The First Search Neutrino-Induced Nuclear Fission

Tyler Johnson Duke University Triangle Universities Nuclear Lab

4 THOS

Introduction and Motivation

Predicted at least 52 years ago

Currently, no experimental confirmation

This experiment is the first experimental initiative towards this process

May constitute a new tool in the toolkit for reactor monitoring, supernova detection, and/or R-Process nucleosynthesis modeling

Experiment Site – Oak Ridge National Lab

Spallation Neutron Source

Pulsed at 60 Hz for excellent background suppression

Fission Material Selection

There are several fissionable nuclei to choose from, but few are available in large quantities

Thorium & Uranium are the most practical candidates
BUT

Thorium has a spontaneous fission rate 5 orders of magnitude less than uranium

Statistical Decay

Thorium-232

Giant Gamow-Teller Resonance and Isobaric Analog State enhance charged current capture cross section

Protactinium-232*

Pa-232 is highly excited

Thorium NuFission Signal

First needed the charged-current neutrino cross section for Thorium

Beta-Strength Function for Allowed Transitions

Charged-Current Cross Section on Thorium

CC Event Estimate: ~2 CC Events per kgs Th-232 per SNS year - nuFission Estimate: ~1 nuFissions per kgs Th-232 per SNS year

Fission Neutron Signal

NU #THOR

52.0 Kilograms of ²³²Th Metal Core Over 2,000 Beam Hours of data taken

Th-232 Metal	
Lead	
Gd-Water	
NaI[T1]	
Bor. Poly.	

Thorium Plates

Inner Lead Shielding

Th-232 Metal	
Lead	
Gd-Water	
NaI[Tl]	
Bor. Poly.	
A A	

Neutron Multiplicity Meter

Th-232 Metal	
Lead	
Gd-Water	
NaI[Tl]	
Bor. Poly.	

Gadolinium-Doped Water Bricks

Th-232 Metal	
Lead	
Gd-Water	
NaI[Tl]	
Bor. Poly.	
48	

Th-232 Metal	
Lead	
Gd-Water	
NaI[Tl]	
Bor. Poly.	

Borated Polyethylene

Th-232 Metal	
Lead	
Gd-Water	
NaI[T1]	
Bor. Poly.	
A A	

Early Data Analysis

Zero-threshold, external trigger on SNS Timing Signals

Physics Event Topology

Expected Impact

- o This would be the very first experimental confirmation of the new way to split the atom
- o This would simultaneously be the first experimental confirmation of neutrino-induced neutron emission
- Could potentially be a novel method of detecting reactor neutrinos

