16 february 2011 CERN-TH

DM phenomenology: status circa 02.11

Marco Cirelli (CERN-TH & CNRS IPhT Saclay)

in collaboration with:

A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (L'Aquila + Saclay + CERN) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN)

Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632

16 february 2011 CERN-TH

DM phenomenology: status circa 02.11

Marco Cirelli (CERN-TH & CNRS IPhT Saclay)

in collaboration with:

A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (L'Aquila + Saclay + CERN) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN)

Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632

Introduction

Introduction

DM exists

Introduction

DM exists

Need a proof?

DM exists

DM is a neutral, very long lived, feebly interacting particle

DM exists

Need a proof!

DM is a neutral, very long lived, feebly interacting particle

Some of us believe in the WIMP miracle

DM exists

need a proof?

DM is a neutral, very long lived, feebly interacting particle

Some of us believe in the WIMP miracle

Do you!

, direct detection Dama/Libra, Xenon, CDMS

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect 6

from annihil in galactic halo or center PAMELA, ATIC, Fermi from annihil in galactic halo or center from annihil in galactic halo or center GAPS $\bar{\nu}$ from annihil in massive bodies Licecube, Km3Net

OUTLINE

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

OUTLINE

direct detection

basics constraints hints 'theory' tentative conclusion

production at colliders

indirect

basics constraints hints 'theory' tentative conclusion

OUTLINE

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

, direct detection Dama/Libra, Xenon, CDMS

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect 6

from annihil in galactic halo or center PAMELA, ATIC, Fermi from annihil in galactic halo or center from annihil in galactic halo or center GAPS $\bar{\nu}$ from annihil in massive bodies Licecube, Km3Net

direct detection

indirect

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes
e from annihil in galactic halo or center PAMELA, ATIC, Fermi
p from annihil in galactic halo or center
• D from annihil in galactic halo or center
• V, V
from annihil in massive bodies

direct detection

production at colliders

from annihil in galactic center or halo and from synchrotron emission

\indirect (

from annihil in galactic halo or center PAMELA, ATIC, Fermi from annihil in galactic halo or center from annihil in galactic halo or center $\bar{\mathcal{V}}$ from annihil in massive bodies

direct detection

production at colliders

from annihil in galactic center or halo and from synchrotron emission

\indirect (

from annihil in galactic halo or center from annihil in galactic halo or center from annihil in galactic halo or center $\bar{\mathcal{V}}$ from annihil in massive bodies

	Galactic Bulge	Norma Arm	
Scutum Arm			Crux Arm
Outer Arm			Carina Arm
			1 - 1
			· · ·
. O*			
•			
Perseus Arm	for an		
·			
Sagittarius Arm		Loca	l Arm
		Sun	

A star part for the

Indirect Detection: basics *p* and *e*⁺from DM annihilations in halo

What sets the overall expected flux? ${
m flux} \propto n^2 \, \sigma_{
m annihilation}$

What sets the overall expected flux? flux $\propto n^2 \sigma_{\rm annihilation}$ astro& particle

What sets the overall expected flux? flux $\propto n^2 \sigma_{\text{annihilation}}$ astro& $\sigma_{v} = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

DM halo profiles

Einasto

From N-body numerical simulations:

$$\rho(r) = \rho_{\odot} \left[\frac{r_{\odot}}{r}\right]^{\gamma} \left[\frac{1 + (r_{\odot}/r_s)^{\alpha}}{1 + (r/r_s)^{\alpha}}\right]^{(\beta - \gamma)/\alpha}$$

Halo model		eta	γ	r_s in kpc
Cored isothermal		2	0	5
Navarro, Frenk, White	1	3	1	20
Moore	1	3	1.16	30

 $r_s = 20 \,\mathrm{kpc}$ $\rho_s = 0.06 \,\mathrm{GeV/cm^3}$

At small r: $ho(r) \propto 1/r^{\gamma}$

$$\rho(r) = \rho_s \cdot \exp\left[-\frac{2}{\alpha}\left(\left(\frac{r}{r_s}\right)^{\alpha} - 1\right)\right]$$

cuspy: NFW, Moore mild: Einasto smooth: isothermal

 $\alpha = 0.17$

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, p^{(-)}, D^{(-)} \dots$

primary channels

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

$W^-, Z, b, \tau^-, t, h \dots \longrightarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ DMprimary
channelsproperty
channels $\cdot W^+, Z, \bar{b}, \tau^+, \bar{t}, h \dots \leftrightarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ DM

So what are the particle physics parameters?

Dark Matter mass
 primary channel(s)

Indirect Detection: hints

positron fraction

antiprotons

10

 $T_{\overline{p}}$ [GeV]

BESS 95+97

BESS 99

BESS 00 Wizard-MASS 91

background

100

CAPRICE 94

CAPRICE 98

PAMELA 08

1000

0.1

0.0

 10^{-}

 10^{-4}

 10^{-5}

10-6

 10^{-}

anti-proton flux $[1/(m^2 \sec \operatorname{sr} \operatorname{GeV})]$

electrons + positrons

Indirect Detection: hints Positrons from PAMELA:

backgnd

steep e⁺ excess
above 10 GeV!
very large flux!

(9430 e⁺ collected) (errors statistical only,

that's why larger at high energy)

Indirect Detection: hints Antiprotons from PAMELA:

- consistent with the background

(about 1000 \bar{p} collected)

Indirect Detection: hints Electrons + positrons adding FERMI and HESS:

[formerly predicted GLAST sensitivity]

- no $e^+ + e^-$ excess - spectrum $\sim E^{-3.04}$
- a (smooth) cutoff?
Indirect Detection: hints

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

Indirect Detection: hints

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

TES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, {\rm cm}^3/{\rm sec}$

Indirect Detection: hints

positron fraction

antiprotons

electrons + positrons

FERMI 2009

ATIC 2008

background?

 10^{2}

 10^{3}

Energy in GeV

Are these signals of Dark Matter?

TES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, {\rm cm}^3/{\rm sec}$

NO: a formidable 'background' for future searches

Indirect Detection: constraints

direct detection

indirect

production at colliders

from annihil in galactic center or halo and from synchrotron emission
Fermi, HESS, radio telescopes
from annihil in galactic halo or center

Indirect Detection: constraints γ from DM annihilations in galactic center

Sagittarius Arm

Perseus Arm

Local Arm

Sun

 \bullet $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM ${}^{lacksymbol{\wedge}}W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM

Perseus Arm

Sagittarius Arm

Local Arm

Sun

 \bullet $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM $V^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \overset{(-)}{p}, \overset{(-)}{D} \dots$ and γ DM

Indirect Detection: constraints b. γ from DM annihilations in Sagittarius Dwarf

- upscatter of CMB, infrared and starlight photons on energetic e^{\pm} - probes regions outside of Galactic Center

isotropic flux of prompt and ICS gamma rays, integrated over z and r
 depends strongly on halo formation details and history

HESS has detected γ -ray emission from Gal Center and Gal Ridge. The DM signal must not excede that.

Moreover: no detection from Sgr dSph => upper bound.

DM DM $\rightarrow \mu^+\mu^-$, NFW profile

The PAMELA +FERMI regions are in conflict with gamma constraints, unless...

Bertone, Cirelli, Strumia, Taoso 0811.3^r

Bertone, Cirelli, Strumia, Taoso 0811.3744

...not-too-steep profile needed.

IsoThermal Profile $m_{\chi} = 3 \text{ TeV}$ DM DM $\rightarrow \tau^+ \tau^ \sigma v = 2 \times 10^{-22} \text{ cm}^3/\text{sec}$ IsoThermal Profile $m_{\chi} = 3 \text{ TeV}$ DM DM $\rightarrow \tau^+ \tau^ \sigma v = 2 \times 10^{-22} \text{ cm}^3/\text{sec}$ Iso Thermal Profile DM DM $\rightarrow \tau^+ \tau^-$ 0

00

õ

Serpi

anci

Jirel

Inverse Compton γ constraints

Cirelli, Panci, Serpico 0912.0663

DM DM $\rightarrow \mu\mu$, Iso profile

Cirelli, Panci, Serpico 0912.0663

FARCH FOR SPECTRAL LINES constraints

Isotropic gamma background

d≤ov>(cm³/s)

10⁻²⁷

Cohen-Tanugi, Farnier, Jeltema, Nuss, Profumo, 1001.4531

WIMP Mass (GeV)

WIMP Mass (GeV)

Gamma hints?

What if a signal of DM is already hidden in Fermi diffuse γ data?

Gamma hints? What if a signal of DM is *already* hidden in Fermi diffuse γ data?

Hutsi, Hektor, Raidal 1004.203

What if a signal of DM is already hidden annihilation, Einasto profile

annihilation, Einasto profile

Hektor, Raida

Hutsi,

Mmm.... A good fit requires [1] careful bkgd subtraction & [2] fitting energy spectra + angular spectra + associated signals.

'Fermi pre-launch estimates', Baltz et al., 0806.2911

above 3 o EGRET

detectable by GLAST

Not detectable by the LAT

m_{Wimp} (GeV/c²)

5 10²

(conventional and optimized

GALPROP models assumptions)

10³

observation

Diffuse galactic gamma (bb channel)

(tt, WW channel)

With a bit of luck, Fermi will see signals.

Indirect Detection: constraints

direct detection

production at colliders

from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect

•

•

•

from annihil in galactic halo or center PAMELA, ATIC, Fermi

- p from annihil in galactic halo or center
- \`D from annihil in galactic halo or center
- : ${}^{\vee}\nu, \nu$ from annihil in galactic center

bonus track: cosmology

DM particles that fit PAMELA+FERMI+HESS produce free electrons

Kanzaki et al., 0907.3985

DM particles that fit PAMELA+FERMI+HESS produce too many free electrons: bounds on optical depth of the Universe violated $\tau = 0.084 \pm 0.016$ (WMAP-5yr) DM DM $\rightarrow \tau \tau$, Einasto profile

see also: Huetsi, Hektor, Raidal 0906.4550 Kanzaki et al., 0907.3985

Cirelli, Iocco, Panci, JCAP 0910

DM particles that fit PAMELA+FERMI+HESS produce too many free electrons: bounds on optical depth of the Universe violated $\tau = 0.084 \pm 0.016$ (WMAP-5yr)

Starts constraining even thermal DM! DM DM $\rightarrow \tau \tau$, Einasto profile

Cirelli, Iocco, Panci, JCAP 0910

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet) Cirelli, Strumia et al. 2005-2009

Tytgat et al. 0901.2556

- More drastic extensions: New models with a rich Dark sector

M.Pospelov and A.Ritz, 0810.1502: Seclude mal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs. 0810.5557: Dirac DM - D.F . 0810.5762: Hidden Sector - T.Hambye. 0811.0172: Hidden Vector - K.Ishiwata. S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387: sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477; Hidden-Gauge-Boson DM - E.Ponton, L.Randall, 0811.1029; Singlet DM - S.Baek, P.Ko, 0811.1646; U(1) Lmu-Ltau DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Muravama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812,0308; sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812,0360; Sommerfeld enhancement in cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs dec ays DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, Zhu, 0812,0964: DMnu from GC - M.Pohl, 0812,1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakavama, 0812,0219: DMnu from GC - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196; SuSy B-L DM - S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374; Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split-UED DM - .Gogoladze, R.Khalid, O.Shafi, H.Yuksel, 0901.0923; cMSSM DM with additions - O.H.Cao, E.Ma, G.Shaughnessy, 0901.1334; Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons -K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z₂ parity - ...

Ibarra et al., 2007-2009 Nardi, Sannino, Strumia 0811.4153 A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

Decaying DM

DM need not be absolutely stable, just $\tau_{\rm DM} \gtrsim \tau_{\rm universe} \simeq 4.3 \ 10^{17} {\rm sec}$.

The current CR anomalies can be due to decay with: $\tau_{\rm decay} \approx 10^{26} {\rm sec}$

Motivations from theory?

- dim 6 suppressed operator in GUT Arvanitaki, Dimopoulos et al., 2008+09 $\tau_{\rm DM} \simeq 3 \cdot 10^{27} \sec \left(\frac{1 \text{ TeV}}{M_{\rm DM}}\right)^5 \left(\frac{M_{\rm GUT}}{2 \cdot 10^{16} \text{ GeV}}\right)^4$
- or in TechniColor

Nardi, Sannino, Strumia 2008

- gravitino in SuSy with broken R-parity...

Indirect Detection \bar{p} and e^+ from DM decay in halo

What sets the overall expected flux? ${\rm flux} \propto n \ \Gamma_{\rm decay}$

 $= \tau_{\rm decay} \approx 10^{26} {
m sec}$ $\Gamma_{\rm decay}^{-1}$

Which DM spectra can fit the data?

0.005

E.g. a fermionic $D_{10} \longrightarrow \mu^+ \mu^-$

E.g. a scalar $DM \rightarrow \mu^+ \mu$

 M_{\star} with $M_{\rm DM} = 3$

TeV:

2003

Veniger

'ran

arra,

Õ

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet) Cirelli, Strumia et al. 2005-2009

Tytgat et al. 0901.2556

- More drastic extensions: New models with a rich Dark sector

M.Pospelov and A.Ritz, 0810.1502: Seclude mal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs. 0810.5557: Dirac DM - D.F . 0810.5762: Hidden Sector - T.Hambye. 0811.0172: Hidden Vector - K.Ishiwata. S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387: sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477; Hidden-Gauge-Boson DM - E.Ponton, L.Randall, 0811.1029; Singlet DM - S.Baek, P.Ko, 0811.1646; U(1) Lmu-Ltau DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Muravama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812,0308; sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812,0360; Sommerfeld enhancement in cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs dec ays DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, Zhu, 0812,0964: DMnu from GC - M.Pohl, 0812,1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakavama, 0812,0219: DMnu from GC - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196; SuSy B-L DM - S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374; Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split-UED DM - .Gogoladze, R.Khalid, O.Shafi, H.Yuksel, 0901.0923; cMSSM DM with additions - O.H.Cao, E.Ma, G.Shaughnessy, 0901.1334; Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons -K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z₂ parity - ...

Ibarra et al., 2007-2009 Nardi, Sannino, Strumia 0811.4153 A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet)

 More drastic extensions: New models with a rich Dark sector
 TeV mass DM
 new forces (that Sommerfeld enhance)

- leptophilic because: - kinematics (light mediator) - DM carries lepton #

- Decaying DM

Ibarra et al., 2007-2009Nardi, Sannino, Strumia 0811.4153A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

The "Theory of DM"

Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713 0811.3641

Basic ingredients:

- χ Dark Matter particle, decoupled from SM, mass $M \sim 700+~{
 m GeV}$
- ϕ new gauge boson ("Dark photon"),
 - couples only to DM, with typical gauge strength, $m_{\phi} \sim \text{few GeV}$
 - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation:

 $\alpha M/m_V\gtrsim 1$ fulfilled

- decays only into e^+e^- or $\mu^+\mu^-$ for kinematical limit

The "Theory of DM"

Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713 0811.3641

Basic ingredients:

- X Dark Matter particle, decoupled from SM, mass $M \sim 700+{
 m GeV}$
- ϕ new gauge boson ("Dark photon"),
 - couples only to DM, with typical gauge strength, $m_{\phi} \sim \text{few GeV}$
 - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation:

 $lpha M/m_V\gtrsim 1$ fulfilled

- decays only into e^+e^- or $\mu^+\mu^-$ for kinematical limit

Extras:

- χ is a multiplet of states and ϕ is non-abelian gauge boson: splitting $\delta M \sim 200~{
 m KeV}$ (via loops of non-abelian bosons)
 - inelastic scattering explains DAMA
 - eXcited state decay $\chi\chi \rightarrow \chi\chi^*$ explains INTEGRAL

 $\hookrightarrow e^+e^-$

The "Theory of DM"

Phenomenology:

Variations

(selected)

pioneering: Secluded DM, U(1) Stückelberg extension of SM

Pospelov, Ritz et al 0711.4866 P.Nath et al 0810.5762

Ξ

Axion Portal: ϕ is pseudoscalar axion-like Nomura, Thaler 0810.5397

singlet-extended UED: χ is KK RNnu, ϕ is an extra bulk singlet $_{\rm Bai,\ Han\ 0811.0387}$

split UED: χ annihilates only to leptons because quarks are on another brane Park, Shu 0901.0720

DM carrying lepton number: χ charged under $U(1)_{L_{\mu}-L_{\tau}}$, ϕ gauge boson Cirelli, Kadastik, Raidal, Strumia 0809.2409 Fox, Poppitz 0811.0399 $(m_{\phi} \sim \text{tens GeV})$

New Heavy Lepton: χ annihilates into Ξ that carries lepton number and decays weakly (~ TeV) (~ 100s GeV) Phalen, Pierce, Weiner 0901.3165

You need a quick **reference** for formulæ and methods to compute indirect detection signals?

You want to compute all **signatures** of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

You want to compute all **signatures** of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

'The Poor Particle Physicist Cookbook for Dark Matter Indirect Direction' **PPPC 4 DM ID**

We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond.

Cirelli, Corcella, Hektor, Hütsi, Kadastik, Panci, Raidal, Sala, Strumia 1012.4515 [hep-ph]

www.marcocirelli.net/PPPC4DMID.html

You want to compute all **signatures** of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

Propagation functions for electrons and positrons everywhere in the Galaxy:

Energy loss coefficient function b[E, r, z] for electrons and positrons in the Galaxy: Mathematica function b.m, refer to the notebook Sample.nb for usage.

Annihilation

Positrons: The file <u>ElectronHaloFunctGalaxyAnn.m</u> provides the halo functions I(x,E_s,r,z) at a point (r,z) in the Galaxy. The notebook <u>Sample.nb</u> shows how to load and use it.

Decay

Positrons: The file <u>ElectronHaloFunctGalaxyDec.m</u> provides the halo functions *I(x,E_s,r,z)* at a point *(r,z)* in the Galaxy The notebook <u>Sample,nb</u> shows how to load and use it.

Propagation functions for charged cosmic rays at the location of the Earth:

Annihilation Positrons:	The file <u>ElectronHaloFunctEarthAnn.m</u> provides the halo functions <i>I(x,E_s,r_{Earth})</i> at the location of the Earth. The notebook <u>Sample.nb</u> shows how to load and use it. Table of fit coefficients for the reduced halo function <i>I(λ)</i>	Decay Positrons:	The file <u>ElectronHaloFunctEarthDec.m</u> provides the halo functions $I(x,E_{s},r_{Earth})$ at the location of the Earth. The notebook <u>Sample.nb</u> shows how to load and use it. Table of fit coefficients for the reduced halo function $I(\lambda)$
Antiprotons	(in the approximated formalism - see paper). <u>Table</u> of fit coefficients for the propagation function R(T).	Antiprotons:	(in the approximated formalism - see paper). <u>Table</u> of fit coefficients for the propagation function R(T).
Antideutero	ons: <u>Table</u> of fit coefficients for the propagation function R(T).	Antideuteron	s: <u>Table</u> of fit coefficients for the propagation function R(T).

Fluxes of charged cosmic rays at the Earth, after propagation:

Annihilation		Decay		
Positrons:	Mathematica function: the file ElectronFluxAnn.m provides the	Positrons:	Mathematica function: the file ElectronFluxDec.m provides the	

www.marcocirelli.net/PPPC4DMID.html

You want to compute all **signatures** of your DM model in positrons, electrons, neutrinos, gamma rays... but you don't want to mess around with astrophysics?

Main added value features:

Image: compare different MCsImage: compare different MCsImage

www.marcocirelli.net/PPPC4DMID.html

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

PAMELA & C. probably was not DM, but it has been fun

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

 E_R

with $f(\vec{v}) \propto e^{-v^2/V_c^2}$ + motion of Earth in (static?)halo

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \, \mathcal{T} \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with
$$f(ec{v}) \propto e^{-v^2/V_c^2}$$
 + motion of Earth in (static?)halo

 E_R

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \, \mathcal{T} \, \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with
$$f(\vec{v}) \propto e^{-v^2/V_c^2}$$
 + motion of Earth in (static?)halo

 E_R

 $\sigma \approx \sigma_n^{\rm SI} A^4 \quad \times \text{nuclear form factors}$

number of events

$$N = \mathcal{E} \, \mathcal{T} \, \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

The Real Property in

P.Salati, proceedings of Cargèse 2007

Background r

Ionization Yield

[credit: B.Sadoulet]

CDMS coll.

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

DAMA/Libra

NaI(T1)

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

Direct Detection: hints DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

An instrumental effect?

Summary of the results obtained in the additional investigations of possible systematics or side reactions (DAMA/LIBRA - NIMA592(2008)297, EPJC56(2008)333)

Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + instrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibration	ns <10 ⁻⁴ cpd/kg/keV
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV

SIDE REACTIONS Muon flux variation measured by MACRO <3×10⁻⁵ cpd/kg/keV

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

An instrumental effect?

Summary of the results obtained in the additional investigations of possible systematics or side reactions (DAMA/LIBRA - NIMA592(2008)297, EPJC56(2008)333)

Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield \rightarrow huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + instrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibration	s <10 ⁻⁴ cpd/kg/keV
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV

SIDE REACTIONS Muon flux variation measured by MACRO <3×10⁻⁵ cpd/kg/keV

NaI(Tl) crystals might be activated by cosmic muons (modulated!) and release pulses minutes/days later. IceDM will test perhaps.

DAMA/Libra

Annual modulation seen (8σ) :

cited 250 times

Ge+Si

DAMA Coll., 0804.2741, 2008

CDMS

CDMS coll., Science 327 (2010), 0912.3592

DAMA/Libra

Annual modulation seen (8σ) :

Edelweiss Ge 1 event seen, with 0.24 exp'd background

Edelweiss coll. PLB 687 (2010), 0912.0805

cited 250/10 = 25 times

DAMA Coll., 0804.2741, 2008
DAMA/Libra

Annual modulation seen (8σ) :

Edelweiss Ge 3 events seen 'background starts to appear'

Edelweiss coll, TeVPA 2010

DAMA Coll., 0804.2741, 2008

cited 250/10 = 25 times

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

CoGeNT Ge 'irreducible excess of bulk events below 3 KeVee'

CoGeNT Coll., 1002.4703

We lack a satisfactorily explanation [...]. It is tempting to consider a cosmological origin [...]. Prudence and past experience prompt us to continue work to exhaust less exotic possibilities.

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

CRESST-II CaWO₄ 32 events seen on Oxygen, with 8.2 exp'd background

Jochum et al., JPPNP 3369, 15.01.2011

adapted from Bottino et al., 0912.4025

Channelling:

if recoiling nucleus is channelled, 'no' energy lost thermally i.e. more scintillation (higher quenching), smaller reconstructed mass

Direct Detection: constraints

adapted from Bottino et al., 0912.4025

Xenon 100 XENON 100 Coll., 1005.0380

11.17 live days no events seen

(preliminary) dark matter exclusion limits

Sorensen, Xenon10 coll., iDM 2010

Footnote: Xenon10 & CDMS w/o background discrimination also impose limits

CDMS coll., 1011.2482

Direct Detection: constraints

adapted from Bottino et al., 0912.4025

ferocious criticism in

Collar & McKinsey, 1005.0838v1, v2, v3

Xenon 100 XENON 100 Coll., 1005.0380

11.17 live days no events seen

scintillation efficiency in LXe

Direct Detection: 'theory'

SM weak scale SI interactions

tree level, scalar

$$\sigma_{\rm SI} \sim \frac{\alpha^2 \ m_N^4}{M_h^6}$$

 $\sigma_{\rm SI} \sim \frac{\alpha^2 \ m_N^2}{M_Z^4}$

 $\sigma_{\rm SI} \sim \frac{\alpha^4 \ m_N^4}{M_0^6}$

Direct Detection: 'theory'

SM weak scale SI interactions

at Collaboration delweiss

Direct Detection: 'theory'

SM weak scale SI interactions

tree level, vector Still viable under which conditions?

tree level, scalar

DM DM[±] DM W W N N

Direct Detection: 'theory'

SM weak scale SI interactions

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)

DM

tree level, scalar

Direct Detection: 'theory' SM weak scale SI interactions Still viable under DM DM tree level, which conditions? N N- real particle (Majorana fermion, real scalar) -hypercharge Y=0DM DM tree level. h Scala] N N

Direct Detection: 'theory'

SM weak scale SI interactions

DM DM Z N

 DM^{\pm}

DΜ

Ν

DM

tree level, vector

tree level, scalar

one loop

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)
- -hypercharge Y = 0
- SD interactions only
- inelastic scattering

Direct Detection: constraints

CDMS coll., Science 327 (2010), 0912.3592

CRESST, Jochum et al., JPPNP 3369, 15.01.2011

10³

OUTLINE

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

The jury is out. Anyway: the parameter space is infinite!

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

indirect

basics hints constraints 'theory' tentative conclusion

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

direct detection

basics hints constraints 'theory' tentative conclusion

production at colliders

production at colliders

Back up slides

The cosmic inventory

Most of the Universe is Dark

 $\Omega_{
m de}\sim 0.72$

- CMB + SNIa - CMB - DM
- acoustic peak in baryons

$$\left(\Omega_x = \frac{\rho_x}{\rho_c}; \text{ CMB first peak} \Rightarrow \Omega_{\text{tot}} = 1 \text{ (flat)}; \text{ HST } h = 0.71 \pm 0.07 \right)$$

000

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"

- gravitation lensing

$\Omega_{\rm M} \sim 0.2 \div 0.4$

1) galaxy rotation curves

Optical X-ray Gas

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

 $\Omega_{\rm M} \sim 0.2 \div 0.4$

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\rm M} \sim 0.2 \div 0.4$

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

 $\Omega_{\rm M} \sim 0.2 \div 0.4$

1) galaxy rotation curves

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

M.Cirelli and A.Strumia, astro-ph/0607086
DM N-body simulations

2 10⁶ CDM particles, 43 Mpc cubic box

DM N-body simulations

2 10⁶ CDM particles, 43 Mpc cubic box

[back]

DM N-body simulations

Millennium: 10¹⁰ particles, 500 h⁻¹ Mpc

[back]

Springel, Frenk, White, Nature 440 (2006)

The Evidence for DM

"catalyse" structure formation)

2006

Liguori

Dodelson,

How would the power spectra be without DM? (and no other extra ingredient)

(in particular: no DM => no 3rd peak!)

The Evidence for DM

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

WMAP-3yrBoomerangACbarDASICBIVSA

SDSS, 2dFRGS LyA Forest Croft LyA Forest SDSS

$|\Omega_{\rm M}\approx 0.26\pm 0.05|$

(spectra w/o DM)

M.Cirelli and A.Strumia, astro-ph/0607086

The Evidence for DM

1) galaxy rotation curves

$\Omega_{\mathrm{M}}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

$\Omega_{\rm M}\approx 0.26\pm 0.05$

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few 0.1})$$

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

(WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

'Astro' uncertainties

[back]

Predictions?!?

Predictions?!?

Predictions?!? Is Dark Matter around the corner?

Predictions?!?

Is Dark Matter around the corner? Look for model-independent 'answers'.

Predictions?!? Is Dark Matter around the corner?

In predictive models, a prediction can be given. In general, generic statements are difficult.

Direct detection:

- experiments are digging into the relevant parameter space
- but the parameter space is huge

Indirect detection:

- need to understand 'background' astrophysics
- new DM models open new avenues with promising signals
- very promising if (Sommerfeld?) enhancement is at play

Predictions?!? Is Dark Matter around the corner? Maybe.

Autor