Studies of Coherency Effects in Neutrino-Nucleus Elastic Scattering using PCGe Detectors

Vivek Sharma

On behalf of TEXONO Collaboration

H. N. B. Garhwal Central University, Srinagar-Garhwal

Outline

- Introduction
- Status of vA_{el} @ KSNL
- Coherency in vA_{el} scattering
- Study of Quenching Factor
- Summary

Introduction

A neutrino interacts with a nucleus of neutron number "N" via exchange of Z - Boson.

$$v + N \rightarrow v + N$$

Cross-Section of $vA_{\rho l}$:

$$\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] [\epsilon Z F_z(q^2) - N F_N(q^2)]^2$$

Where G_F is fermi constant, E_v is incident neutrino energy, Z(N) is Atomic(Neutron) number of nuclei and q is three momentum transfer.

 $\varepsilon = 1 - 4\sin^2\Theta_W = 0.045$, gives N² dependence

Importance:

- ✓ Important role in Supernova Explosions.
- ✓ Test of fundamental SM-electroweak interaction.
- ✓ In study of Beyond Standard Model Physics.
- ✓ Probe transition of Quantum Mechanical Coherency in electro-weak process.
- ✓ Potential use in Reactor monitoring as a portable device.
- \checkmark vA_{el} Scattering is important to study the irreducible background for Dark Matter Search.

TEXONO Collaboration

- TEXONO (Taiwan EXperiment On NeutrinO) Experiment is located at Kuo-Sheng Nuclear Power Plant -II on northern shore of Taiwan.
- <u>Theme:</u> Low Energy Neutrino Physics and Dark Matter Searches.
- · Collaboration with Turkey, China and India.
- The reactor power of 2.9 GW gives 6.35×10^{12} cm⁻² s⁻¹ electron anti-neutrinos at a distance of 28 m.
- Collaboration with CDEX Underground Dark-Matter Experiment, China.

vA_{el} at KSNL with Reactor Neutrino..

Threshold	300 eV	200 eV	150 eV	100 eV
Differential (Cpkkd)	0.8	8.3	27.3	109.5
Integral (Cpkd)	0.04	0.47	1.6	6.4

- Sensitivity of experiment w.r.t. different Reactor ON/OFF scenario is shown.
- G3 (500g, 200 eV) Data taken ON/OFF ~>500/300 kg-days.
- Background in sub-keV region is <50 counts (kg⁻¹keV⁻¹day⁻¹)

- > Current DAQ: G3+ (1450g).
- ➤ Power-plant Decommissioning: 2022-23.
- Different R&D are ongoing for achieving low energy threshold and less background.

Challenges and Strategies for vA_{el} at Reactors

Challenges:

- Stabilities (hardware, ambient conditions, software parameters...) over long periods.
- Multi-detectors and experimental configurations.
- Effects of electronic noise near detector threshold.

Strategies:

- Use of in situ data from background channels (anti-Compton, cosmic-rays, surface events) for calibration and optimisation and monitoring.
- Use of precision pulsar (adjustable rise-time) for highstatistics samples and for probing sub-noise-edge responses.

Coherency in vA, Scattering

The differential cross-section of vA_{el} in terms of many-body physics of the target nuclei

can be written as:

$$\left[\frac{d\sigma}{dq^2}(q^2, E_{\nu})\right]_{\nu A_{el}} = \frac{1}{2} \left[\frac{G_F^2}{4\pi}\right] \cdot \left[1 - \frac{q^2}{4E_{\nu}^2}\right] \cdot \Gamma(q^2)$$

The term $\Gamma(q^2)$ have different description based on particular physics:

A. Nuclear Physics:

$$\Gamma_{NP}(q^2) = [\varepsilon ZF_Z(q^2) - NF_N(q^2)]^2.$$

B. Quantum Mechanical Coherency:
$$\Gamma_{\text{OM}}(\mathbf{q}^2) = [\varepsilon Z - N]^2 \alpha(q^2) + (\varepsilon^2 Z + N)[1 - \alpha(q^2)].$$

C. Data-driven Description:

$$\Gamma_{\text{DATA}}(\mathbf{q}^2) = [\varepsilon Z - N]^2 \xi(q^2).$$

The formulation of degree of coherency α is described in *Phys. Rev. D 93, 113006 (2016)* gives the loss in coherency as $a(q^2) = cos \phi \in [0, 1]$.

The term $\xi(q^2)$ is the cross-section suppression relative to the complete coherency condition.

$$\xi(q^2) \equiv \frac{(d\sigma/dq^2)_{\nu A_{el}}(\alpha)}{(d\sigma/dq^2)_{\nu A_{el}}(\alpha = 1)}$$

$$\xi(q^2) = \alpha(q^2) + \left[1 - \alpha(q^2)\right] \left[\frac{(\varepsilon^2 Z + N)}{(\varepsilon Z - N)^2}\right]$$

$$\leftarrow \xi(q^2) \quad \Rightarrow \quad$$

$$\xi(q^2) = \frac{\left[\varepsilon Z F_Z(q^2) - N F_N(q^2)\right]^2}{(\varepsilon Z - N)^2}$$

Quantum Mechanics Relation

Nuclear Physics Relation

Coherency Limits on COHERENT Measurement

Expected coherency for three target nuclei [Ar,Ge,Xe] from different neutrino sources.

Measurements from Data:

- 1. Csl (J. I. Collar et al., PRD 100, 033003, 2019)
- 2. Ar (D. Akimov et al., PRL 126, 012002 (2021)

Exclusion limit on p-value for Csl:

Complete Coherency @ $q^2 = 3.1 \times 10^3 \text{ MeV}^2$ p=0.004Complete Decoherency @ $q^2 = 2.3 \times 10^3 \text{ MeV}^2$ p=0.016

Constraints on Cross-section

Standard Lindhard Quenching factor

$$\frac{kg(\varepsilon)}{1+kg(\varepsilon)}$$

where $g(\epsilon)$ and ϵ are given by,

$$g(\varepsilon) = 3\varepsilon^{0.15} + 0.7\varepsilon^{0.6} + \varepsilon$$

$$\varepsilon \equiv E \frac{a}{2Z^2 e^2}$$

Physical Review D 91, 083509 (2015)

Physical Review D 106, 031702 (2022)

- For quenching nuclear recoil decreased by ~O(10) in region of interest Suggesting the importance in vA_{el}
 - Experimental Data fit for Standard Lindhard Model
 - Best fit is for k = 0.162
 - **3** allowed region **[0.158,0.165]**

NIM A836 (2016) 67-82

C.E. Aalseth et al., PRL106, 131301 (2011)

Eur. Phys. J. C (2022) 82:815

Preliminary Results in vA_{el}

TEXONO: The analysis threshold @ 200eV_{ee}

Theory line is for the best fit k from QF measurement

Experiment	Flux (×10 ¹² cm- ² s ⁻¹)	Detector mass	Data Size ON(OFF) kg.day	Resolution FWHM (eV)
TEXONO	6.3	1(1.5kg) 1(.5kg)	203(33)	70

Data available

580 kg-day ON data 700 kg-day OFF data Achieved analysis Threshold is 200 eV Target: 150 eV

- ρ estimate the strength of signal timesthe standard model prediction
- ☐Shaded region → 3σ allowed for k from Quenching factor measurement data
- TEXONO is more sensitive experiments with 90% CL upper limit in the most sensitive standard Lindhard "k"

Summary

TEXONO Experiment @ KSNL

- Large data volume collected, as low as 200 eV_{ee} noise-edge.
- Challenges in analysis, with strategies defined. Sub-noise edge PSD,
 R&D continues to achieve lower (~150 eV_{ee}) threshold.
- New detector characterisation and commissioning for Dark Matter studies.
- Reactor de-commissioned 2023; Permission of data taking till end of 2025; Looking for possibility of the new Reactor site.

Coherency and Quenching in vA_{el} **Process**

- Universal parameter α corresponds to mis-alignment angle in QM superposition.
- Allowed ranges placed for COHERENT data => Verify QM & Nuclear effects in vA_{el}
- The detailed understanding of quenching factor has importance in the study of vA_{el} process.

Thank You