Mineral Detection of $CE\nu NS$

Minerals such as olivine could hold evidence of long-ago collisions between atomic nuclei and dark matter (Olena Shmahalo/Quanta Magazine).

Patrick Stengel (INFN Ferrara)

Magnificent $CE\nu NS$

March 25, 2023

Help | Advano

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 17 Jan 2023]

Mineral Detection of Neutrinos and Dark Matter. A Whitepaper

Sebastian Baum, Patrick Stengel, Natsue Abe, Javier F. Acevedo, Gabriela R. Araujo, Yoshihiro Asahara, Frank Avignone, Levente Balogh, Laura Baudis, Yilda Boukhtouchen, Joseph Bramante, Pieter Alexander Breur, Lorenzo Caccianiga, Francesco Capozzi, Juan I. Collar, Reza Ebadi, Thomas Edwards, Klaus Eitel, Alexey Elykov, Rodney C. Ewing, Katherine Freese, Audrey Fung, Claudio Galelli, Ulrich A. Glasmacher, Arianna Gleason, Noriko Hasebe, Shigenobu Hirose, Shunsaku Horiuchi, Yasushi Hoshino, Patrick Huber, Yuki Ido, Yohei Igami, Yoshitaka Itow, Takenori Kato, Bradley J. Kavanagh, Yoji Kawamura, Shingo Kazama, Christopher J. Kenney, Ben Kilminster, Yui Kouketsu, Yukiko Kozaka, Noah A. Kurinsky, Matthew Leybourne, Thalles Lucas, William F. McDonough, Mason C. Marshall, Jose Maria Mateos, Anubhav Mathur, Katsuyoshi Michibayashi, Sharlotte Mkhonto, Kohta Murase, Tatsuhiro Naka, Kenji Oguni, Surjeet Rajendran, Hitoshi Sakane, Paola Sala, Kate Scholberg, Ingrida Semenec, Takuya Shiraishi, Joshua Spitz, Kai Sun, Katsuhiko Suzuki, Erwin H. Tanin, Aaron Vincent, Nikita Vladimirov, Ronald L. Walsworth, Hiroko Watanabe

$MD\nu DM$ community

- Groups across Europe, North America and Japan
- Astroparticle theorists, experimentalists, geologists, and materials scientists
- First meeting last October at IFPU in Trieste

Check out our whitepaper!

- History of mineral detectors
- Review scientific potential for astroparticle physics, reactor neutrinos and geoscience
- Summary of active and planned experimental efforts

SN neutrinos

Galactic SN contribution to flux over geological timescales

Figure: Cosmic CC SNR, 1403.0007

 10^{2}

Solar neutrinos

Probe evolution of standard solar model over time

Patrick Stengel (INFN Ferrara)

Tracks in ancient minerals Solid state track detectors

Modern TEM allows for accurate characterization of tracks

Patrick Stengel (INFN Ferrara)

Magnificent $CE\nu NS$

Mineral detectors look for damage from recoiling nuclei

Cosmogenic backgrounds suppressed in deep boreholes

Figure: $\sim 2 \text{Gyr}$ old Halite cores from $\sim 3 \text{km},$ as discussed in Blättler+ '18

Neutron Flux
$10^{6}/\text{cm}^{2}/\text{Gyr}$
$10^2/cm^2/Gyr$
$10/cm^2/Gyr$
70/cm²/yr
$30/cm^2/yr$
$2/cm^2/yr$

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Tracks in ancient minerals Problematic backgrounds

Fast neutrons from SF and (α, n) interactions

SF yields ~ 2 neutrons with $\sim MeV$

Each neutron will scatter elastically 10-1000 times before moderating

(α, n) rate low, many decay α 's

Heavy targets better for (α, n) and bad for neutron moderation, need H

Projected sensitivity of mineral detectors

Solar neutrinos

Could use large exposure to differentiate between scenarios

Could measure ⁸ B flux over time	100 g samples with 15 nm resolution
• Higher $E_ u o$ longer tracks	• Look in single bin 15 – 30 nm
 Highly dependent on solar core temperature with flux \$\phi\$ T²⁴ Sensitive to metallicity model 	• Assume $\Delta_t \sim 10\%$, $\Delta_C = 10\%$ • $N_{ m tot}^{ m GS} \sim (1.63 \pm 0.05) imes 10^6$ $N_{ m tot}^{ m AGSS} \sim (1.52 \pm 0.05) imes 10^6$

Projected sensitivity of mineral detectors

SN neutrinos

Measure heavy-lepton flavor ν_x 's with mineral detectors

Complement future measurements of	Pinched Fermi-Dirac distribution
DNSB $\nu_e/\bar{\nu}_e$ at DUNE/Hyper-K	
• $C^{238} \lesssim 0.1 \text{ppb} \Rightarrow S_x / \sqrt{B} \gtrsim 3\sigma$	$\frac{\mathrm{d}n}{1-E} \propto \frac{E_{\nu}^{\mathrm{tot}}}{E_{\nu}} \left(\frac{E_{\nu}}{E_{\nu}}\right)^{3} e^{-\frac{4E_{\nu}}{\langle E_{\nu} \rangle}}$
• MCMC analysis for ν spectra	$\mathrm{d}E_{\nu} \langle E_{\nu}\rangle^2 \big\langle \langle E_{\nu}\rangle \big\rangle$
with $\Delta_{SN}^{ u_e, u_x}\sim 10\%$, $\Delta_B^{ u_e}\sim 20\%$	

Patrick Stengel (INFN Ferrara)

Summary and outlook

Mineral detectors could probe rare and/or previous events

Look for astrophysical ν 's and DM

- Measure solar (2102.01755), CC SN (1906.05800, 2203.12696), atmospheric (2004.08394) v's
- WIMP DM (2106.06559), substructure (2107.02812), composite DM (2105.06473)

Feasibility of mineral detectors

- Determine efficiency of effective 3D recoil track reconstruction
- Need model of geological history
- Radiopure samples from depth
- Find a way to handle the data

(INFN Ferrara)

Galactic CC SN ν 's can induce recoils in mineral detectors

0.14 0.12 10.10 0.08 0.06 0.04 0.04 0.02

Figure: Supernova simulation after CC

Figure: Distribution of galactic SNe at distance from Earth $f(R_E)$, 1306.0559

Distance [kpc]

10

CC SNe primarily in stellar disk

 $ho_{SN} \propto e^{-R/R_d} e^{-|z|/H_d}$

ccSNe

SNela

20

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Patrick Stengel (INFN Ferrara)

Magnificent $CE\nu NS$

Radiogenic backgrounds from ²³⁸U contamination

$\xrightarrow{238} U \xrightarrow{\alpha} 226$	$ \begin{array}{c} {}^{34}\mathrm{Th} \xrightarrow{\beta^{-}} {}^{234\mathrm{m}}\mathrm{Ps} \\ \mathrm{Ra} \xrightarrow{\alpha} {}^{222}\mathrm{Rn} \xrightarrow{\alpha} \end{array} $	$a \xrightarrow{\beta^{-}} {}^{234}U \xrightarrow{\alpha} {}^{23}$	²³⁸ U ²³⁸ U ²³⁴ Th
Nucleus	Decay mode	T _{1/2}	$\overline{}$
23811	α	$4.468 imes10^9{ m yr}$	
0	SF	$8.2 imes10^{15}$ yr	" 1α " events difficult to reject
²³⁴ Th	β^{-}	24.10 d	without additional decays
$^{234\mathrm{m}}Pa$	$eta^-~(99.84\%)$ IT (0.16 %)	1.159 min	• Reject \sim 10 μ m α tracks
²³⁴ Pa	β^{-}	6.70 d	• Without α tracks, filter
²³⁴ U	α	$2.455\times10^{5}\text{yr}$	out monoenergetic ²³⁴ Th

Quick aside on data analysis and α -recoil background

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \text{ ppb}$ $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Track length spectra for detecting galactic CC SN ν 's

Large exposure probes rare events

- NOT background free, but can calibrate radiogenics in the lab
- Spectral information allows for reduction of bkg systematics

- Assume relative uncertainty 1% for normalization of n-bkg
- Solar and atmospheric ν -bkg assume 100% to account for time variation of fluxes

Patrick Stengel (INFN Ferrara)

Magnificent $CE\nu NS$

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCI] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite mineral detectors • 100 g each. $\Delta t_{arga} \simeq 100 \text{ Myr}$	Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star
	formation rate with $\mathit{C}^{238} \lesssim 5\mathrm{ppt}$

Probe time- and space-localized enhancements to CC SNR

Starburst increases SFR by $\sim 10^3$	Discriminate against constant rate
• Short duration $\Delta t \lesssim 10{ m Myr}$	• Sensitive to starburst near GC
• Parameterized by N_* CC SNe, D_* to burst region, t_* ago	• Could detect $N_* = 1$ CC SN within last \sim Gyr if $D_* \lesssim 10$ pc

CRs brought to you by TRAGALDABAS, 1701.07277

Patrick Stengel (INFN Ferrara)

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei	Background free regions for $\gtrsim 1\mu{ m m}$
 Low energy peak from QE	 Radiogenic n-bkg confined to
neutrons scattering ²³ Na, ³¹ P	low x, regardless of target
 High energy tail of lighter	 Subdominant systematics from
nuclei produced by DIS	atmosphere, heliomagnetic field

Patrick Stengel (INFN Ferrara)

Magnificent $CE\nu NS$

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,{
 m GV}$
- Recall CR primary $E_{CR}\gtrsim 10~E_{
 u}$

Atmospheric ν 's yield recoils in background free regions

$N\sim 6 imes 10^4$ tracks in $100{ m g} imes 1{ m Gyr}$	Series of halite targets with (M_i, t_i)
• $2\mu{ m m}\lesssim x\lesssim 20\mu{ m m}$ potentially	• Averaged recoil rate N_i/t_iM_i
sensitive to geomagnetic effects	• Sensitivity limited by geological
• 50 $\mu{ m m}\lesssim x\lesssim 1{ m mm}$ from DIS	history, read-out systematics
associated with $E_{CR}\gtrsim 100{ m GeV}$	• Assume $\Delta_t = 5\%$, $\Delta_M = 1\%$

Patrick Stengel (INFN Ferrara)

Simulation chain for calculation of atmospheric ν 's

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

Patrick Stengel (INFN Ferrara)