

Outline of the talk

- i. Coherent Elastic v-Nucleus Scattering (CEvNS)
- ii. Light mediators in $CE\nu NS$
- iii. Limits on new light mediators using COHERENT data
- iv. Future perspectives

Presentation based on

Published for SISSA by 🖄 Springer

RECEIVED: March 9, 2022 ACCEPTED: April 16, 2022 PUBLISHED: May 17, 2022

Probing light mediators and $(g-2)_{\mu}$ through detection of coherent elastic neutrino nucleus scattering at COHERENT

M. Atzori Corona,^{*a,b*} M. Cadeddu,^{*b*} N. Cargioli,^{*a,b*} F. Dordei,^{*b*} C. Giunti,^{*c*} Y.F. Li,^{*d,e*} E. Picciau,^{*a,b*} C.A. Ternes^{*c*} and Y.Y. Zhang^{*d,e*,1}

arXiv: <u>2202.11002</u> doi: <u>10.1007/JHEP05(2022)109</u>

- CE*v*NS is a **pure weak neutral current** i. process mediated by a **Z** boson.
- ii. Search for **anomaly free** extensions of the SM (connection with Dark Sectors, Hidden Sectors..)
- iii. Light mediators $\sim MeV - few GeVs$

Rev.Mod.Phys. 81 (2009) 1199-1228

 $SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \rightarrow SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \otimes U(1)'$

To obtain the cross section $Q_{\ell,V}^{SM} \rightarrow Q_{\ell,V}^{SM+V}$ i.

$$Q_{\ell,\mathrm{SM+V}}^{V} = Q_{\ell,\mathrm{SM}}^{V} + \frac{g_{Z'}^{2}Q_{\ell}'}{\sqrt{2}G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)} \left[\left(2Q_{u}' + Q_{d}'\right)ZF_{Z}(|\vec{q}|^{2}) + \left(Q_{u}' + 2Q_{d}'\right)NF_{N}(|\vec{q}|^{2}) \right]$$

Anomal

 $\nu_{\alpha L}$

 $q^2 - m_{Z'}^2$

 $-ig_{Z'}^{\nu_{\alpha}}$

 $-ig_{Z'}^q$

is not anoma

free if the

$$\mathcal{L}_{Z'}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{Z'}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell} V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{i} \overline{\eta} \gamma^{\mu} q \right]$$

- CE*v*NS is a **pure weak neutral current** i. process mediated by a **Z** boson.
- ii. Search for **anomaly free** extensions of the SM (connection with Dark Sectors, Hidden Sectors..)
- iii. Light mediators $\sim MeV - few GeVs$

Rev.Mod.Phys. 81 (2009) 1199-1228

 $SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \rightarrow SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \otimes U(1)'$

To obtain the cross section $Q_{\ell,V}^{SM} \rightarrow Q_{\ell,V}^{SM+V}$ i.

$$Q_{\ell,\mathrm{SM+V}}^{V} = Q_{\ell,\mathrm{SM}}^{V} + \frac{g_{Z'}^{2}Q_{\ell}'}{\sqrt{2}G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)} \left[\left(2Q_{u}' + Q_{d}'\right)ZF_{Z}(|\vec{q}|^{2}) + \left(Q_{u}' + 2Q_{d}'\right)NF_{N}(|\vec{q}|^{2}) \right]$$

Anomal

 $\nu_{\alpha L}$

 $\overline{q^2 - m_{Z'}^2}$

 $-ig_{Z'}^{\nu_{\alpha}}$

 $-ig^q_{Z'}$

free if the

$$\mathcal{L}_{Z'}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{Z'}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \overline{\nu_{\ell}} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{g}^{ij} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{ij} \gamma^{\mu} \gamma^{\mu}$$

- CE*v*NS is a **pure weak neutral current** i. process mediated by a **Z** boson.
- ii. Search for **anomaly free** extensions of the SM (connection with Dark Sectors, Hidden Sectors..)
- iii. Light mediators $\sim MeV - few GeVs$

Rev.Mod.Phys. 81 (2009) 1199-1228

 $SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \rightarrow SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \otimes U(1)'$

To obtain the cross section $Q_{\ell,V}^{SM} \rightarrow Q_{\ell,V}^{SM+V}$ i.

$$Q_{\ell,\rm SM+V}^V = Q_{\ell,\rm SM}^V + \frac{g_{Z'}^2 Q_{\ell}'}{\sqrt{2}G_F\left(|\vec{q}|^2 + M_{Z'}^2\right)} \left[(2Q_u' + Q_d') ZF_Z(|\vec{q}|^2) + (Q_u' + 2Q_d') NF_N(|\vec{q}|^2) \right]$$

Anomaly

 $\nu_{\alpha L}$

 $\overline{q^2 - m_{Z'}^2}$

 $-ig_{Z'}^{\nu_{\alpha}}$

 $-ig^q_{Z'}$

$$\mathcal{L}_{Z'}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$
The universal model is not anomaly free
These models are anomaly free if the SM is extended with right-handed neutrinos

$$\mathcal{L}_{Z'}^{i} NF_{N}(|\vec{q}|^{2})]$$
Anomaly-free
Anomaly-free

- CE*v*NS is a **pure weak neutral current** i. process mediated by a **Z** boson.
- ii. Search for **anomaly free** extensions of the SM (connection with Dark Sectors, Hidden Sectors..)
- iii. Light mediators $\sim MeV - few GeVs$

Rev.Mod.Phys. 81 (2009) 1199-1228

 $SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \rightarrow SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \otimes U(1)'$

To obtain the cross section $Q_{\ell,V}^{SM} \rightarrow Q_{\ell,V}^{SM+V}$ i.

$$Q_{\ell,\rm SM+V}^V = Q_{\ell,\rm SM}^V + \frac{g_Z^2 Q_\ell'}{\sqrt{2}G_F \left(|\vec{q}|^2 + M_Z^2 \right)} \left[(2Q_u' + Q_d') ZF_Z(|\vec{q}|^2) + (Q_u' + 2Q_d') NF_N(|\vec{q}|^2) \right]$$

Anomaly-1

 $\nu_{\alpha L}$

 $\overline{q^2 - m_{Z'}^2}$

 $-ig_{Z'}^{\nu_{\alpha}}$

 $-ig^q_{Z'}$

is not anomaly

$$\mathcal{L}_{Z'}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{Z'}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{q} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{i} \overline{q} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell}} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

$$\mathcal{L}_{e}^{i} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{\ell}^{\nu_{\ell}V} \gamma^{\mu} q \right]$$

Leptophilic models

In the $L_{\alpha} - L_{\beta}$ (where α and β are two leptons flavors) models there is **no direct coupling** between a $L_{\alpha} - L_{\beta}$ gauge boson and quarks

$$\left(\frac{d\sigma}{dT_{nr}}\right)_{L_{\alpha}-L_{\beta}}^{\nu_{\ell}-\mathcal{N}} (E,T_{nr}) = \frac{G_{F}^{2}M}{\pi} \left(1 - \frac{MT_{nr}}{2E^{2}}\right) \\ \times \left\{ \left[g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2})\right\}^{2} \\ \left[\begin{array}{c} g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\beta}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}\right)} \\ g_{V}^{p}\left(1 + M_{Z'}^{2}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\beta}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\beta\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}\right)} \\ g_{V}^{p}\left(1 + M_{Z'}^{2}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\alpha\beta}(|\vec{q}|) + \delta_{\beta}\varepsilon_{\beta\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}\right)} \\ g_{V}^{p}\left(1 + M_{Z'}^{2}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\alpha\beta}(|\vec{q}|) + \delta_{\beta}\varepsilon_{\beta\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}\right)} \\ g_{V}^{p}\left(1 + M_{Z'}^{2}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\alpha\beta}(|\vec{q}|) + \delta_{\beta}\varepsilon_{\beta\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}\right)} \\ g_{V}^{p}\left(1 + M_{Z'}^{2}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\alpha\beta}(|\vec{q}|) + \delta_{\beta}\varepsilon_{\beta\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(1 + M_{Z'}^{2}$$

Leptophilic models

In the $L_{\alpha} - L_{\beta}$ (where α and β are two leptons flavors) models there is **no direct coupling** between a $L_{\alpha} - L_{\beta}$ gauge boson and quarks

$$\left(\frac{d\sigma}{dT_{nr}}\right)_{L_{\alpha}-L_{\beta}}^{\nu_{\ell}-\mathcal{N}} (E,T_{nr}) = \frac{G_{F}^{2}M}{\pi} \left(1 - \frac{MT_{nr}}{2E^{2}}\right) \\ \times \left\{ \left[g_{V}^{p}\left(\nu_{\ell}\right) + \frac{\sqrt{2}\alpha_{\rm EM}g_{Z'}^{2}\left(\delta_{\ell\alpha}\varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta}\varepsilon_{\alpha\beta}(|\vec{q}|)\right)}{\pi G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)}\right] ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2}) \right\}^{2} \\ \left[\begin{array}{c} 0 & 10^{5} \\ 0 & 10^{4} \\ Vector, g_{z}=2\times10^{3}, M_{Z'}=10 \text{ MeV} \\ Vector, g_{z}=2\times10^{3}, M_{Z'}=10 \text{ MeV} \\ 0 & 10^{4} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{4} \\ 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\ T_{nr} \text{ keV} \end{array} \right]$$

The coupling between neutrinos and quark is due to 1-loop effects
$$\int_{Z'}^{\nu} Phys. Rev. D 104, 015015 \qquad \nu$$

The scalar mediator case

- The interaction can be mediated by a scalar field ϕ
- We assume a scalar boson with $g^d_\phi = g^u_\phi \doteq g^q_\phi$ and $g^{\nu_e}_\phi = g^{\nu_\mu}_\phi \doteq g^{\nu_\ell}_\phi$
- The contribution of the scalar boson to $CE\nu NS$ is incoherent

JHEP 05 (2018) 066

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}} = \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}\right)_{\rm SM} + \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}\right)_{\rm scalar}$$

$$(A,Z) \qquad (I=I^2)^{1/2}$$

The scalar mediator case

- The interaction can be mediated by a scalar field ϕ
- We assume a scalar boson with $g^d_{\phi} = g^u_{\phi} \doteq g^q_{\phi}$ and $g^{\nu_e}_{\phi} =$ $g_{\phi}^{\nu_{\mu}} \doteq g_{\phi}^{\nu_{\ell}}$
- The contribution of the scalar boson to $CE\nu NS$ is incoherent

JHEP 05 (2018) 066

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}} = \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}\right)_{\rm SM} + \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}\right)_{\rm scalar}$$

The scalar mediator case
the interaction can be mediated by a scalar field
$$\phi$$

the assume a scalar boson with $g_{\phi}^{d} = g_{\phi}^{u} \doteq g_{\phi}^{q}$ and $g_{\phi}^{v_{e}} =$
 $g_{\phi}^{\mu} \doteq g_{\phi}^{\nu_{\ell}}$
the contribution of the scalar boson to CEvNS is incoherent
 $JHEP 05 (2018) 066$
 $\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{nr}} = \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{nr}}\right)_{SM} + \left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{nr}}\right)_{scalar}$
 $\left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{nr}}\right)_{scalar} = \frac{M^{2}T_{nr}}{4\pi E^{2}} \frac{\left(\overline{g}_{\phi}^{4}\right)^{2}}{\left(|\overline{q}|^{2} + |M_{\phi}^{2}|\right)^{2}} \left(\left(\frac{\sigma_{\pi N}}{\overline{m}_{ud}}\right)_{ref}^{2} \left[ZF_{Z}(|\overline{q}|^{2}) + NF_{N}(|\overline{q}|^{2})\right]^{2}$

Reference value of $\sim 17,3^{Phys. Rev. Lett. 115, 092301}_{Particle Data Group, PTEP 2022, 083C01 (2022)}$

Motivation

Muon g-2 experiment (FNAL) confirmed in 2021 the longstanding deviation of the experimental determination of a_{μ} (BNL in 2004) (Muon g-2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021) Phys. Rev. D 73, 072003

World average gives $\Delta a_{\mu} = 251(59) \times 10^{-11}$

 $\sqrt{2}$

Muon anomalous magnetic moment $(g-2)_{\mu}$

$$a_{\mu} = (g-2)_{\mu}/2 \qquad \mu$$

Possible explanation with additional Z' boson

A neutral gauge boson with mass M_B that couples with the muon (coupling g_B) contributes to the muon anomalous magnetic moment through

Phys.Rev.D 104 (2021) 1, 011701

$$\delta a^B_\mu = \frac{g^2_B}{8\pi^2} \int_0^1 dx \, \frac{Q(x)}{x^2 + (1-x) M_B^2 / m_\mu^2}$$
$$Q(x) = \begin{cases} x^2 \, (2-x) & \text{(scalar)} \\ 2x^2 \, (1-x) & \text{(vector)} \end{cases}$$

Neutrino produced by pion decay the SNS. Pulsed beam \rightarrow improved background rejection!

18

Neutrino produced by pion decay the SNS. Pulsed beam \rightarrow improved background rejection!

19

Methods and data

CsI data

- 14.6 kg cesium-iodide (CsI) low-threshold detector (~ 6 keV_{nr}) 19.6 m from the SNS target observed for the first time CE ν NS in 2017. Science 357 (2017) 6356
- October 2021 new data release of the CsI detector with twice the statistics, new quenching factor, and. new determination of arrival time distribution.
- Observed data reject the no-CEvNS hypothesis at 11.6 $\sigma.$
- Data fitted with a Poissonian definition of the least square function

LAr data

Phys.Rev.Lett. 129 (2022) 8, 081801

+ Data Residual

V_e CEvNS

□∇_µ CEvNS

V, CEVNS

BRN + NIN

Methods and data

CsI data

- 14.6 kg cesium-iodide (CsI) low-threshold detector (~ 6 keV_{nr}) 19.6 m from the SNS target observed for the first time CE ν NS in 2017. Science 357 (2017) 6356
- October 2021 new data release of the CsI detector with twice the statistics, new quenching factor, and. new determination of arrival time distribution.
- Observed data reject the no-CEvNS hypothesis at 11.6 $\sigma.$
- Data fitted with a Poissonian definition of the least square function

LAr data

- Observation of CEvNS in 2020 with 24 kg LAr detector 27.5
 m from SNS target
- Single phase detector with $20\;keV_{nr}$ threshold
- 3.5 σ significance
- Data fitted using the prescription provided in <u>https://zenodo.org/record/3903810#.ZBNRmHbMIQ8</u>
- New data expected soon!

Phys.Rev.Lett. 129 (2022) 8, 081801

Phys.Rev.Lett. 126 (2021) 1, 01200213

Data Residual

v_e CEvNS

 $\Box \overline{v}_{\mu} CEvNS$

V_{II} CEVNS

t___ (μs)

BRN + NIN

Universal model

- Same coupling to all SM fermions
- Improved constraints for 20< $M_{Z\prime}$ <200 MeV and 2 \times $10^{-5} {<} g_{Z\prime} < 10^{-4}$
- $(g-2)_{\mu}$ excluded

B-L

- Quark charge $Q_q = 1/3$; Lepton charge $Q_\ell = -1$
- Improved constraints for $10{<}M_{z\prime}{<}200$ MeV and $5\times10^{-5}{<}g_{z\prime}<3\times10^{-4}$
- $(g-2)_{\mu}$ excluded

See JHEP 04 (2020) 054 (JHEP 05 (2022) 085) for the CONNIE (CONUS) limits

Universal model

- Same coupling to all SM fermions
- Improved constraints for 20< $M_{Z\prime}$ <200 MeV and 2 \times $10^{-5} {<} g_{Z\prime} < 10^{-4}$
- $(g-2)_{\mu}$ excluded

B-L

- Quark charge $Q_q = 1/3$; Lepton charge $Q_\ell = -1$
- Improved constraints for $10 < M_{z'} < 200$ MeV and $5 \times 10^{-5} < g_{z'} < 3 \times 10^{-4}$
- $(g-2)_{\mu}$ excluded

See JHEP 04 (2020) 054 (JHEP 05 (2022) 085) for the CONNIE (CONUS) limits

Universal model

- Same coupling to all SM fermions
- Improved constraints for 20< $M_{Z\prime}$ <200 MeV and 2 \times $10^{-5} {<} g_{Z\prime} < 10^{-4}$
- $(g-2)_{\mu}$ excluded

10.1007/JHEP05(2022)109

B-L

- Quark charge $Q_q = 1/3$; Lepton charge $Q_\ell = -1$
- Improved constraints for $10 < M_{z'} < 200$ MeV and $5 \times 10^{-5} < g_{z'} < 3 \times 10^{-4}$
- $(g-2)_{\mu}$ excluded

Universal model

- Same coupling to all SM fermions
- Improved constraints for 20< $M_{z\prime}$ <200 MeV and 2 \times $10^{-5} {<} g_{z\prime} < 10^{-4}$
- $(g-2)_{\mu}$ excluded

B-L

- Quark charge $Q_q = 1/3$; Lepton charge $Q_\ell = -1$
- Improved constraints for $10 < M_{z'} < 200$ MeV and $5 \times 10^{-5} < g_{z'} < 3 \times 10^{-4}$
- $(g-2)_{\mu}$ excluded

10.1007/JHEP05(2022)109

$B-2L_e-L_\mu$

- $Q_q = 1/3; Q_e = -2; Q_\mu = -1$
- Improved constraints for $10 < M_{z'} < 100$ MeV and $5 \times 10^{-5} < g_{z'} < 2 \times 10^{-4}$
- $(g-2)_{\mu}$ excluded

$B-L_e-2L_\mu$

- Improved constraints for $20 < M_z$, <200 MeV and $3 \times 10^{-5} < g_z$, < 3×10^{-4}
- $(g-2)_{\mu}$ excluded

Scalar mediator

- Very strong limits with CE ν NS for $M_{\phi} > 2$ MeV
- $(g-2)_{\mu}$ excluded

$L_{\mu}-L_{\tau}$

- Coupling only to μ and τ flavor $Q_{\mu} = 1; Q_{\tau} = -1$
- One of the most popular model because $(g 2)_{\mu}$ band is not excluded and for its connection with Cosmology and other anomalies.
- At the moment CEvNS limits are not competitive!
- The situation will change in the future thanks to the COH-Cryo-CsI-I and COH-Cryo-CsI-II detector !

The COHERENT Experimental Program arXiv:2204.04575

JHEP 03 (2019) 071 E.P.J. C 82, 480 (2022) arXiv:2104.15136 arXiv:2302.03571 arXiv:2303.09751

See also Jason Newby's talk and Keyu Ding's poster for more details on the future of COHERENT!

$L_{\mu}-L_{\tau}$

- Coupling only to μ and τ flavor $Q_{\mu} = 1; Q_{\tau} = -1$
- One of the most popular model because $(g 2)_{\mu}$ band is not excluded and for its connection with Cosmology and other anomalies.
- At the moment CEvNS limits are not competitive!
- The situation will change in the future thanks to the COH-Cryo-CsI-I and COH-Cryo-CsI-II detector !

The COHERENT Experimental Program arXiv:2204.04575

JHEP 03 (2019) 071 E.P.J. C 82, 480 (2022) arXiv:2104.15136 arXiv:2302.03571 arXiv:2303.09751

See also Jason Newby's talk and Keyu Ding's poster for more details on the future of COHERENT!

 We present a review on the constraints on light mediator models obtained from the analysis of the latest COHERENT LAr and CsI data obtained in JHEP 05 (2022) 109

- We present a review on the constraints on light mediator models obtained from the analysis of the latest COHERENT LAr and CsI data obtained in JHEP 05 (2022) 109
- Comparison with non-CE ν NS constraints and with $(g-2)_{\mu}$ allowed region
- We obtained very strong and competitive limits on various hadrophylic models (universal, B-L, etc ...)

- We present a review on the constraints on light mediator models obtained from the analysis of the latest COHERENT LAr and CsI data obtained in JHEP 05 (2022) 109
- Comparison with non-CE ν NS constraints and with $(g-2)_{\mu}$ allowed region
- We obtained very strong and competitive limits on various hadrophylic models (universal, B-L, etc ...)
- We discussed the **lephtophylic** models focusing on the popular $L_{\mu} L_{\tau}$ gauge symmetry (CE ν NS constraints are not competitive)
- We discussed the **potentiality of confirming/excluding** the explanation of $(g-2)_{\mu}$ with a $L_{\mu} L_{\tau}$ gauge boson with the future COH-Cryo-CsI detector.

- We present a review on the constraints on light mediator models obtained from the analysis of the latest COHERENT LAr and CsI data obtained in JHEP 05 (2022) 109
- Comparison with non-CEvNS constraints and with $(g-2)_{\mu}$ allowed region
- We obtained very **strong** and **competitive limits** on various **hadrophylic** models (universal, B-L, etc ...)
- We discussed the **lephtophylic** models focusing on the popular $L_{\mu} L_{\tau}$ gauge symmetry (CEvNS constraints are not competitive)
- We discussed the **potentiality of confirming/excluding** the explanation of $(g-2)_{\mu}$ with a $L_{\mu} L_{\tau}$ gauge boson with the future COH-Cryo-CsI detector.
- We foresee that the complementarity with $CE\nu NS$ reactor experiments will be crucial to test some of these models.

Z' boson

Thanks for your attention!

Backup Slides

Links

1-70

hao 2x4th

Radiative corrections for $CE\nu NS$

In our analyses we adopted the $\overline{\text{MS}}$ scheme to compute the more accurate values of the couplings g_V^p and g_V^n .

Prog. Part. Nucl. Phys. 71, 119 (2013)

$$g_V^{\nu_\ell p} = \rho \left(\frac{1}{2} - 2\hat{s}_0^2\right) + 2 \boxtimes_{WW} + \square_{WW} - 2 \varnothing_{\nu_\ell W} + \rho (2 \boxtimes_{ZZ}^{uL} + \boxtimes_{ZZ}^{dL} - 2 \boxtimes_{ZZ}^{uR} - \boxtimes_{ZZ}^{dR})$$

$$g_V^{\nu_\ell n} = -\frac{\rho}{2} + 2 \square_{WW} + \boxtimes_{WW} + \rho (2 \boxtimes_{ZZ}^{dL} + \boxtimes_{ZZ}^{uL} - 2 \boxtimes_{ZZ}^{dR} - \boxtimes_{ZZ}^{uR})$$

Neutrino Charge Radius (Flavour dependent!) $\mathscr{A}_{\nu_{\ell}W} = -\frac{\alpha}{6\pi} \left(\ln \frac{M_W^2}{m_{\ell}^2} + \frac{3}{2} \right)$

Z' couplings for vector boson mediators

Vector part of the Standard model weak neutral-current Lagrangian

$$\mathcal{L}_{Z}^{V} = -\frac{g}{2\cos\vartheta_{\mathrm{W}}} Z_{\mu} \left[2g_{V}^{\nu} \sum_{\ell=e,\mu,\tau} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{V}^{q} \overline{q} \gamma^{\mu} q \right] \text{ with } g_{V}^{\nu} = \frac{1}{2}, \quad g_{V}^{u} = \frac{1}{2} - \frac{4}{3} \sin^{2}\vartheta_{\mathrm{W}}, \quad \text{and} \quad g_{V}^{d} = -\frac{1}{2} + \frac{2}{3} \sin^{2}\vartheta_{\mathrm{W}}$$

Lagrangian for the interaction of a Z' vector boson with neutrinos and quarks $\mathcal{L}_{Z'}^V = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$

Confronting the two Lagrangians, one can see that the Z' vector interation of the left-handed neutrinos with quarks is obtained from the vector part of the Standard Model neutral-current interaction with the substitutions

The total amplitude is given by the sum of the two diagrams

Conditions for anomaly freedom for U(1)'vector boson mediators

If the SM is extende with RH neutrinos there is an infinite set of anomaly-free U(1)' gauge groups generated by

 $G(c_1, c_2, c_3, c_e, c_\mu, c_\tau) = c_1 B_1 + c_2 B_2 + c_3 B_3 - c_e L_e - c_\mu L_\mu - c_\tau L_\tau$ Baryon numbers of the Lepton number for 10^{3} three generations events /keV/kg different flavors Standard Model 10^{4} Vector, $g_{Z'} = 10^{-4}$, $M_{Z'} = 10 \text{ MeV}$ The condition for anomaly freedom is $c_1 + c_2 + c_3 - c_e - c_\mu - c_ au = 0$ 10^{-10} Universal $-B_v + L_{\mu} + L_{\tau}$ $- \cdot B - L$ 10 To avoid unobserved flavor changing neutral $- \cdot B - 3L_{o}$ $- \cdot B - 3L_{\mu}$ $\cdot B - 2L_e - L_{\mu}$ $- B - L_e - 2L_\mu$ currents in the quark sector it is always assumed that $c_1 = c_2 = c_3 \doteq c_B$. The condition for anomaly freedom is 10^{-} 10^{-2} $3c_B - c_e - c_\mu - c_\tau = 0$ 10^{-3}

10

15

20

25

30

35

40

45

 T_{nr} keV

 $B = B_1 + B_2 + B_3$ is the usual baryon number

50

Additional information on the scalar model $\mathcal{L}_{\phi}^{S} = -\phi \left| \sum_{\ell=e,\mu,\tau} g_{\phi}^{\nu_{\ell}} \overline{\nu_{\ell}} + \sum_{q=u,d} g_{\phi}^{q} \overline{q} q \right|$

The helicity-flipping interactions mediated by a scalar boson contribute incoherently to CEvNS $\left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\mathrm{nr}}}\right)_{\mathrm{scalar}} = \frac{M^2 T_{\mathrm{nr}}}{4\pi E^2} \frac{(g_{\phi}^{\nu_{\ell}})^2 \mathcal{Q}_{\phi}^2}{(|\vec{q}|^2 + M_{\phi}^2)^2}$

In this model, the **weak charge** of the nucleus is given by $\mathcal{Q}_{\phi} = ZF_Z(|\vec{q}|^2) \sum_{q=u,d} g_{\phi}^q \langle p|\bar{q}q|p \rangle + NF_N(|\vec{q}|^2) \sum_{q=u,d} g_{\phi}^q \overline{\langle n|\bar{q}q|n \rangle}$

Under the assumptions that $g^u_{\phi} = g^d_{\phi} \doteq g^q_{\phi} \ \ \mathcal{Q}_{\phi} = g^q_{\phi} \left[ZF_Z(|\vec{q}|^2) \langle p|\bar{u}u + \bar{d}d|p \rangle + NF_N(|\vec{q}|^2) \langle n|\bar{u}u + \bar{d}d|n \rangle \right]$

Under the isospin approximation: $\langle p|\bar{u}u + \bar{d}d|p \rangle = \langle n|\bar{u}u + \bar{d}d|n \rangle = \langle N|\bar{u}u + \bar{d}d|N \rangle = \frac{\sigma_{\pi N}}{\overline{m}_{ud}}$

$$\tilde{g}_{\phi}^2 = g_{\phi}^{\nu_{\ell}} g_{\phi}^q \frac{\sigma_{\pi N} / \overline{m}_{ud}}{(\sigma_{\pi N} / \overline{m}_{ud})_{\text{ref}}} \quad \overline{m}_{ud} = (m_u + m_d)/2$$

After all these approximations we obtain the scalar contribution to the cross section as

$$\left[\left(\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}} \right)_{\rm scalar} = \frac{M^2 T_{\rm nr}}{4\pi E^2} \frac{\tilde{g}_{\phi}^4}{(|\vec{q}|^2 + M_{\phi}^2)^2} \left(\frac{\sigma_{\pi N}}{\overline{m}_{ud}} \right)_{\rm ref}^2 \left[ZF_Z(|\vec{q}|^2) + NF_N(|\vec{q}|^2) \right]^2 \right]$$

 $\sigma_{\pi N}$ is the pion nucleon σ -term that has been determined in literature (pionic atoms and pion-nucleon scattering, lattice calculations)

Leptophilic models

In the $L_{\alpha} - L_{\beta}$ (where α and β are two leptons flavors)models there is **no direct coupling** between a $L_{\alpha} - L_{\beta}$ gauge boson and quarks

Statistical analysis

Statistical analysis

See COHERENT Collaboration data release from the first detection of coherent elastic neutrino-nucleus scattering on argon for more informations.

$$\eta_{zl,ij}^{\rm sys} = \epsilon_{zl} \, \frac{N_{zl,ij}^{\rm sys} - N_{zl,ij}^{\rm CV}}{N_{zl,ij}^{\rm CV}}$$

z = 1,2,3,4 stands for the CE ν NS theoretical prediction, SS, prompt BRN (PBRN), delayed BRN (DBRN) backgrounds.

$$\sigma_{CE\nu NS} = 0.13$$

$$\sigma_{PBRN} = 0.32$$

$$\sigma_{DBRN} = 1$$

$$\sigma_{SS} = 0.0079$$

Additional constraints on light mediators

10.1007/JHEP05(2022)109

- Improved constraints for $30 < M_z$, <200 MeV and 7 × $10^{-5} < g_{z'} < 3 \times 10^{-4}$
- $(g-2)_{\mu}$ excluded

 $B_{\gamma} + 2L_{\mu} + L_{\tau}$

Improved constraints for $30 < M_z$, <100 MeV and 5 × $10^{-5} < g_{z'} < 10^{-4}$

 $B - 3L_e$

No possible explanation of $(g-2)_{\mu}$

 $B - 3L_{\mu}$

 10^{-10}

 10^{-}

Constraints not improved

 10^{-1}

 10^{0}

OSC

 10^{-2}

 $B - 3L_{\mu}$ vector boson

CsI+A

 $M_{Z'}$ [GeV]

 10^{1}

Additional constraints on light mediators

10.1007/JHEP05(2022)109

L_e - L_{τ} vector boson 6 10^{-2} 10^{-3} BaBar (q-2),E774 10^{-4} NA64 Csl E141 KEK OSC CsI+Ar 10^{-1} 10^{0} $M_{Z'}$ [GeV]

$L_e - L_\mu$

- No Improved constraints
- $(g-2)_{\mu}$ excluded

$L_e - L_\tau$

- No Improved constraints
- No possible explanation explanation of $(g-2)_{\mu}$

Summary of constraints

2 σ constraints for the low and high mass approximations

- Low mass $\propto g'$
- High mass $\propto g'/M$

10.1007/JHEP05(2022)109

	Ar		CsI		CsI+Ar	
model	$g_{Z'}(\text{low } M_{Z'})$	$\frac{g_{Z'}}{M_{Z'}} \text{(high } M_{Z'}\text{)}$	$g_{Z'}(\text{low } M_{Z'})$	$\frac{g_{Z'}}{M_{Z'}}$ (high $M_{Z'}$)	$g_{Z'}(\text{low } M_{Z'})$	$\frac{g_{Z'}}{M_{Z'}} (\text{high } M_{Z'})$
universal	3.91×10^{-5}	0.82×10^{-3}	2.36×10^{-5}	0.53×10^{-3}	2.07×10^{-5}	0.48×10^{-3}
B-L	$5.35 imes 10^{-5}$	1.67×10^{-3}	$5.27 imes 10^{-5}$	1.00×10^{-3}	4.42×10^{-5}	0.99×10^{-3}
$B_y + L_\mu + L_\tau$	10.4×10^{-5}	3.58×10^{-3}	4.97×10^{-5}	1.14×10^{-3}	$4.47 imes 10^{-5}$	1.04×10^{-3}
$B - 3L_e$	4.91×10^{-5}	1.55×10^{-3}	$5.16 imes 10^{-5}$	0.96×10^{-3}	4.34×10^{-5}	0.95×10^{-3}
$B - 3L_{\mu}$	$3.45 imes 10^{-5}$	1.09×10^{-3}	$3.21 imes 10^{-5}$	0.64×10^{-3}	$2.76 imes 10^{-5}$	0.63×10^{-3}
$B - 2L_e - L_\mu$	4.62×10^{-5}	1.48×10^{-3}	4.79×10^{-5}	0.89×10^{-3}	3.95×10^{-5}	0.88×10^{-3}
$B - L_e - 2L_\mu$	$3.97 imes 10^{-5}$	1.28×10^{-3}	3.86×10^{-5}	0.75×10^{-3}	3.26×10^{-5}	0.74×10^{-3}
$L_e - L_\mu$	$161 imes 10^{-5}$	54.2×10^{-3}	166×10^{-5}	36.1×10^{-3}	137×10^{-5}	34.9×10^{-3}
$L_e - L_\tau$	204×10^{-5}	71.1×10^{-3}	140×10^{-5}	29.9×10^{-3}	125×10^{-5}	26.6×10^{-3}
$L_{\mu} - L_{\tau}$	234×10^{-5}	80.9×10^{-3}	116×10^{-5}	26.6×10^{-3}	103×10^{-5}	24.2×10^{-3}
	$\tilde{g}_{\phi}(\text{low } M_{\phi})$	$rac{ ilde{g}_{\phi}}{M_{\phi}}(ext{high } M_{\phi})$	$\tilde{g}_{\phi}(\text{low } M_{\phi})$	$rac{ ilde{g}_{\phi}}{M_{\phi}}(ext{high } M_{\phi})$	$\tilde{g}_{\phi}(\text{low } M_{\phi})$	$\frac{\tilde{g}_{\phi}}{M_{\phi}}$ (high M_{ϕ})
scalar	2.30×10^{-5}	0.58×10^{-3}	1.80×10^{-5}	$0.31 imes 10^{-3}$	1.68×10^{-5}	$0.30 imes 10^{-3}$

TABLE II. The 2σ (95.45% C.L.) upper bounds on the coupling of the new boson mediator obtained from the separate and combined analyses of the Ar and CsI COHERENT CE ν NS data for low and high values of the boson mass in the models considered in this paper. $g_{Z'}/M_{Z'}$ and $\tilde{g}_{\phi}/M_{\phi}$ are in units of GeV⁻¹.

Comparison with previous constraints

Here we compare the limits discussed in this talk with those obtained in JHEP 01 (2021) 116 combined LAr and the first CsI data release.

Future perspectives

Proton beam energy $E_p = 1.3$ GeV (wrt $E_p = 0.984$ GeV) Beam power $P_{\text{beam}} = 2 \text{ MW}$ (wrt $P_{\text{beam}} = 1.4 \text{ MW}$) in 2025 and $P_{\text{beam}} = 2.8 \text{ MW}$ D_2O detector will allow to measure neutrino flux. The statistical uncertainty will approach 4.7(2)% after 2(5) SNSyears of operation The COHERENT Experimental Program arXiv:2204.04575 **Cryo-CsI-I detector** $N_{\rm POT} = t_{\rm exp}$

Threshold 1.4 keV_{nr}

Upgrade of the SNS in 2025 and 2030

- Mass $\sim 10 \text{ kg}$
- 3 years of data taking
- Will explore an interesting region of the parameter space!

Cryo-CsI-II detector

- Threshold 1.4 keV_{nr}
- Mass $\sim 700 \text{ kg}$
- 3 years of data taking
- Will almost completely exclude or confirm $L_{\mu} - L_{\tau}!$

 P_{beam}