/ML
Gravitational Waves from No-Scale SUGRA
● Gravitational Waves production 

from a feature of the inflation 
potential

● The production of observable 
GW is tied to the nuanced shape 
of the kink, i.e. fine-tuned

● With CMA-ES, we were able to 
find potentials with the 
appropriate shape

70

Gravitational Waves and Gravitino Mass in 
No-Scale SUGRA Wess-Zumino model with 
Polonyi Term [ Working title]
MCR, Stephen F. King
23WX.ABCDE

To be presented next week, Wednesday 
19th at 5:40pm



               
Further Reading
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These 
are free

● The Hundred-Page Machine 
Learning Book - Burkob

● Deep Learning - Goodfellow, 
Bengio, Courville

● An Introduction to Statistical 
Learning - James, Witten, 
Hastie, Tibshirani

● The Elements of Statistical 
Learning -  Hastie, 
Tibshirani, Friedman

● Understanding Machine 
Learning -  Shalev-Shwartz, 
Ben-David
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Not free, 
but very 
good

● Hands-On Machine Learning 
w/ Scikit-Learn & 
TensorFlow - Geron

● Deep Learning w/ Python - 
Chollet

● Machine Learning with 
PyTorch and Scikit-Learn - 
Raschka 

● Pattern Recognition and 
Machine Learning - Bishop

● Artificial Intelligence, a 
Modern Approach - Russell, 
Norvig

● Machine Learning, a 
Probabilistic Perspective - 
Murphy
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Thanks!
mcromao@lip.pt
miguel@miguelromao.me


