

CYGNUS: Rare event searches with directional TPCs

Francesco Renga INFN Roma

Dark Matter searches

 Dark matter (DM) detectors in the GeV - TeV range exploit nuclear or electron recoils induced by DM scattering, either with or without background identification

 An unambiguous evidence for Dark Matter observation requires the identification of a peculiar feature **Discrimination** of dark matter **against coherent neutrino scattering** requires the identification of a peculiar feature An **unambiguous evidence** for Dark Matter observation requires the identification of a peculiar feature **Discrimination** of dark matter **against coherent neutrino scattering** requires the identification of a peculiar feature

Earth motion in the DM halo enhances the scattering rate for particles observed in the direction of the earth motion (Cygnus constellation) • An **unambiguous evidence** for Dark Matter observation requires the identification of a peculiar feature **Discrimination** of dark matter **against coherent neutrino scattering** requires the identification of a peculiar feature

Expected rate of DM-induced recoils

C. O'Hare, CYGNUS2019

An **unambiguous evidence** for Dark Matter observation requires the identification of a peculiar feature

Directionality provides a unique tool to assess the Dark Matter origin of an observed signal and in particular to break the neutrino floor

 $Ed\Omega$)

Cygnus

Sun /

Expected rate of DM-induced recoils

C. O'Hare, CYGNUS2019

Ŝ

Very short tracks —> 3 options 1) high granularity 2) strong detector anisotropy 3) tiny statistical effects in isotropic (e.g. columnar recombination) or slightly anisotropic detectors

Very short tracks —> 3 options 1) high granularity **2) strong detector anisotropy** 3) tiny statistical effects in isotropic (e.g. columnar recombination) or slightly anisotropic detectors Channeling in carbon nanotubes (CNTs)

Only electron recoils in a specific direction can be efficiently reconstructed

S. E. Vahsen et al., CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos arXiv:2008.12587

The CYGNUS network connects several • experimental efforts around the world for the search of dark matter with gaseous directional detectors

CYGNUS-HD 40 L (USA) CYGNUS/NEWAGE (Japan)

S. E. Vahsen et al., CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos arXiv:2008.12587

CYGNUS/UNM (USA)

CYGNUS-HD 40 L (USA) CYGNUS/NEWAGE (Japan)

S. E. Vahsen et al., CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos arXiv:2008.12587

S. E. Vahsen et al., CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos arXiv:2008.12587

S. E. Vahsen et al., CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos arXiv:2008.12587

15

Particle identification & energy resolution

Electronic recoil (ER) calibration:

Example: calibration with the 8 keV Cu X-rays

The usual question: can a gaseous target be competitive (in terms of exposure) with liquid or solid targets?

- The typical density of mixtures at atmospheric pressure is O(kg/m³)
- Building a m³-scale (-> kg scale) TPC at atm. pressure is easy and relatively cheap
- 100 m³ (—> 100 kg scale) with extreme uniformity and stability is a standard in collider experiments, is considered for the DUNE near detector and takes not much more than 100 m³ including infrastructures
- Scaling up to several hundreds of m³ (—> ton scale) is not much more difficult or incredibly expensive (depending on readout)

One should not think in terms of density, but in terms of mass and live time achievable with realistic infrastructures

• At the end, space in underground labs and cost of shielding can be the limiting factors

 A worldwide network of experiments for directional rare event searches

CYGNUS-1 m³

Background-free operation down to 0.25 keV $_{\rm r}$ Improve upon WIMP limits for ${<}2~{\rm GeV}$

CYGNUS-10 m^3

Background-free operation down to 0.5 $\rm keV_r$ Best SD-proton limits across all masses

CYGNUS-100 m³ ~1 Solar neutrino per year

CYGNUS-1000 m³ Sensitive to reactor neutrinos $\mathcal{O}(10)$ Solar neutrinos per year

CYGNUS-10k m³ Best SI limits across all masses Detect core-collapse supernova at 8 kpc

CYGNUS-100k m³ 1 order of magnitude below neutrino floor at 9 GeV Measure geoneutrinos

Neutrinos in CYGNUS

Solar neutrinos detection in CYGNUS

- Gaseous TPCs can detect both nuclear and electron recoils induced by neutrinos
- Directional resolution helps
 discriminating backgrounds

20 keV He nuclear recoil

Sensitivity to flux parameters

Solar neutrinos detection in CYGNUS

- Gaseous TPCs can detect both nuclear and electron recoils induced by neutrinos
- Directional resolution helps
 discriminating backgrounds

20 keV He nuclear recoil

Sensitivity to flux parameters

Coherent neutrino scattering in a gaseous TPC

Readout

Field cage

S recoil

Directional resolution helps discriminating backgrounds and allows to study angular dependences in the SM and beyond

Central cathode

•

40 Torr CS_2 + 1 Torr O_2

v beam

Readout

Phys. Rev. D 104, 033004 (2021)

Coherent neutrino scattering in a gaseous TPC

Readout

Field cage

S recoil

Directional resolution helps discriminating backgrounds and allows to study angular dependences in the SM and beyond

Central cathode

•

40 Torr CS_2 + 1 Torr O_2

v beam

Readout

Coherent neutrino scattering in a gaseous TPC

Directional resolution helps discriminating backgrounds and allows to study angular dependences in the SM and beyond

•

24

Conclusions

- Directionality boosts the discovery potential of rare event searches, thanks to a powerful suppression of isotropic backgrounds
- High resolution gaseous TPCs also provide excellent particle identification capabilities for further suppression
- CYGNUS is an international network for the development of gaseous TPCs with directional capabilities
- Both nuclear and electron recoils can be detected and identified:
 - promising applications to neutrino physics (CEvNS, solar neutrinos)