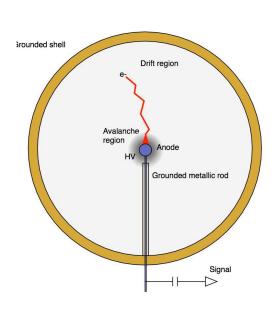
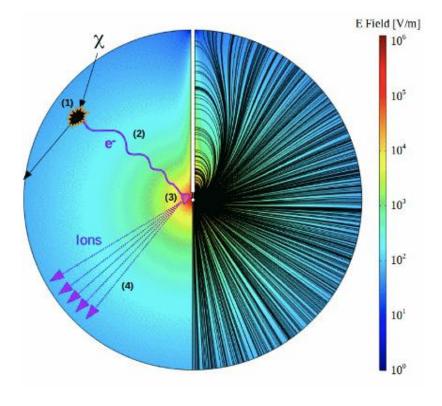


The NEWS-G3 Experiment

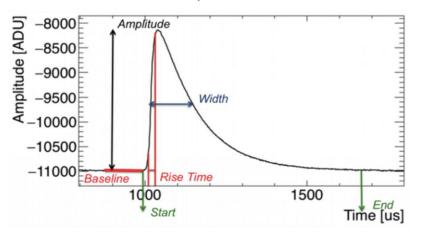
On behalf of the NEWS-G collaboration

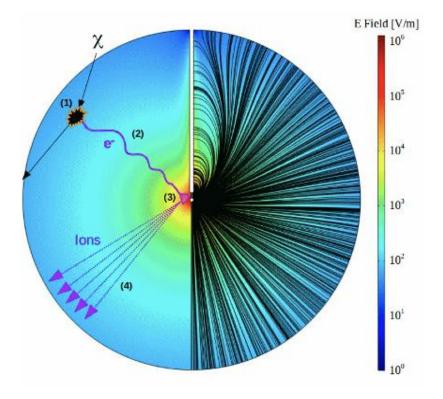

George Savvidis March 22 2023 Working Principle of the Spherical Proportional Counter (SPC)


Ideal electric field in SPC

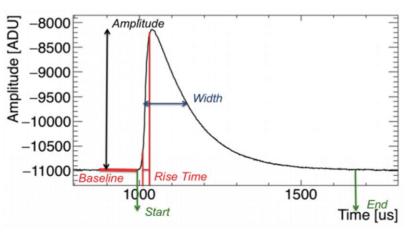
$$E(r) = \frac{V_0}{r^2} \frac{r_A r_C}{r_C - r_A} \approx \frac{V_0}{r^2} r_A$$

 $r_A \equiv Anode \ radius$ $r_C \equiv Sphere \ radius$ $r \equiv radial \ distance$

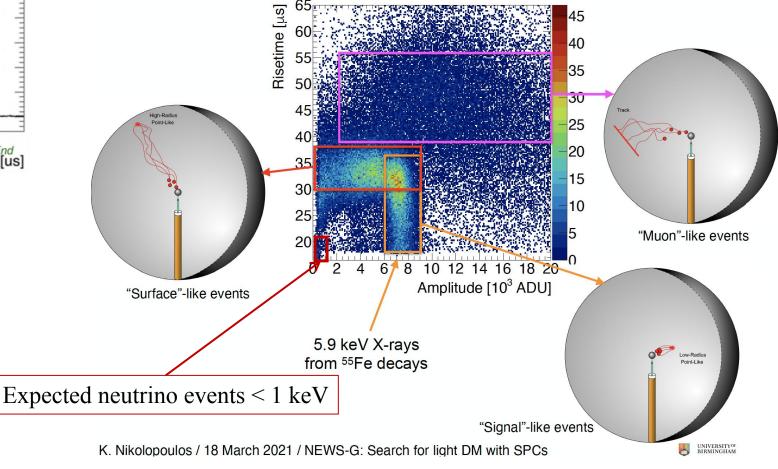

Working Principle of the Spherical Proportional Counter (SPC)


- Incoming particle ionizes the gas:
 - (1) Primary Ionization (Primary electrons)

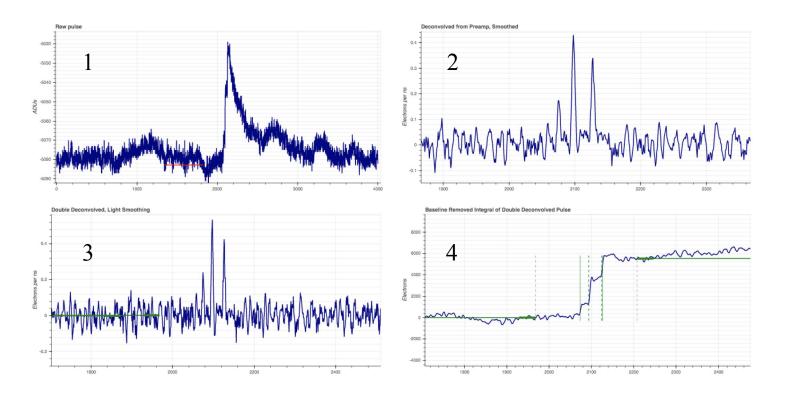
(2) e- drift towards the anode at the center along the \vec{E} field lines


(3) Secondary Ionization(Townsend avalanche)

(4) Signal formation (Shockley-Ramo effect)

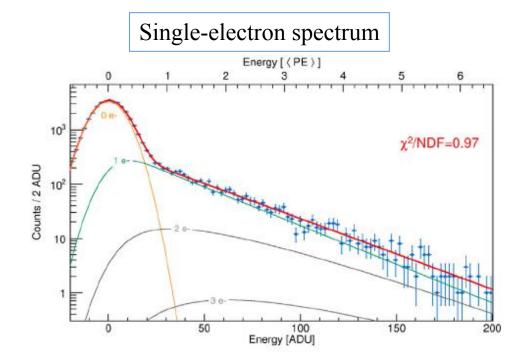


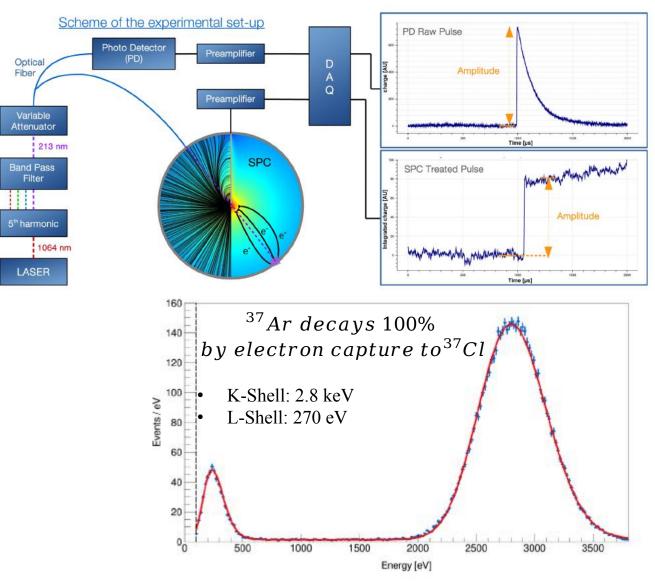
Pulse analysis


- Point-like events: diffusion
- Track-events: difference in arrival times of PEs

- Amplitude ~ Particle Energy
- **Risetime** ~ Spatial Distribution of the Energy Deposition

Pulse analysis

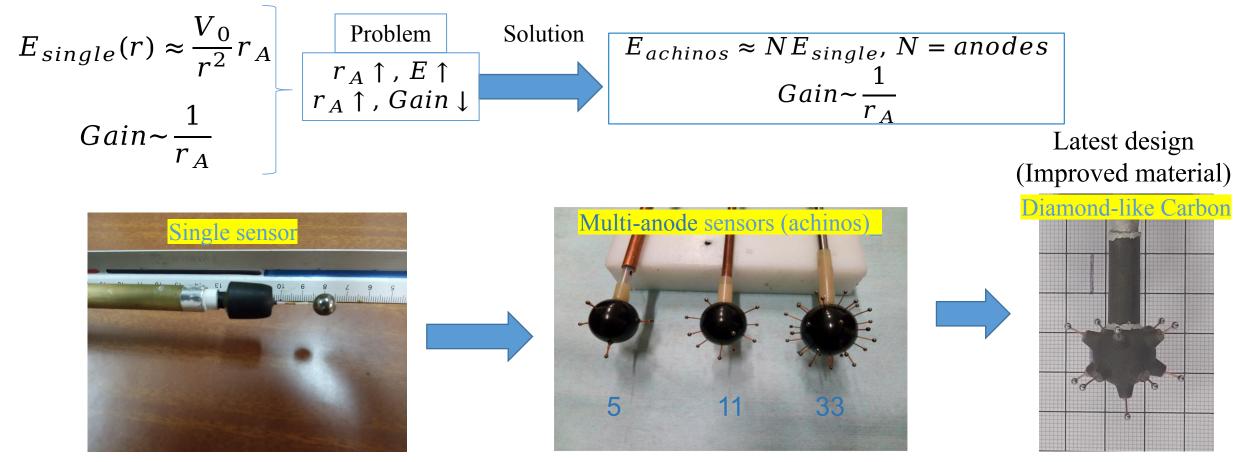

- 1. Raw pulse
- 2. Deconvolve pre-amplifier response
- 3. Deconvolve ion response
- 4. Integration



- Allows for ballistic deficit correction
- Improved time resolution

Detector calibrations

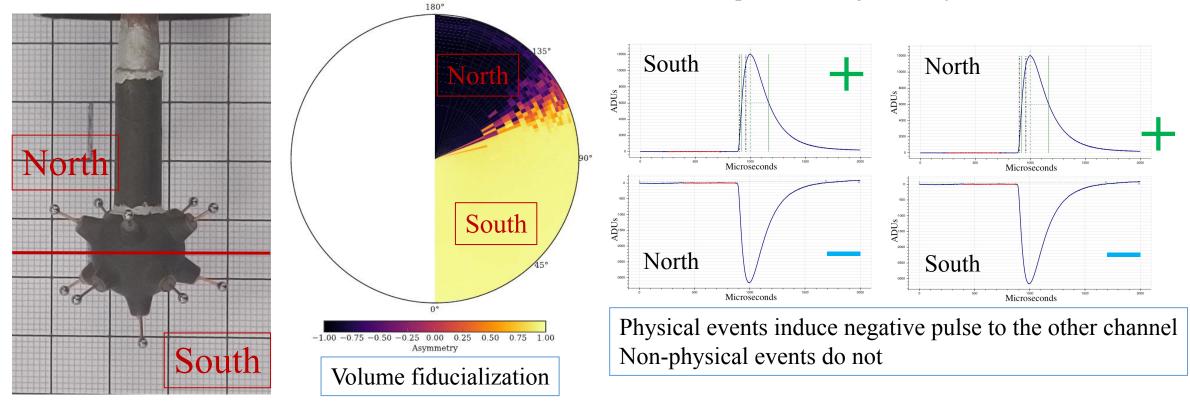
- UV laser for single-electron calibration
- Ar37 calibration for W-value measurements



Laser setup

The NEWS-G3 Experiment

The SPC sensor


• Single-sensor for high pressure SPC: We want to collect all primary electrons and achieve high gain

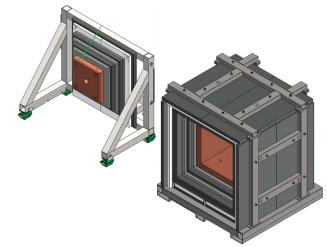
Sensor readout configuration

- 2-readout channel configuration
 - Conventionally named North and South

- Advantages of the 2-readout configuration
 - Volume fiducialization
 - Improved background rejection

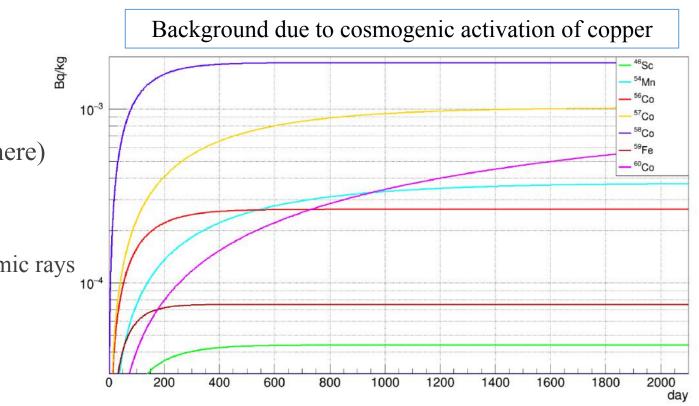
The NEWS-G3 shield

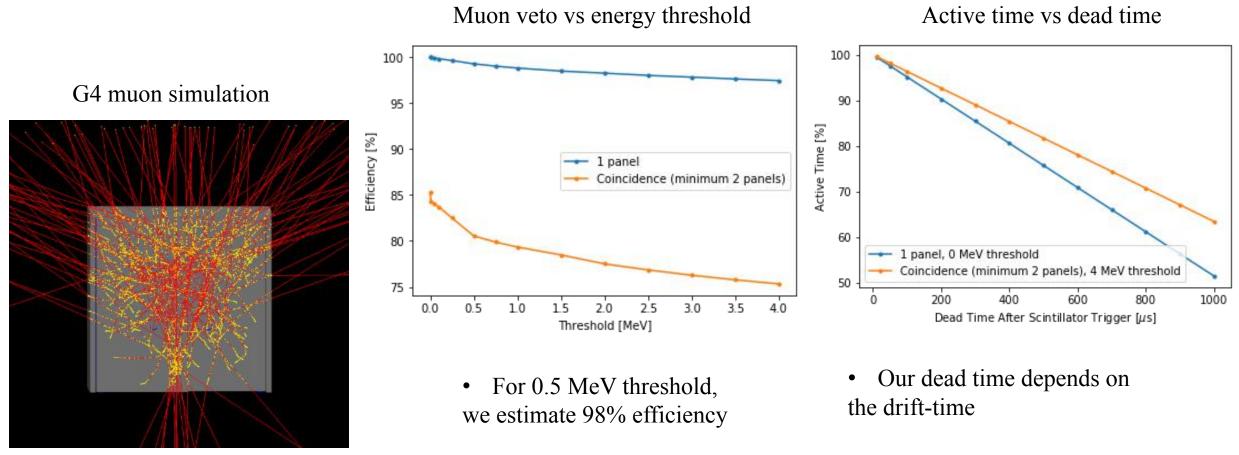
Compact Shield


- Lead
- Active muon veto
- Polyethylene
- Copper

|--|--|

Initial design included a copper sphere, however still under discussion

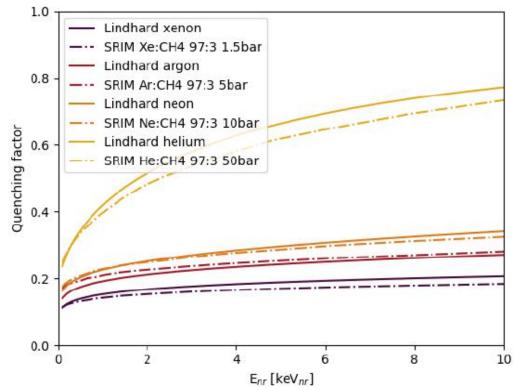

Lead Active veto scintillator Polyethylene Copper



Sources of background

- Cosmogenic activation (Sphere, Gas)
- Radioactive contaminants (Shield and Sphere)
 ²³⁸U,²³²Th decay chains
- Neutrons
 - Neutrons produced mainly in lead by cosmic rays
- Tritium contamination in gases

Simulation of veto efficiency and active time

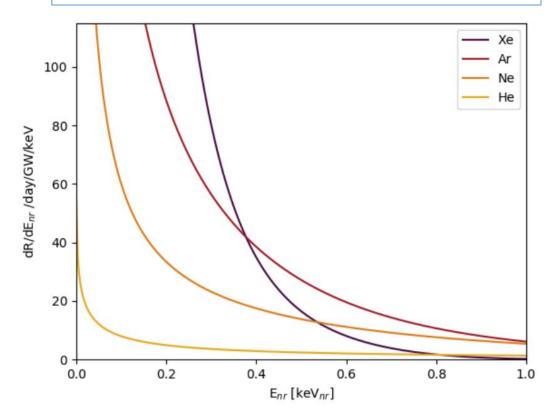

Preliminary measurements • of the drift-time in 1 bar Ar+2%CH4 gives us 100 µs

Choice of target gas

- The choice of gas also depends on
 - The quenching factor
- We have measured nuclear quenching factor in 2 bar Ne+3%CH4
- Plan to initiate a campaign of quenching factor measurements in various gases/pressures
 - Pressure
 - The lighter the gas the higher the pressure

		Pressure (bar)		
Temperature	Xenon	Argon	Neon	Helium
$273 \mathrm{~K}$	1.5	5	9.9	50
$293 \mathrm{K}$	1.64	5.38	10.68	53.8

Estimations of Quenching factor



Expected event rate (preliminary)

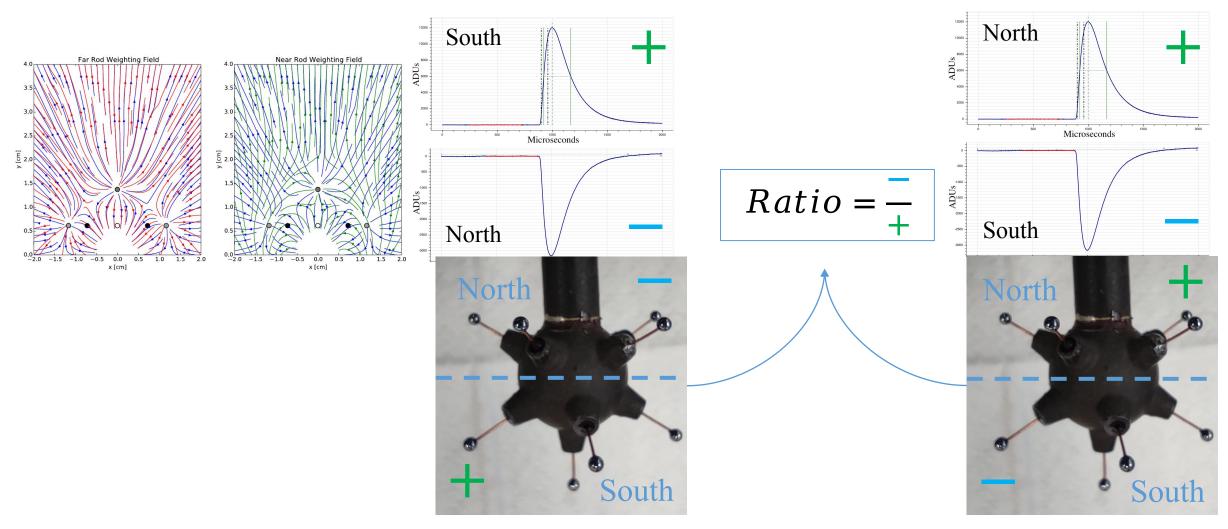
- Preliminary estimations
 - Target mass: 1 kg
 - Distance from reactor: 10 m
 - Reactor power: 1 GW

			Xenon	Argon	Neon	Helium
PWR	$\rm LF = 100\%$	Event rate	364	90	35	7
		Event rate $> 100 \mathrm{eV_{nr}}$	60	36	19	5
	$\mathrm{LF}=97.2\%$	Event rate	354	86	34	7
		Event rate $> 100\mathrm{eV_{nr}}$	58	35	18	5
	$\mathrm{LF}=84.6\%$	Event rate	308	75	29	6
		Event rate $> 100 \mathrm{eV_{nr}}$	50	30	16	4.5
PHWR	LF = 100 %	Event rate	308	79	31	6
		Event rate $> 100\mathrm{eV_{nr}}$	76	43	21	5
	$\mathrm{LF}=97.2\%$	Event rate	300	77	30	6
		Event rate $> 100 \mathrm{eV_{nr}}$	73	41	18	5
	$\mathrm{LF}=84.6\%$	Event rate	261	66	26	5
		${\rm Event}~{\rm rate}>100{\rm eV_{nr}}$	64	36	18	4.6

Differential CEvNS event rate for different gases

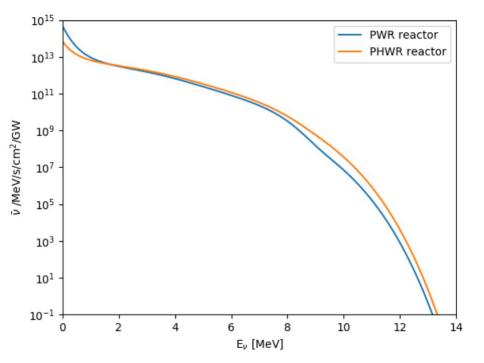
Conclusion and next steps

- The NEWS-G3 detector is installed and undergoing the first tests
- Muon veto simulations for efficiency and active time have been obtained
- We have measured the drift-time in 1 bar Ar+2%CH4 (More gasses/pressures to be tested)
- Quenching factor measurements in 2 bar Ne+3%CH4 were obtained
- Plans to perform quenching factor measurements in various gases/pressures
- We are working on the final design of the SPC to allow us to go to high pressure but also as low background as possible

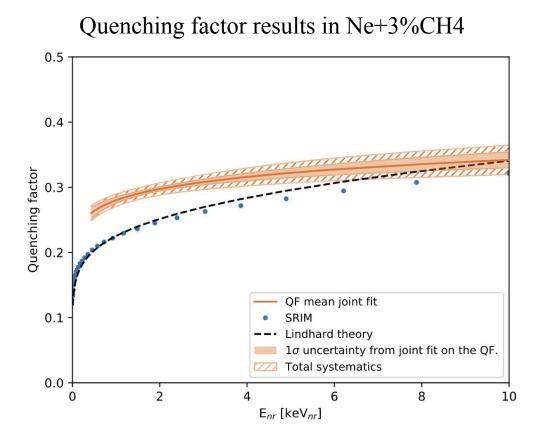

Thank you

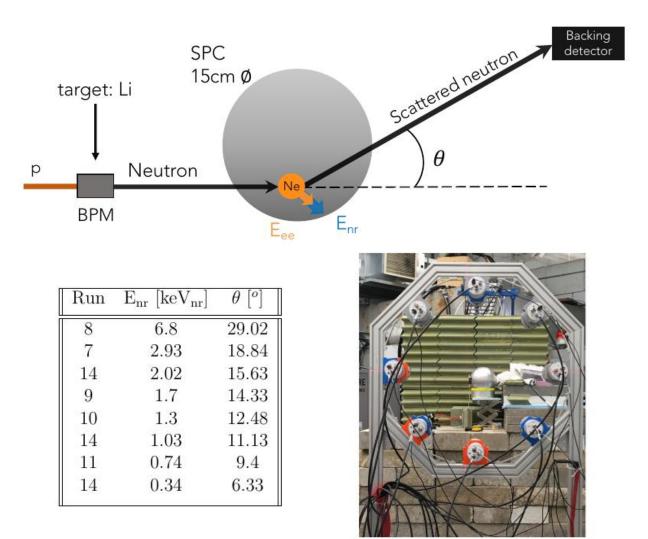
Back-up

Simulation of the background assuming a 60 cm copper SPC


	Isotopes	dru $\gamma \leq 1 \text{keV}$	dru $\gamma \leq 1 \text{keV}$	dru $\gamma \leq 0.8 \mathrm{keV}$	dru $\gamma \leq 0.8 \mathrm{keV}$
	isotopes	1 year	2 years	1 year	2 years
a ana	60.~	·			
Copper SPC	$^{60}_{57}$ Co	0.14 ± 0.010	0.24 ± 0.018	0.10 ± 0.0092	0.18 ± 0.016
	57 Co	0.94 ± 0.058	1.13 ± 0.076	0.79 ± 0.052	1.05 ± 0.069
	58 Co	1.30 ± 0.11	1.30 ± 0.11	1.05 ± 0.10	1.05 ± 0.10
	56 Co	0.38 ± 0.024	0.38 ± 0.024	0.29 ± 0.021	0.29 ± 0.021
	^{54}Mn	0.096 ± 0.015	0.13 ± 0.020	0.077 ± 0.013	0.10 ± 0.018
	210 Pb	2.31 ± 0.62	2.31 ± 0.62	1.98 ± 0.57	1.98 ± 0.57
	^{238}U	0.0059 ± 0.00014	0.0059 ± 0.00014	0.0047 ± 0.00012	0.0047 ± 0.00012
	232 Th	0.035 ± 0.0013	0.035 ± 0.0013	0.028 ± 0.0011	0.028 ± 0.0011
Total: Copper SPC		5.24 ± 0.84	5.53 ± 0.87	$4.31 {\pm} 0.76$	4.68 ± 0.79
Copper layer	60 Co	$0.68 {\pm} 0.074$	1.18 ± 0.13	0.53 ± 0.065	0.91 ± 0.11
	57 Co	0.20 ± 0.026	0.26 ± 0.035	0.14 ± 0.022	0.19 ± 0.030
	^{58}Co	5.77 ± 0.74	5.77 ± 0.74	4.61 ± 0.66	4.61 ± 0.66
	56 Co	1.86 ± 0.16	1.86 ± 0.16	1.45 ± 0.14	1.45 ± 0.14
	^{54}Mn	0.53 ± 0.079	0.70 ± 0.11	0.46 ± 0.075	0.61 ± 0.10
	²¹⁰ Pb	0.40 ± 0.18	0.40 ± 0.18	0.40 ± 0.17	0.40 ± 0.17
	^{238}U	0.012 ± 0.001	0.012 ± 0.001	0.010 ± 0.0011	0.00091 ± 0.00091
	232 Th	0.076 ± 0.0081	0.076 ± 0.0081	0.060 ± 0.0072	0.060 ± 0.0072
Total: Copper layer		$9.61 {\pm} 1.27$	10.25 ± 1.33	7.65 ± 1.14	8.24 ± 1.21
1^{st} lead layer	210 Pb	0.0064 ± 0.0046	0.0064 ± 0.0046	0.0032 ± 0.0032	0.0032 ± 0.0032
	^{238}U	0.88 ± 0.29	0.88 ± 0.29	0.64 ± 0.26	0.64 ± 0.26
	232 Th	0.13 ± 0.058	0.13 ± 0.058	0.10 ± 0.051	$0.10 \pm\ 0.051$
Fotal: 1^{st} lead layer		$1.01 {\pm} 0.35$	$1.01{\pm}~0.35$	$0.44 {\pm} 0.31$	0.44 ± 0.31
Total		15.85 ± 2.46	16.79 ± 2.55	12.40 ± 2.21	$13.36 {\pm} 2.31$

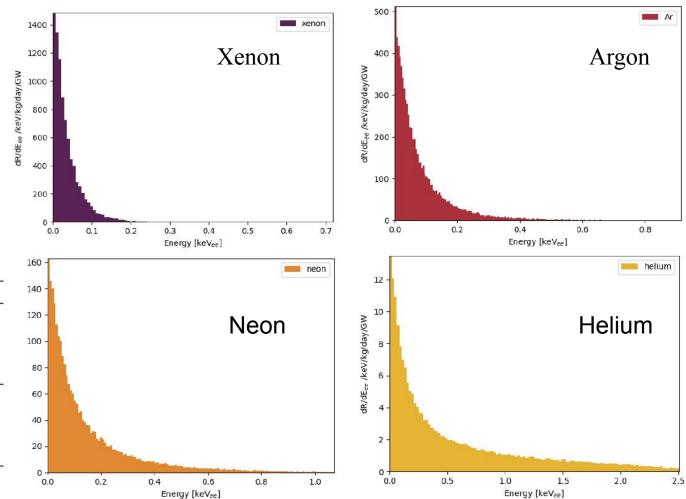
Induction of negative pulses


Preliminary estimation of CEvNS events

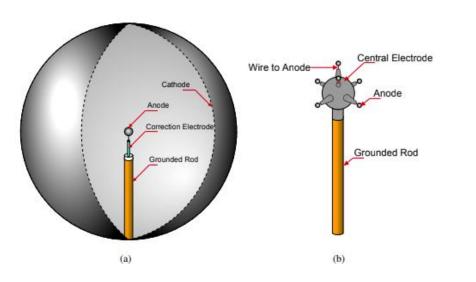

Comparison of the neutrino energy spectrum for PWR and PHWR reactors

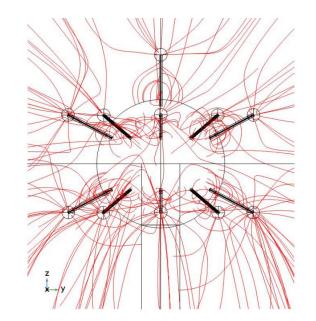
			Xenon	Argon	Neon	Helium
PWR	LF = 100 %	Event rate	192	60	25.6	5
		Event rate $> 50 \mathrm{eV_{ee}}$	13.5	16.4	11.2	3.6
	$\mathrm{LF}=97.2\%$	Event rate	186.6	57.8	25.0	4.8
		Event rate $> 50 \mathrm{eV_{ee}}$	13.0	15.9	10.9	3.5
	$\mathrm{LF}=84.6\%$	Event rate	162.3	50.2	21.8	4.5
		Event rate $> 50\mathrm{eV}_{\mathrm{ee}}$	11.2	13.8	9.5	3.0
PHWR	LF = 100 %	Event rate	181.8	58	25	4.4
		Event rate $> 50 \mathrm{eV_{ee}}$	17	20	13.2	3.6
	$\mathrm{LF}=97.2\%$	Event rate	176.6	56.3	24.3	4.3
		Event rate $> 50 \mathrm{eV_{ee}}$	16.4	19.6	13	3.5
	$\mathrm{LF}=84.6\%$	Event rate	154	49	21	3.7
		Event rate $> 50 \mathrm{eV}_{ee}$	14.3	17	11.2	3

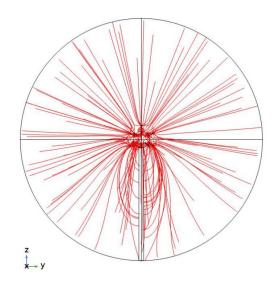
Quenching factor in 2 bar Ne+3%CH4



Estimations of neutrino events


• Preliminary CEvNS events as a function of the recoil energy in keVee


• Expected neutrino events in Ne for the measured QF


			Xenon	Argon	Neon	Helium
QF SRIM	PWR	Event rate	192.7	60	25.7	5
		Event rate $> 50 \mathrm{eV}_{ee}$	12.7	18.6	11.5	3.4
	PHWR	Event rate	183	59.3	25.2	4.4
		Event rate $> 50 \mathrm{eV}_{\mathrm{ee}}$	16.1	22.7	13.6	3.5
QF data	PWR	Event rate	12	2	26.4	22
		Event rate $> 50 eV_{ee}$	-)	13	20 0 1
	PHWR	Event rate	12	<u>8</u> 2	25.7	22
		Event rate $> 50 \mathrm{eV}_{ee}$	-	-	15.2	-

Simulation of the achinos electric field

