Report from the NA61/SHINE experiment

Andrzej Rybicki
Eric D. Zimmerman
Alysia D. Marino
for the NA61/SHINE Collaboration

SPSC Open Session
November 22, 2022
NA61/SHINE - Research program

Strong interactions physics

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- heavy quarks: direct measurement of open charm at SPS energies

Neutrino and cosmic ray physics

- hadron measurements for the J-PARC neutrino program
- hadron measurements for the Fermilab neutrino program
- measurements for cosmic ray physics (Pierre-Auger and KASCADE experiments) for improving air shower simulations
- measurements of nuclear fragmentation cross sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy
Detector upgrade: completed

... data taking in progress

- Measurements of charm hadron production for heavy ion physics
- Measurements of nuclear fragmentation cross section for cosmic ray physics
- Measurements of hadron production induced by proton and kaon beams for neutrino physics
NA61/SHINE

Construction of Vertex Detector (VD) for charm decay reconstruction

- New Beam Position Detectors, based on single-sided silicon strip detectors
- New triggers and data acquisition system
- New read-out system based on the DRS4 chip (full waveform is measured and stored)

Replacement of the TPC read-out electronics to increase data rate to 1 kHz

- New Time-of-Flight detectors (MRPC-based)
- New Geometry Reference Chamber (drift velocity meas.)

Upgrade of Projectile Spectator Detector (two detectors, new electronics)
First **physics running** after detector upgrade with a replica of target used to generate neutrinos in the beamline at J-PARC for T2K

- **Very low noise** observed
- Stable operation at **1.6 kHz**
- Over **180 million events** collected in 3 weeks (compared to 10 million in 5 weeks in previous T2K target running)
First **physics running** after detector upgrade with a replica of target used to generate neutrinos in the beamline at J-PARC for T2K

- **Very low noise** observed
- Stable operation at **1.6 kHz**
- Over **180 million events** collected in 3 weeks (compared to 10 million in 5 weeks in previous T2K target running)
Time Projection Chambers

- **New read-out electronics** (based on former ALICE TPC read-out)
- 83Kr gas allows measurement and calibration of TPC response

- Uniformity of electronics is 2x better than before
- Best Kr decay spectrum ever
We got significant help from ALICE-ITS:
Paolo Martinengo, Antonello Di Mauro, Giuseppe De Robertis

- **Key element** of NA61/SHINE charm program
- Active area 4.5 x larger than prototype SAVD detector
- Fast (10 μs) **ALPIDE** pixel sensors, developed for ALICE-ITS and adapted to NA61/SHINE
- **Tested** on a 120 GeV/c proton beam on a 3 mm Pb target
November 2022: data taking with Pb beams

- Out of the requested 9 weeks, four weeks were originally allocated in 2022. This was finally reduced to two weeks, about 6% of the FT running period.
- Commissioning of the entire detector is presently complete.
- Physics data taking for the NA61/SHINE charm program is ongoing.
- Due to reduction of beam time, data taking for cosmic-ray physics had to be canceled.
New results on strong interaction physics

The study of the onsets of deconfinement (OD) and fireball (OF)
The search for the critical point (CP)
Others (O)
New results on strong interactions

Published:

(O) \(\Xi(1530)^0 \) and \(\Xi(1530)^0 \) production in inelastic p+p collisions at 158 GeV/c, *Eur. Phys. J. C 81* (2021) 911

Preliminary:

(O,OD) \(K_s^0 \) production in inelastic p+p collisions at 80 GeV/c

(OD,OF) rapidity spectra of protons in 0-10% central Ar+Sc collisions at 13A-150A GeV/c

(O,CP) femtoscopy analysis in 0-10% central Ar+Sc collisions at 150A GeV/c

(CP) proton intermittency in 0-10% central Pb+Pb collisions at 13A GeV/c

(CP) proton intermittency in 0-10% central Ar+Sc collisions at 13A-75A GeV/c

(CP) higher-order moments of multiplicity and net-charge in 0-1% central Ar+Sc collisions at 75A and 150A GeV/c

(*) Note: for more details, see CERN-SPSC-2022-034
Search for the Critical Point in NA61/SHINE (1): femtoscopy analysis in central Ar+Sc collisions at 150A GeV/c

- Bose-Einstein correlations (femtoscopy) reveal the space-time structure of hadron production
- The Levy parameter α describes the shape of the source and is sensitive to the system freezing out at the CP
- The new Ar+Sc results are close to Gaussian, and far from the CP
Search for the Critical Point in NA61/SHINE (2): proton intermittency

Analysis made for:
- statistically independent data points
- cumulative quantities
- $M=1 \ldots 25000$ bins in the (p_x, p_y) plane

Second Scaled Factorial Moments of protons for Pb+Pb at 13A GeV/c and Ar+Sc at 13A-75A GeV/c show no indication for power-law increase with bin size

If the system freezes-out in the vicinity of the critical point, $F_2(M) \sim M^{\Phi_2}$ should reveal a power-law dependence.
Search for the Critical Point in NA61/SHINE (3): compilation of results on proton intermittency

- Phase diagram indicating chemical freeze-out conditions for the analyzed systems
- Points are shown for the data sets where preliminary results on proton intermittency, obtained using cumulative variables and statistically independent data samples show no indication for the CP
Preliminary rapidity spectra of protons in 0-10% central Ar+Sc collisions at 19A-150A GeV/c

- Insight into the nature of color exchange
- Insight into the EoS of the system
- **Qualitative difference** between small (p+p, Be+Be) and intermediate (Ar+Sc) systems

p+p data: NA61/SHINE, EPJ C 77 (2017) 671
Be+Be data: NA61/SHINE, EPJ C 81 (2021) 73
New results on neutrino and cosmic-ray physics from NA61/SHINE

Neutral Hadrons from p+C @ 120 GeV/c
π+C Interactions at 158 and 350 GeV/c
Nuclear fragments from C+p @ 13.5A GeV/c
New Neutrino Result: Neutral Hadrons from p+C @ 120 GeV/c

- Neutrino beamlines for current and future long-baseline experiments at Fermilab use (and likely will use) 120 GeV/c protons
- First results on production of K^0_s, Λ, $\bar{\Lambda}$ submitted to PRD
- Results in a single angular bin for K^0_s shown above

arXiv:2211.00183 [hep-ex]
New Neutrino Result: Neutral Hadrons from p+C @ 120 GeV/c

- Results in a single angular bin for Λ^0 are shown above
- Results for production of charged hadrons ($\pi^+, \pi^-, K^+, K^-, p$) should be released soon

arXiv:2211.00183 [hep-ex]
New Cosmic-Ray Result: $\pi^{-}+C$ Interactions at 158 and 350 GeV/c

- Production cross section and spectra of π^{\pm}, K^{\pm}, p, \bar{p}, Λ, $\bar{\Lambda}$ and K_{0}^{s}
- **Unique data set** to tune hadronic interaction models for air shower simulations at ultra-high energies
- Constraints on muon production in air showers to understand the "muon puzzle" at ultra-high energies
New Cosmic-Ray Result: Nuclear fragments from C+p @ 13.5A GeV/c

- Pilot run taken to measure the nuclear fragments produced in C+p reactions at 13.5A GeV/c
- New preliminary results in 2022 on the isotopic yields of 11C, 11B and 10B from a pilot run in 2018
- Good agreement with previous studies
- Preparing for upcoming run with higher statistics
A new very-low-energy beam for NA61/SHINE

Charged Hadrons from ~2-20 GeV/c
Opens up many new physics opportunities beyond current program
Low-Energy Hadron Beam

- Discussed in addendum CERN-SPSC-2021-028.
- Potential improvement to T2K/Hyper-K flux estimates
- Very significant reduction in atmospheric neutrino flux errors
- Potential measurements relating to FNAL SBN, spallation sources, muon experiments

L. Cook (Bartol Group) atmospheric neutrino flux

T2K/HyperK wrong-sign flux uncertainties

Preliminary
Low-Energy Hadron Beam

- June 2022 SPSC feedback: “The SPSC recognizes the scientific value of the improvements that the low energy beam line could bring to the knowledge of the neutrino cross sections and recommends that the corresponding technical feasibility be studied in detail.”

- Technical design work has continued, resource requests for installation during 2023-24 YETS
Summary of beam requests from NA61/SHINE

Physics with secondary hadron beams
Physics with lead beams
Physics with oxygen beams
Physics with very-low-energy hadrons
2023

Physics with secondary hadron beams:

- **July 2023**: four weeks of a K^+ beam at 60 GeV/c for thin-target graphite cross-section measurements
- **August 2023**: two weeks of a proton beam at 120 GeV/c for thin-target titanium cross-section measurements
- **September 2023**: one week of hadron beams at different momenta for PSD calibration

Physics with lead beams:

- **September 2023**: one week of a secondary (fragmented) light-ion beam at 13A GeV/c for nuclear fragmentation cross-section measurements
- **September-October 2023**: 6 weeks of Pb beam at 150A GeV/c for charm hadron measurements in Pb+Pb collisions (*)

(*) Note: NA61/SHINE was originally allocated 4 weeks of Pb beam data taking in 2022; NA61/SHINE also requested 5 weeks of Pb beam data taking in 2023; However, NA61 was finally granted only 2 weeks of Pb beam in 2022.
Physics with secondary hadron beams:

- **2024**: four weeks of a 120 GeV/c proton beam for measurements on an LBNF/DUNE prototype target

Physics with lead beams:

- **2024**: five weeks of Pb beam at 150A GeV/c for charm hadron measurements in Pb+Pb collisions
- **2024**: optional (in case the oxygen beam is not available) one week of a secondary light-ion beam at 13A GeV/c for nuclear fragmentation cross-section measurements for cosmic-ray physics
- **2025**: six weeks of Pb beam at 40A GeV/c for charm hadron measurements in Pb+Pb collisions

Physics with oxygen beams:

- **2024**: 12, 8 and 8 days of primary and fragmented oxygen beams at 13A GeV/c, 30A GeV/c and 150A GeV/c, respectively

Physics with very-low-energy hadrons:

- **2024**: one week pilot run to characterize beam
- **2025**: several weeks physics data – studies ongoing to refine beam request
The LS2 upgrade of the detector was successfully completed

First physics data after LS2 were recorded: 180 million p+T2K replica target events

First Pb beam data taking for the NA61/SHINE open charm program is happening this week; compensation next year for the loss of Pb beam in 2022 is critical for the success of the program

New physics results, final and preliminary, were released:
- so far, no convincing evidence for critical point in Ar+Sc and Pb+Pb collisions
- hadron production in p+C interactions
- nuclear fragmentation in C+p reactions

Opportunities for new measurements with the low-energy beams under development

We would like to thank the CERN EP, BE, HSE, and EN Departments for their strong support of NA61/SHINE
NA61++ open workshop, Dec 15-17, 2022

- Workshop to be held at CERN
- Planning for physics beyond LS3
- Please register at https://indico.cern.ch/event/1174830/
The NA61/SHINE Collaboration

The NA61/SHINE Limited Members

Backup
New results on strong interaction physics:

1. NA61/SHINE Collaboration, Measurements of $\Xi(1530)^0$ and $\Xi(1530)^0$ production in proton-proton interactions at $\sqrt{s_{NN}}=17.3$ GeV in the NA61/SHINE experiment, *Eur. Phys. J. C* 81 (2021) 911

New results on neutrino and cosmic ray physics:

In the reported period:

- Open Charm Measurements: Pb-beam schedule and detector upgrade (memorandum), CERN-SPSC-2022-005
- Addendum to the NA61/SHINE Proposal: Request for oxygen beam in Run 3 (addendum), CERN-SPSC-2022-021
- Additional Information concerning the Low Energy Beam project" (memorandum), CERN-SPSC-2022-022

Other:

- Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans, CERN-SPSC-2018-008
- Report from the NA61/SHINE experiment at the CERN SPS, CERN-SPSC-2020-023
- Addendum to the NA61/SHINE Proposal: A Low-Energy Beamline at the SPS H2, CERN-SPSC-2021-028
Selected NA61/SHINE results on the Onsets of Deconfinement and Fireball

Slide taken from A. Marcinek, Quark Matter 2022
Cumulative variables in intermittency analysis

Instead of using p_x and p_y, we use cumulative variables:

$$Q_x = \frac{\int_{x_{\min}}^{x_{\max}} \rho(x)dx}{\int_{x_{\min}}^{x_{\max}} \rho(x)dx}$$

$$Q_y = \frac{\int_{y_{\min}}^{y_{\max}} \rho(x)dy}{\int_{y_{\min}}^{y_{\max}} \rho(x, y)dy}$$

- Transforms any distribution into a uniform distribution (0,1)
- Removes the dependence of $F_2(M)$ on the shape of the single-particle distribution
- The intermittency index of an ideal power-law system described in two dimensions in momentum space was proven to remain approximately invariant after the transformation

For more details, see H. Adhikary, XVth Quark Confinement and Hadron Spectrum, Stavanger, Norway, Aug 2022

Bialas, Gazdzicki, PLB 252 (1990) 483
Antoniou, Diakonos, https://indico.cern.ch/event/818624