Preliminary results of a Skipper-CCD inside a nuclear power plant

Speaker: Eliana Depaoli

Magnificent CEvNS 2023

Atucha II - Lima, Buenos Aires, Argentina

- Commercial facility commissioned on 2014
- Pressurized heavy water reactor (Siemens design)
- 2 GWth
- D₂O moderator & refrigerator
- Fuel: Natural UO₂
- 451 fuel elements, vertically allocated in an hexagonal grid

Detector shipped to Atucha II power plant

Sensor package: Skipper CCD + Kapton cable + Copper tray

- Designed by LBNL Microsystems Laboratory and fabricated at Teledyne-DALSA.
- CCDs on high resistivity silicon developed at LBNL
- Low Threshold Acquisition (LTA) controller arxiv.org:2004.07599
- 6144 columns by 1024 rows
- Pixels 15 μm x 15 μm
- 675 μ m thickness
- 2.5 grams

Sensor stays inside the lead shield

5 cm of lead around the sensor

arXiv:2107.00168v2

Sub-electron readout noise in a large range

JDJ10 BB001 JDJ20 BB001 JDJ20 BB001 JA06.48 JA05.25 JA05.01 ~12 mJA05.35 JA05.48 / JA04.35 (175) JB03.40 JA03.01 JB02.40 6 UI JB02.33 S S UJB JB01.30 **CNAII Nuclear Core**

Installation in Atucha II

Skipper-CCD inside the nuclear reactor

First image

Setup improvements

Performance @ Atucha II

- Operated at ~ 130 K
- Average readout noise 0.17 electrons

Analysis & Preliminary results

- Horizontal binning: 10 columns
- 300 samples of the charge in each pixel

Events [kDRU]

• Effective mass of 1.158 g

Exposure

Reactor OFF = 79.6 g days Reactor ON = 64.9 g days

Setup improvements

We added 5 cm of polyethylene around the Pb to shield the detector from fast neutrons coming from the reactor ~ 25 kg of mass

Physics goals and preliminary results

$$\frac{d\sigma^{\nu}}{dE_R} \simeq [\mathcal{Q}_V^{\text{SM}}]^2 \mathcal{F}^2(E_R) \frac{G_F^2 m_N}{4\pi} \left(1 - \frac{m_N E_R}{2E_{\nu}^2} \right)$$

Expected rate produced by CEvNS

Production: mCP flux emitted from a nuclear reactor

PHYSICAL REVIEW D 99, 032009 (2019)

FIG. 1. The production of χ_q - $\bar{\chi}_q$ via Compton-like mechanism based on the kinetic mixing of dark photon with the SM photon.

Preliminary experimental exclusion limit on mCP

Preliminar exclusion limit on mCP using a fraction of the collected data between 100 eV & 150 eV

Forecast for exclusion limit on millicharge particles

- ★ First Skipper-CCD installation inside a commercial nuclear power plant.
- ★ 2.5 grams of CCD running at 12 m of a 2 GWth reactor.
- ★ System has similar performance to the one achieved at Fermilab before shipping.
- ★ Performance was improved by reducing sources of noise.
- ★ We are now collecting data with new neutron shielding.
- ★ We preliminary set a very competitive limit for millicharge.