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Overview
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• The Q-Array and TES detectors


• R&D from a proof-of-concept detector at 
UMass Amherst


• Future plans and conclusions
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The Q-Array
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• TESs reading out superconducting targets (Al, 
Zn, Sn…)


• Particle identification through QP/phonon ratio


• Different signal timing


• Multiplexed readout using RF SQUIDs


• TESs physically separated from the 
superconducting target allows for scalability
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• In our application, a transition edge sensor 
(TES) converts temperature to current


• In general, the colder the TES the more 
sensitive it is (decreasing heat capacity)

TESs and their Readout
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• Separate the TES from the target:


• Fabricate many TESs at once


• Allow for more target materials 
(superconductors, hygroscopic crystals)


• Angloher 2023, Chen 2022, Bastidon 2018


• Takes a penalty in efficiency, needing to 
transfer energy to the TES

The Q-Array: TES Architecture
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Chen 2022
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The Prototype Setup
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• Goal: Focus on understanding the TES and 
target material interface:


• Small (1 g), non-superconducting crystal (Si) 
readout with DC SQUIDs
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• Flexible R&D holder design (accommodates 
a variety of targets) 


• Use 55Fe X-rays to calibrate.  Runs with 
source in 3 locations: “A, B, C”
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Different Architectures
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The Prototype Setup: TESs
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• TESs fabricated at Argonne National 
Laboratory


• AlMn films, bilayers with different levels of 
the Mn dopant


• Tc of “with absorber” detector approximately 
20 mK


• Tc of “without absorber” detector was raised 
to ~40 mK through post-deposition heating
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TES Performance
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• Two transition features in each curve


• Proximity effects from gold/TES overlap?
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Thermal Conductances
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• Measure IV curves at different temperatures to 
estimate power-vs-temperature


• Fit to find conductance and temperature 
scaling


• While these are within a factor of a few of 
expectation, lots of room to improve our 
understanding through modeling
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Data, Noise and Optimal Filtering
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• Data continuously recorded at 300 kHz


• Triggering performed offline


• Energy estimation done through an optimal 
filtering framework


• Pulse shape taken to be an 55Fe X-ray incident 
on the silicon target (with absorber detector)
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Noise 
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df

J( f )
Ṽ( f ) − AS̃( f )
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Optimal-Filtered Space
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• See peaks from our X-ray source
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Optimal-Filtered Space
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• See peaks from our X-ray source


• Three main branches in the data


• “Target hit” branch, events interacting in the Si
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19

• See peaks from our X-ray source


• Three main branches in the data


• “Target hit” branch, events interacting in the Si


• “Chip hit” branch of events hitting just the TES 
chip

Doug Pinckney hpinckney@umass.edu

With Absorber Detector 
Run A

55Fe in

chip

55Fe in

target

TES 
chip hits

Saturated 
target hits

Unsaturated 
target hits

mailto:hpinckney@umass.edu


Optimal-Filtered Space
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• See peaks from our X-ray source


• Three main branches in the data


• “Target hit” branch, events interacting in the Si
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chip
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Pulse Shapes
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• Blue: Si target hit
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Pulse Shapes
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• Blue: Si target hit


• Red: TES chip hit
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Pulse Shapes

23

• Blue: Si target hit


• Red: TES chip hit


• Black: Without absorber detector hit
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Pulse Shapes
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• Blue: Si target hit


• Red: TES chip hit


• Black: Without absorber channel hit


• Events on the with absorber detector are much 
more complex (large variety of time constants) 
compared to the single fall time constant of the 
without absorber detector


• Again, lots of interesting modeling to do to 
understand these detectors
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Next Steps: Modeling
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• Compare in greater detail our data with the 
thermal model


• Includes the pulse data, as well as some initial 
complex impedance data


• Collected at UMass Amherst (Charlie 
Veihmeyer) and Argonne National Lab (Ran 
Chen)


• More data with lower frequencies has been 
collected and is being analyzed
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Spectra
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• Energy resolution ~35 eV sigma baseline


• X-ray peak width significantly larger than this! 
(order ~1 keV)


• Position dependence or some other effect?
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Spectra
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• Energy resolution ~35 eV sigma baseline


• X-ray peak width significantly larger than this! 
(order ~1 keV)


• Position dependence or some other effect?


• Peak at 550 eV?  Disappears when blocking 
line of sight between X-ray source and sapphire 
ball


• Sapphire scintillation?  Heat conductance 
between sapphire and target?
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Conclusions
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• Several successful runs at UMass studying 
the modular TES design 


• Many un-answered questions, modeling in 
particular


• Paper with details coming to an arXiv near 
you
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Extras
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Optimal-Filtered Space

30

• Three main branches in the data


• “Target hit” branch, events interacting in the Si


• “Chip hit” branch of events hitting just the TES 
chip


• “Pileup” events
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