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D. Pershey Physics opportunities at the SNS second target station

Beam upgrades at the SNS

❑COHERENT status is always changing
• Continuing deployment of new detectors with 

significant improvement in sensitivity

• ORNL currently investing in SNS upgrades: 
proton power upgrade and construction of 
second target station

❑COHERENT sensitivity can be separated into 
approximately three phases
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Ar

Ge

CsI

24 kg 610 kg 10000 kg

14 kg

18 kg

10 kg* 700 kg*

First light Precision at Neutrino Alley STS

*Cryogenic scintillator with sub-keV threshold
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New CEvNS detectors to be deployed

❑COHERENT already successful with CEvNS detection with argon
using a 24kg single-phase, scintillating calorimeter

❑Upgrade to 610 kg in Neutrino Alley and 10t at the STS at a 
baseline of 20m

❑Threshold and dynamic range designed to allow simultaneous 
measurement of 10 keV to 50 MeV to measure both CEvNS 
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❑We also plan for an array of cryogenic, undoped
CsI scintillating detectors
• Cooling undoped CsI to 40 K increases the crystal light 

yield while also eliminating background scintillation 
within the crystal (afterglow light)

❑Can deploy 700 kg of crystal with a threshold of 
≈ 0.1 keVee due to the favorable light yield



D. Pershey Physics opportunities at the SNS second target station

Ultimate scale of CEvNS samples

❑In the future, total cross section measurements will be limited by flux uncertainty, but a we 
will precisely compare the cross section for different flavors

❑Sensitive to 1% differences in μ- and 𝑒-flavor cross sections testing lepton universality of 
CEvNS (at tree level)

4

CEvNS event rate in 10t argon detector after 5 years

≈ 50000 / yr



D. Pershey Physics opportunities at the SNS second target station

Searching for BSM interactions with CEvNS

Flavor conserving interactions –
Interference between new 
mediator and 𝑍 which breaks 
lepton universality

Flavor changing interactions –
Would add new scattering 
processes not allowed by the 
standard model
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Adjusts weak charge in CEvNS cross section:

Scattering model 
parameterized by 
effective couplings, 
and       , x GF
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STS data disambiguates neutrino oscillation data

❑Same degeneracy condition causes confusion for the θ12 octant

❑The 𝜽𝟏𝟐 > 𝝅/𝟒 “LMA-Dark” solution is well motivated – interesting tension between solar 
and reactor measurements of Δ𝑚21

2 are slightly discrepant
• Could be cause by NSI scattering in solar interior

❑But, LMA-D is disfavored by initial CsI data with additional data from the STS capable of 
completely resolving this ambiguity
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5 years of argon + 5 years of CsI3 years of argon + 3 years of CsI

Neutrino Alley reach STS reach
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Searching for dark matter with CEvNS detectors at the SNS

❑A CEvNS detector at the SNS operates like a standard beam dump experiment

❑Any hidden sector particles with masses below ≈ 220 MeV/c2 could be produced in the 
many proton-Hg interactions within the SNS target

❑This may include mediator particles between SM and dark matter particles!
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Low-mass DM phenomenology

❑For decades, experiments have focused on classic WIMP
searches assumed to interact with the weak force

❑The DM scattering cross section is σ ~ 𝑚χ
2/𝑚𝑧
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• Lower DM mass → lower cross section → higher DM abundance

• If 𝑚χ < 2 GeV/c2, predicted relic abundance would be so large
it would close the universe, preventing the modern universe

❑No longer assume DM interacts with SM particles
via the weak force, but some yet unknown hidden sector
particle, 𝑉

❑In this scenario, σ ~𝑚χ
2/𝑚𝑉

4 which is consistent with
modern cosmology even at low mass scales

❑Simplest scenario postulates a vector mediator that

kinetically mixes with SM photon: ℒ ~
1

2
ε2𝐹μυ𝑉

μυ

❑Model parameters
• DM and mediator masses: 𝑚χ and 𝑚𝑉

• SM-mediator and DM-mediator couplings: ε and α𝐷

❑Relic abundance given in terms of 𝑌 = ε2α𝐷 𝑚χ/𝑚𝑉
4
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DM DM

Which force
is this?

Classical WIMP mass regime:
Lee and Weinberg, Phys. Rev. Lett. 39 165 (1977)

Early sub-GeV DM phenomenology:
Fayet, Phys. Rev. D70, 023514 (2004)
Boehm and Fayet, Nuc. Phys. B683, 219 (2004)
Pospelov et al., Phys. Lett. B662, 53 (2008)

Coherent DM scattering / DM at the SNS:
deNiverville et al., Phys. Rev. D84, 075020 (2015)
Dutta et al., Phys. Rev. Lett. 123, 061801 (2019)

SMSM
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Advantages of low-recoil detectors: cross section
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Mass (t) 

LSND 167

MiniBooNE 450

First CEvNS detector COHERENT CsI 0.0146

Future program at STS 10t Ar detector 10

χ χ

λ = ℎ/ 𝑄2 ≫ 𝑅𝑝

❑We’re dealing with low enough 𝑄2 that the deBroglie
wavelength is large compared to nuclear radius

❑All nucleons within nucleus recoil coherently from 
neutrino or DM scattering

❑Astroparticle direct-detection experiments have exploited 
this for years – now accelerator experiments can too with 
CEvNS detectors

Direct-detection experiments 
searching for light dark matter❑This coherency gives a 𝑍2 enhancement in the cross 

section → big effect for CsI (𝑍 of 53/55)

❑Game-changing – a small 14-kg detector produced 
strongest constraint on light dark matter yet with 
impressive potential in the future
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Advantages of spallation sources: constraining uncertainties

❑CEvNS is the principal beam-related background for DM search
• SM cross section precisely known, but uncertainties in detector response that are unique to each detector

❑Since DM is relativistic, it is expected coincident with protons on target
• No DM coincident with delayed CEvNS from υ𝑒/തυμ flux 

❑The delayed time window gives us a control sample – can constrain systematic uncertainties 
in situ and use to refine background estimates in the DM timing ROI

❑Ensures DM search never systematics limited – syst uncertainty shrinks as fast as stat

10

+ DM!

Bkg control region

DM ROI

Timing of SNS 
neutrino flux
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Future COHERENT sensitivity to dark matter

❑Immediate future: germanium detector currently being commissioned – will fully explore 
scalar target at lower masses

❑In coming years: future argon and cryogenic CsI detector from COHERENT – will be 
sensitive to a lower DM flux and probe the Majorana fermion target

❑In next decade: large detectors placed forward at the STS (dashed lines) will begin to 
ambitiously test even the most pessimistic spin scenarios
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5 year sensitivity at STS
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❑Having two operating neutrino flux sources so
near each other gives the SNS a unique
opportunity

❑As soon as the STS begins delivering beam, any
detector at either target will receive beam from
both targets
• Analyze neutrino disappearance on two different 

baselines using the well-understood CEvNS channel
within the same detector – correlated systematics

❑A 10-t argon CEvNS detector which will be large enough to see CEvNS from each target so 
that we sample oscillation effects from both baselines
• Assume LSTS = 20 m and LFTS = 121 m

• Uncertainties on detector response and interaction model are eliminated, similar to two-detector long-
baseline oscillation experiments (DUNE, NOvA, T2K, etc.)

The SNS: perfectly designed to test sterile neutrinos
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STS sensitivity to sterile oscillation parameters 

❑After five years of data at the STS, a 10t argon single-phase scintillation detector would 
eliminate the global best fit oscillation parameters to a high degree of certainty and test 
nearly the entire parameter space allowed by LSND/MiniBooNE
• Will implement an additional detection strategy with different and well-controlled systematic uncertainties 

to understand the LSND anomaly

❑A large detector at the STS would significantly improve on the reach of future CEvNS data 
accessible at the FTS collected due to simultaneous measurement on two baselines
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