SHADOWS

Search for Hidden And Dark Objects With the SPS

INFN-LNF INFN-Ferrara INFN-Bologna University of Bologna CERN Royal Holloway London University of Mainz (excellence cluster) University of Heidelberg Karlsruhe Institute of Technology University of Freiburg **INFN-Naples INFN-** Rome3 Charles University, Prague University of Groningen, The Netherland + the invaluable support of the CBWG, NACONS team, and CERN-DT Depart.

SPSC Open Session – November 2022

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Expression of Interest, January 2022

SHADOWS

Search for Hidden And Dark Objects With the SPS

Expression of Interest

W. Baldini⁽¹⁾, A. Balla⁽²⁾, J. Bernhard⁽³⁾, A. Calcaterra⁽²⁾, V. Cafaro⁽⁴⁾, N. Charitonidis⁽³⁾, A. Ceccucci⁽³⁾, V. Cicero⁽⁴⁾, P. Ciambrone⁽²⁾, H. Danielsson⁽³⁾, A. De Roeck⁽³⁾, F. Duval⁽³⁾, G. D'Alessandro⁽³⁾, G. Felici⁽²⁾, L. Foggetta⁽²⁾, L. Gatignon⁽⁵⁾, A. Gerbershagen⁽³⁾, V. Giordano⁽⁴⁾, G. Lanfranchi⁽²⁾, I. Lax⁽⁴⁾. A. Montanari⁽⁴⁾, R. Murphy⁽³⁾, T. Napolitano⁽²⁾, A. Paoloni⁽²⁾, G. Papalino⁽²⁾, T. Rovelli⁽⁴⁾, A. Saputi⁽²⁾, S. Schuchmann⁽⁶⁾, F. Stummer⁽⁷⁾, G. Torromeo⁽⁴⁾, N. Tosi⁽⁴⁾, A. Vannozzi⁽²⁾. CEKM-262C-5055-006 \ 262C-EOI-055

⁽¹⁾ INFN, Sezione di Ferrara, Ferrara, Italy ⁽²⁾ INFN, Laboratori Nazionali di Frascati, Frascati (Rome), Italy, $^{(3)}$ CERN ⁽⁴⁾ INFN, Sezione di Bologna, Bologna, Italy ⁽⁵⁾ University of Lancaster, Lancaster, UK ⁽⁶⁾ University of Mainz, Germany ⁽⁷⁾ Royal Holloway, University of London, UK

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Letter of Intent, 4 November 2022

SHADOWS Search for Hidden And Dark Objects With the SPS

Letter of Intent

M. Alviggi⁽¹⁾, S. Bachmann⁽²⁾, W. Baldini⁽³⁾, A. Balla⁽⁴⁾, M. Biglietti⁽⁸⁾, V. Büscher⁽¹¹⁾, A. Calcaterra⁽⁴⁾, V. Cafaro⁽⁵⁾, N. Charitonidis⁽⁶⁾, A. Ceccucci⁽⁶⁾ V. Cicero⁽⁵⁾, P. Ciambrone⁽⁴⁾, H. Danielsson⁽⁶⁾, M. Dellapietra⁽¹⁾, A. De Roeck⁽⁶⁾, F. Duval⁽⁶⁾, G. Felici⁽⁴⁾, T. Ferber⁽⁷⁾, L. Foggetta⁽⁴⁾, M. Gatta⁽⁴⁾, A. Gerbershagen⁽¹³⁾, V. Giordano⁽⁵⁾, S. Hansmann-Menzemer⁽²⁾, P. Iengo⁽¹⁾, M. Iodice⁽⁸⁾, K. Jakobs⁽⁹⁾ M. Klute⁽⁷⁾, K. Köneke⁽⁹⁾, M. Koval⁽¹⁰⁾, G. Lanfranchi⁽⁴⁾, A. Laudrain⁽¹¹⁾, I. Lax⁽⁵⁾, B. Leverington⁽²⁾, P. Lichard⁽⁶⁾, K. Massri⁽⁶⁾, A. Montanari⁽⁵⁾, R. Murphy^(6,12), T. Napolitano⁽⁴⁾, F. Neuhaus⁽¹¹⁾, L. J. Nevay⁽⁶⁾ A. Paoloni⁽⁴⁾, G. Papalino⁽⁴⁾, U. Parzefall⁽⁹⁾, S. Ritter⁽¹¹⁾, T. Rovelli^(5,14), A. Saputi⁽³⁾, B. Schmidt⁽⁶⁾, M. Schott⁽¹¹⁾, H.C. Schultz-Coulon⁽²⁾, G. Sekhniaidze⁽¹⁾, F. Stummer^(6,12), G. Torromeo⁽⁵⁾, N. Tosi⁽⁵⁾, U. Uwer⁽²⁾, M. van Dijk⁽⁶⁾, A. Vannozzi⁽⁴⁾, R. Wanke⁽¹¹⁾, C. Weiser⁽⁹⁾, P. Wertelaers⁽⁶⁾, T. Zickler⁽⁶⁾ CERN-SPSC-2022-030 / SPSC-I-256

⁽¹⁾ INFN, Sezione di Napoli, Napoli, Italy ⁽²⁾ Heidelberg University, Heidelberg, Germany ⁽³⁾ INFN. Sezione di Ferrara, Ferrara, Italy ⁽⁴⁾ INFN, Laboratori Nazionali di Frascati, Frascati (Rome), Italy, ⁽⁵⁾ INFN, Sezione di Bologna, Bologna, Italy (6) CERN ⁽⁷⁾ Karlsruhe Institute of Technology, KIT, Germany ⁽⁸⁾ INFN, Sezione di Roma III, INFN, Italy ⁽⁹⁾ University of Freiburg, Freiburg, Germany ⁽¹⁰⁾ Charles University, Prague, Czech Republic ⁽¹¹⁾ University of Mainz, Germany ⁽¹²⁾ Royal Holloway, University of London, UK ⁽¹³⁾ PARTREC and University of Groningen, Groningen, The Netherland ⁽¹⁴⁾ University of Bologna, Bologna, Italy

The Collaboration has doubled in a few months **PS:** since the submission (4 Nov) one more group joined: INFN-Roma1 Introduction to the Physics Case

Evidence for New Physics

Atoms

In Energy chart they are 4%. In number density chart ~ 5 $\times 10^{-10}$ relative to γ

We have no idea about DM number densities. (WIMPs $\sim 10^{-8}$ cm⁻³; axions $\sim 10^{9}$ cm⁻³. Dark Radiation, Dark Forces – Who knows!).

Lack of precise knowledge about nature of dark matter leaves a lot of room for existence of dark radiation, and dark forces – dark sector in general.

•<u>The Search for Feebly Interacting Particles</u>, Pospelov, Schuster, GL, Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313 e-Print: <u>3</u> 2011.02157 [hep-ph]

New IR degrees of freedom = light (e.g. sub-GeV) BSM states

Typical BSM model-independent approach is to include all possible BSM operators once very heavy new physics is integrated out:

 $L_{SM+BSM} = -m_{H}^{2} (H^{+}_{SM}H_{SM}) + \text{all dim 4 terms } (A_{SM}, y_{SM}, H_{SM}) + (W.\text{coeff. } /L^{2}) \times \text{Dim 6 etc } (A_{SM}, y_{SM}, H_{SM}) + \dots \text{ all lowest dimension portals } (A_{SM}, y_{SM}, H, A_{DS}, y_{DS}, H_{DS}) \times \text{ portal couplings } + \text{ dark sector interactions } (A_{DS}, y_{DS}, H_{DS})$ SM = Standard Model

DS – Dark Sector

Golden rule of any EFT approach: first look at low-dim operators !

The Portal Framework

Expand the SM with the minimal set of operators of lowest dimension gauge-invariant and renormalizable (all but the pseudo-scalar).
This guarantees that the theoretical structure of the SM is preserved and any NP is just a simple (natural?) extension of what we already know..

Portal	Coupling
Dark Photon, A_{μ}	$-rac{\epsilon}{2\cos heta_W}F'_{\mu u}B^{\mu u}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Axion, a	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \ \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \ \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$
Sterile Neutrino, ${\cal N}$	$y_N LHN$

PBC-BSM Report, 1901.09966, J. Phys. G47 (2020) 1 The full set of allowed renormalizable interactions for dark sector with SM, consistent with SM Gauge invariance (plus one notable generalization)

They are representative of broad classes of models: Each may predict distinct texture of New Physics interactions: From the portals, the PBC picked up 11 notable benchmark models now widely used

5

What are Feebly-Interacting Particles (FIPs)?

any NP with (dimensional or dimensionless) effective couplings << 1

[The smallness of the couplings can be generated by an approximate symmetry almost unbroken, and/or a large mass hierarchy between particles (as data seem to suggest)]

<u>Fully complementary to high-energy searches.</u> Naturally long-lived.

2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

by the European Strategy Group

European Strategy for Particle Physics recommendations

"4. Other essential scientific activities for particle physics:

- a) The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics.
- This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and <u>searches for axions, dark sector candidates and feebly interacting particles</u>.
- There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. <u>A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy</u>.

What FIPs can provide us: A notable example

1) Thermal DM candidates that extend the WIMP paradigm in the MeV-GeV range

- 2) Ultra-light non thermal DM candidates;
- 3) The simplest theories to explain the origin of CP-symmetry in strong interactions

4) Candidates to explain the origin of neutrino masses and the matter/anti-matter asymmetry in the Universe;

and:

Candidates to address the electro-weak hierarchy problem, possible answers to the flavor puzzle, answers to many astrophysical anomalies,.....

DM available mass range ~ 80 orders of magnitude..

Cosmic Visions, arXiv:1707.04591

Direct Detection DM searches below a few GeV: A vibrant field.

DM direct detection experiments are pushing the exploration down to the neutrino floor in the MeV-GeV range MeV-GeV range is accessible also by accelerator-based experiments.

Light DM with thermal origin with a new light Vector Mediator

(with new forces/interactions the Lee-Weinberg bound can be evaded)

PBC Experiments/projects

https://indico.cern.ch/event/1089151/contributions/4620414/attachments/2358602/4025863/FPC-Dec2021-Lanfranchi.pdf

Experiment	Dataset assumed for sensitivities, beams	Tentative Timescale	References	Benchmarks	Comments
NA64-e	3x10 ¹² eot, electrons, 100 GeV	< LS3 (2025) (approved)	CERN-SPSC-2018-004 ; SPSC-P-348-ADD-2.	BC1, BC2, BC9	Extrapolation from data
FASER	150 fb ⁻¹ , pp@13 TeV	< LS3 (2025) (approved)	arXiv:1812.09139 ; CERN- LHCC-2018-036	BC1, BC9, BC9, BC11	Full simulation ? Bkg included?
NA62-dump	10 ¹⁸ pot, protons 400 GeV	< LS3 (2025) (approved)	CERN-SPSC-2019-039; SPSC-P-326-ADD-1	BC1, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Full simulation, bkg from data
milliQan	3 ab ⁻¹	First run: 2022		BC3	
nTOF	6x10 ¹⁷ pot, protons, 20 GeV	2022-2023	INTC-I_233	BC1	New experiment
NA64-mu	Up to 2x10 ¹³ mot, muons, 160 GeV ~10 ⁷ μ/spill	LS3 (2026) < run < LS4 (2031) Pilot run 11/2021	CERN-SPSC-2019-002 ; SPSC-P-359, CERN-SPSC-2018-024 ; SPSC-P-348-ADD-3 1903.07899, 2110.15111	BC2	Full simulation, Bkg included.
SHADOWS	Phase1: 10 ¹⁹ pot, protons , 400 GeV Phase2: 5 10 ¹⁹ , protons, 400 GeV	LS3 < run < LS4 (2031) LS4 < run < LS5 (2035)	EoI: 2110.08025	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, bkg being estimated using dump data in ECN3

PBC Experiments/projects

Experiment	Dataset assumed for sensitivities, beams	Tentative Timescale	References	Benchmarks	Comments
SHiP	2x10 ²⁰ pot, 400 GeV protons	2037+?	CDS: CERN-SPSC-2019- 049 ; SPSC-SR-263 Progress Report: CERN- SPSC-2019-010	BC1, BC2, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Full simulation, bkg included Based on MC sample: 1.8x10 ⁹ pot, with p>1 GeV from Progress Report, p. 24, CERN- SPSC-2019-010 ; SPSC-SR-248)
KLEVER/NA62 high intensity	A few 10 ¹⁹ pot/year	After LS4 ?	1901.03199	BC4, BC9,	Full simulation, bkg evaluated but not included in results?
CODEX-b	300 fb ⁻¹ , pp@14 TeV	2038 (end of HiLumi) CODEX-beta could start after LS3	EOI: 1911.00481 Background: 1912.03846	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, background evaluated but not included in results?
MATHUSLA	3 ab ⁻¹	2038 (end of HiLumi)	Physics case: <u>1806.07396</u> LoI: <u>1811.00927</u>	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, no bkg (bkg being evaluated with data)
FLArE@FPF	3 ab ⁻¹	2038 (end of HiLumi)	2109.10905	DM via scattering (BC2)	Fast simulation, no bkg
FASER-2@FPF	3 ab-1	2038 (end of HiLumi)	2109.10905	BC1, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Fast simulation, no bkg
FORMOSA@FPF	3 ab ⁻¹	2038 (end of HiLumi)	2109.10905, 2010.07941	BC3	Fast simulation, no bkg
Gamma Factory	Laser on stripped ions (LHC)	Still undefined PoP crucial to understand.	2105.10289 (DP)	BC1, BC6	Fast simulation, no bkg

FIP related experiments/projects @ accelerators beyond PBC

ers		TAD	Detect accurate for	Timeseel	Donohuroula	Allan
	Experiment	LAB	sensitivities, beam	Timescale	Benchmarks	Comments "pproved expe
	DarkQUEST	FNAL	10 ¹⁸ pot, protons, 120 GeV	2022-2023	BC1, BC4, BC5	Depends on the situation of SpinQUEST (QCD)
	LDMX	SLAC	4x10 ¹⁴ eot, electrons 4 GeV 1.6x10 ¹⁵ eot, electrons 8 GeV	2024-2031	Mostly BC2	Full simulation
	SUBMET	JPARC	10 ²² pot, T2K beam, 30 GeV, protons	First run: 2022- 2023	BC3	0.5 M\$ already secured from KOREA; status of simulation?
	LUXE	DESY	XFEL, 16.5 GeV e-, 1.5x10 ⁹ e-/burst; 40 (350) TW optical laser	2025-2026	BC1, BC9, BC10	Fast simulation, no bkg
	mu3e	PSI	Muons, 29 MeV, $10^8 \mu/\text{sec} (10^{10} \mu/\text{sec})$	Phase-1: 2023 Phase-2: 2029	BC1,	Phase-I and phase-II
	PADME	LNF	e+, 500 MeV	running	BC1, BC2, BC9	data
	Belle II	KEK	e ⁺ e ⁻ @ Y(4S); 220 fb ⁻¹ collected, 1 ab ⁻¹ by 2024, 50 ab ⁻¹ by 2031++	running	BC1, BC2, BC64, BC5, BC6, BC7, BC8, BC9, BC10	data
	T2K ND280	KEK	30 GeV proton beam	running	BC6, BC7, BC8	data
	microBooNE	FNAL	Protons, 8 GeV, 10 ²¹ pot	running	BC2 (DM scattering),others?	data
	Dark MESA	Mainz	e-, 155 MeV, 150 uA	2031++?	BC1,	Full simulation?

FIP related experiments/projects @ accelerators: beyond PBC

	t FACET) an							
FIP related experiments/projects @ accelerators: beyond PBC								
Experiment	LAB	Dataset assumed for sensitivities, beam	Timescale	Benchmarks	Comments			
LHCb	CERN	50 fb ⁻¹ (phase I), 300 fb ⁻¹ (phase II)	< 2031 (phaseI) < 2038 (phaseII)	BC1, BC4, BC5	Mass range: 2m(mu) – B (mass). Sensitive mostly to large couplings.			
ATLAS/CMS	CERN	Up to 3 ab ⁻¹	Now – 2038++	BC1, BC4, BC5, BC6, BC7, BC7, BC9, BC10	Mostly sensitive above 10 GeV and large couplings. Below 10 GeV very limited sensitivity.			
Moedal/MAPP	CERN	Up to 3 ab ⁻¹	Now - 2038++					
FACET	CERN	Up to 3 ab-1	HiLumi		Under consideration within CMS			
HyperK near detectors	KEK		??	BC6, BC7, BC8	As T2K-ND280 but larger sample			
DUNE near detectors	FNAL	10 ²² pot (11 years of data taking)	2040++	BC6, BC7, BC8	Several estimates done by theorists.			

Proceedings of the 2020 edition (FIPs 2020) : _ e-Print: 2102.12143 [hep-ph], Eur.Phys.J.C 81 (2021) 11, 1015

Back to SHADOWS.....

Why the ECN3 area?

 Because ECN3/TCC8 has the best 400 GeV primary extracted proton beam line at CERN (and worldwide) and a plethora of hidden sector particles can emerge from interactions of a high-energy proton beam with a dump

- NA62 nominal intensity is $3x10^{12}$ ppp with 4.8s pulse duration: ~ 10^{12} pot/sec, up to $2x10^{18}$ pot/year

✓ K12 beam intensity proposed to be increased by a factor x6-7

- for high intensity K beams and SHADOWS \rightarrow up to 1.2*10¹⁹ pot/year

Physics Experiment	Proton Momentum	¹ SPS Cycle [s]	Proton / pulse	² Pulses / day	Days / year	POT/year
HIKE-Phase1		4.8 / 14.4	1.2 10 ¹³	3000	200	0.72 10 ¹⁹
HIKE-Phase2	400 Gev/c		2.0 10 ¹³			1.2 10 ¹⁹
HIKE-Phase3			2.0 10 ¹³			1.2 10 ¹⁹
HIKE-Dump Mode	400 Gev/c	4.8 / 14.4	³ 2-4 10 ¹³	3000	200	⁴ 5.0 10 ¹⁹
SHADOWS	400 Gev/c	4.8 / 14.4	2.0 10 ¹³	3000	200	1.2 10 ¹⁹
BDF/SHiP	400 Gev/c	1.2 / 7.2	4.0 10 ¹³	5000	200	4.0 10 ¹⁹

EDMS-2791543 (in preparation)

SHADOWS can collect 5x10¹⁹ pot in ~4 years of data taking starting after LS3 (~2028)

SHADOWS in TTC8/ECN3

On the other side of the NA62 blue wall – in the target area (supervised zone)

SHADOWS in TTC8/ECN3

SHADOWS in ECN3/TTC8

SHADOWS detector components:

20 m long, in vacuum decay volume, Muon Veto, Tracking System with a (warm) dipole magnet, Timing layer, Electro-magnetic calorimeter, Iron filter and four Muon Stations.

, 400 GeV

K12 TAX

(DUMP)

SHADOWS can operate when K12 beam line runs in dump-mode

NB: TAX to be replaced in the high-intensity ECN3 era

Why "off-axis" works: Signal

HNL $\rightarrow \pi \mu$ illumination @ first SHADOWS tracking station

FIPs emerging from charm and beauty decays (HNLs, dark scalars, ALPs,...) at the SPS energy are produced with a large polar angle

Why "off-axis" works: Background

NA62 Dump

.......

Most of the residual background emerging from TAXes are muons and neutrinos that are mostly produced forward (and miss SHADOWS acceptance).

NB: muon deep-inelastic scattering IS simulated in SHADOWS MC

SHADOWS Main Idea: Stay close & stay off-axis!

- <u>Stay close to the dump:</u>

to maximise acceptance for signals with a relatively small detector

- <u>Stay off-axis</u> with respect to the beam line: to minimize acceptance for backgrounds (mostly peaked forward) The beam-induced background: the name of the game

Beam-induced background after the dump

Muon illumination as a function of the position along the beamline

The sweeping system: the Magnetized Iron Blocks (MIB)

- 0.00 28

- 0.75 ปี

0.50 5

0.25

-50

-100

-150 -

-200

-300

-200

-100

0

x [cm]

100

200

300

Muon Illumination with the Sweeping System (MIB)

Muon Illumination with the Sweeping System (MIB) at first tracking chamber

Validation of the simulated muon flux with NA62 data

Monte Carlo simulation has been compared against data collected by NA62 in October 2021, when the experiment was successfully operated in beam-dump mode for about 1 week at about 150% the nominal NA62 beam intensity. In this period NA62 collected about 1.5 x10¹⁷ pot

Excellent agreement in shape, the rate is about 3 times lower in MC than in data. MC rates corrected by this factor.

1. Background: Muon Combinatorial

Muon rate without MIB: 100 MHz in acceptance from NA62 data and MC. MIB reduces it to 0.8 MHz (0.5 MHz μ^+ ad 0.3 MHz μ^-)

2. Background: Muon inelastic interactions in dump, MIB and beamline elements

These interactions give signal in the Upstream Veto (UV), form a vertex very close to the boundaries of Decay Volume and do not point back to the impinging point of the proton beam onto the dump. **This will not be the dominant background**....

Non muon background in front of decay vessel

3. Background: Neutrino inelastic interactions in decay volume

Number of inelastic interactions in 20 m long decay volume filled by air at atmospheric pressure, for $< E_{\nu} > ~ 5$ GeV:

$$N_{\nu,\overline{\nu} \text{ inel.int.}}(N_{\text{pot}} = 5 \times 10^{19}) = N_{\nu,\overline{\nu}} \times \varepsilon_{acc} \times P_{\text{inel.int.}} \sim 1.5 \cdot 10^{16} \times 2 \cdot 10^{-15} \sim 30$$

1 mbar vacuum reduces them to < 1 event in 5×10^{19} pot

E 5000 4000

> 3000

2000 1000

NB: Neutrino DIS with detector+beamline material still to be evaluated.

40

SHADOWS physics sensitivity for some standard PBC benchmarks

Standard PBC benchmarks: J. Phys.G 47 (2020) 1, 010501, e-Print: 1901.09966, section 9
SHADOWS Geant4-based Monte Carlo

Validation of toy kinematic distributions with SHADOWS full MC (only Geant hit now, no reconstruction yet)

(PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

Light Dark Scalar mixing with the Higgs (BC4)

(Interesting synergy with HIKE-K⁺ which dominates below K threshold)

(PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

(Interesting synergy with HIKE-K⁺ which dominates below K threshold)

(PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

HNL – single lepton dominance:

Between K and D: SHADOWS is better than CODEX-b and FASER2 with their full dataset.
Between D and B: SHADOWS expands by two-three orders of magnitude wrt current bounds (Belle)
Interesting synergy with HIKE-K+ that dominates below K-mass and with HIKE-dump that covers the part forward.

(PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

HNL – single lepton dominance:
Between K and D: SHADOWS is better than
CODEX-b and FASER2 with their full dataset.
Between D and B: SHADOWS expands by two-three
orders of magnitude wrt current bounds (Belle)
Interesting synergy with HIKE-K+ that dominates below K-mass
and with HIKE-dump that covers the part forward.

(PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

HNL – single lepton dominance:
Between K and D: SHADOWS is better than
CODEX-b and FASER2 with their full dataset.
Between D and B: SHADOWS expands by two-three
orders of magnitude wrt current bounds (Belle)
Interesting synergy with HIKE-K+ that dominates below K-mass
and with HIKE-dump that covers the part forward.

SHADOWS sensitivity to standard PBC benchmarks (PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

Derived from F. Kahlhoefer et al, 2201.05170 (only fixed target/beam dump experiments considered).

SHADOWS (5x10¹⁹ pot) competitive with DUNE for small couplings and extends the mass range towards heavier ALPs and larger couplings.

SHADOWS sensitivity to standard PBC benchmarks (PBC benchmarks: J. Phys.G47 (2020) 1, 010501, e-Print: 1901.09966, section 9)

Derived from F. Kahlhoefer et al, 2201.05170 (only fixed target/beam dump experiments considered).

SHADOWS (5x10¹⁹ pot) competitive with DUNE for small couplings and extends the mass range towards heavier ALPs and larger couplings.

Not only FIPs @ SHADOWS... but also neutrino physics with NaNu @SHADOWS!

Not only FIPs @ SHADOWS... but also neutrino physics with NaNu @SHADOWS!

Not only FIPs @ SHADOWS... but also neutrino physics with NaNu @SHADOWS!

	$\tau \rightarrow e$	$\tau \to \mu$	$\tau \to h(\pi^{\pm})$	$\tau \to 3h(3\pi^{\pm})$	$\bar{\tau} \to e$	$\bar{\tau} \to \mu$	$\bar{\tau} \to h(\pi^{\pm})$	$\bar{\tau} \to 3h(3\pi^{\pm})$
BR	0.17	0.18	0.46	0.12	0.17	0.18	0.46	0.12
Geometrical	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Decay search	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
PID	1.0	0.8	0.9	0.9	1.0	0.8	0.9	0.9
Total Events	50	50	150	40	30	30	100	30
	•				•			

 \mathbf{v}_{τ} interaction events in NaNu (including BRs and efficiencies)

Geant4 simulated v-interactions in NaNu

Detector design: requirements & survey of technology options

SHADOWS Conceptual Design: a standard spectrometer (NA62-like)

Timing Layer

SHADOWS detector components:

20 m long, in vacuum decay volume, an Upstream Veto, a Tracking System with a (warm) dipole magnet, Timing layer, Electro-magnetic calorimeter, a filter and four Muon Stations. Transversal size: 2.5x2.5 m².

SHADOWS Upstream (Muon) Veto: MicroMegas

INFN Napoli, Roma3,...

Requirements:

- 1. efficiency: 99.5%
- 2. time resolution: o(10 ns) (to allow matching with the other detectors)
- 3. position resolution: o(cm) (match the backward extrapolation of tracks)
- 4. rate capability: up to several kHz/cm^2

<u>Proposal</u>: double layer of MicroMegas. Interest from groups who built the ATLAS New Small Wheels (P. Iengo, M. Iodice, & collaborators)

SHADOWS Dipole Magnet and Decay Vessel:

Dipole Magnet and Decay Vessel being designed at CERN (CERN –DT) (**P. Wertelaers, Burkhard Schmidt**, and **CERN-DT department**). Overall detector integration responsibility: **Alessandro Saputi** (INFN-Ferrara)

CERN, INFN-Ferrara...

SHADOWS Tracker: NA62 straws or SciFi

Requirements:

- vertex resolution over 20 m long decay volume: sigma_xy \sim 1 cm
- impact parameter resolution at o(30) m distance: sigma(IP) < few cm
 must operate in vacuum (1 mbar or so).

Two options under scrutiny:

- 1. NA62 STRAW tubes
- 2. Fibre Tracker (LHCb)

[Hans Danielsson (CERN, Project leader of the NA62 Straws) and Prof. Ulrich Uwer (Heidelberg, Project leader of LHCb SciFi) are in SHADOWS

Requirements:

- must identify electrons/photons against muons/hadrons
- π^0 reconstruction (eg: HNL \rightarrow e rho \rightarrow e $\pi^+\pi^0$)
- photon directionality: Important for ALP $\rightarrow \gamma\gamma$
- mild energy resolution: <10% or so for E=0.5-100 GeV
- granularity defined by the minimum distance of two gammas from π^0 decays: o(5-10) cm

Options under scrutiny: Shashlik, PbWO4 (from CMS), CALICE, SplitCal

SHADOWS: Muon Detector

INFN (Frascati, Bologna, Ferrara), ...

Preliminary COST & TIMELINE

SHADOWS: TENTATIVE COST

(to be updated when the detector technologies will be frozen)

Sub-detectors	Possible Technology	very preliminary) cost
Upstream Veto	Micromegas	0.3 M€
Decay Vessel	in vacuum	1 M€
Dipole Magnet	warm	4-5 M€
Tracker	SciFi	$4 \mathrm{M} \oplus$
Timing Layer	small scintillating tiles	0.1-0.2 M€
ECAL	Shashlik	2-3 M€
Muon	scintillating tiles	0.4-0.5 M€
TDAQ & offline	NA62-based	o(1-2) M€
Total SHADOWS	12.4-15.5 M€	
Total NaNu		1.960 €

NB: the cost estimate is based on prices pre-Ukraine war

SHADOWS: TENTATIVE TIME SCHEDULE

- ✓ Jan 2022: SHADOWS EoI to SPSC
- ✓ Nov 2022: SHADOWS LoI to SPSC
- ✓ March 2023: decision about high-intensity beamline upgrade
- Sept-Oct 2023: SHADOWS Proposal
- ▶ End 2023: Decision about SHADOWS.

Conclusions

✓ SHADOWS is a proposed proton beam dump experiment for FIP physics that can be built in ECN3 and take data concurrently to HIKE (operated in beam-dump mode).

✓ SHADOWS ($5x10^{19}$ pot) has similar/better sensitivity than CODEX-b (300 fb⁻¹) and FASER2 (3 ab⁻¹) for FIPs from charm/beauty:

 \Rightarrow It naturally complements HIKE-dump that is mostly sensitive to very forward objects, and HIKE-K that is mostly sensitive to FIPs below the K-mass.

✓ NaNu@SHADOWS can enrich the physics programme with active neutrino physics
 ⇒ it naturally complements FASERnu@LHC and SND@LHC covering a different region in phase space.

✓ ECN3 with SHADOWS+HIKE can become a "hot spot" on worldwide scale for FIP physics after LS3, fully compatible with a superb flavor programme in ECN3.

Preliminary BDF and HIKE prompt dose rates

T6: 1.4*10¹³ p/spill every 14.4 s (63 kW) (~3.1*10¹⁸ POT 2021/22) **T10:** 3.5*10¹² p/spill every 14.4s (16 kW) (~1.1*10¹⁸ POT 2021/22)

BDF

HIKE* w/ NA62 shielding 2*10¹³ p/spill every 14.4 s (90 kW)

*With current NA62 shielding

Preliminary BDF and HIKE prompt dose rates

BDF

HIKE* w/ additional shielding 2*10¹³ p/spill every 14.4 s (90 kW) 10^{14} 1500 Side view 10¹² 1000 Top soil 10^{10} TCC8 H*(10) (µSv/h) 500 10^{8} y (cm) 10^{6} 0 10^{4} Bottom soil -500 Values averaged in x 10² = [-20, 20] wrt. beam axis 100 -1000 1000 2000 3000 0 4000 z (cm)

*With preliminary shielding design as presented at PBC Annual Workshop

The Dark Scalar: SHADOWS vs SHiP

SHADOWS meeting with SHiP people May 2021

https://indico.cern.ch/event/1038458/contributions/4361009/attachments/2247315/3811799/SHADOWS_19May2021.pdf

Comparison of sensitivity: SHADOWS (10¹⁹ pot, 1 year) vs SHiP (2x10²⁰ pot, 5 years)

Comparison between Alexey's and Gaia's estimate: the lower bounds agree within a factor of 2 (some difference due to Alexey's bounds at 95% CL and Gaia's bounds at 90% CL) Still some mismatch in the upper bound between 1 and 2 GeV to be cross-checked. (This region will be covered anyhow by LHCb well before SHiP/SHADOWS)

SHADOWS meeting with SHiP people May 2021

https://indico.cern.ch/event/1038458/contributions/4361009/attachments/2247315/3811799/SHADOWS_19May2021.pdf

Comparison of sensitivity: SHADOWS (5x10¹⁹ pot, 5 years) vs SHiP (2x10²⁰ pot, 5 years)

SHADOWS vs SHiP: similar area covered, just shifted.

Comparison of sensitivity: SHADOWs ($5x10^{19}$ pot, 5 years) vs SHiP ($2x10^{20}$ pot, 5 years)

Sensitivity depends upon:

1. Underlying theory model

(for light dark scalars, there are large non-perturbative effects in the lifetime computation that affect the sensitivity);

2. Geometry

3. Number of protons-on-dump.

Dark Scalars: Branching Fractions

<u>Dark Scalar</u> hadronic widths: a longstanding (non-perturbative) theoretical problem

Winkler, 1809.01876 and references therein (see also Boyarsky et al., 1904.10447)

For Scalar, hadronic decays are dominant immediately above the 2 m(pi) threshold. Non-perturbative resonance effects around 1 GeV due to interference with 4 pi channel

Dark Scalars: Branching Fractions

This peak affects the lifetime that around 1 GeV becomes very short

Dark Scalars: Branching Fractions

Boyarsky et al., 1904.10447 My simulation BR → e⁺e⁻ 0.100 ↑ X ↑ S) 100 $\rightarrow KK$ \cdots S \rightarrow all above 10^{-1} - GG ππ 10⁻² KK --- ss CC ----- 4π 0.001 0.5 5 10 0.1 2 3 0 4 5 $m_{\rm S} \,({\rm GeV/c^2})$ Scalar mass [GeV]

I did not attempt to repeat the non-perturbative calculations (of course!) but I used their findings numerically. I am not considering the $S \rightarrow \tau \tau$ channel for the time being.

Dark Scalars: Lifetime

Plugging together all the partial decay widths I can evaluate the lifetime...

... and I can recover Alexey's computations...

Dark Scalars: Lifetime

...and I can recover Donoghue's computations too..

Sensitivity depends upon:

1. Underlying theory model

(for light dark scalars, there are large non-perturbative effects in the lifetime computation that affect the sensitivity);

2. Geometry

3. Number of protons-on-dump.

For a (relatively) short lived dark scalar, the closer to the dump you go, the more you get.

Lateral view (almost to scale): including distance from the dump

Not only because we sample the lifetime at the very beginning but because we intercept more flux...

Momentum distribution of a light dark scalar

 $\sin^2 \vartheta = 10-8$

M=0.7 GeV

Red: light dark scalar decays between z_{min} and z_{max} Blue: Red + at least two charged tracks in acceptance

SHADOWS acceptance selects low-p candidates, NA62 acceptance high-p (very boosted) candidates

Transverse Momentum distribution of a light dark scalar

M=0.7 GeV $Sin^2 \vartheta = 10-8$

Red: light dark scalar decays between z_{min} and z_{max} Blue: Red + at least two charged tracks in acceptance

SHADOWS acceptance selects high-pT candidates (off-axis), NA62 acceptance low-pT candidates (on-axis & far away)