

Status of the future Ricochet experiment

J. Billard,

on behalf of the Ricochet collaboration

Institut de Physique Nucléaire de Lyon / CNRS / Université Lyon 1

Magnificent CENNS, Munich, 23rd of March 2023

RICOCHET: *A future low-energy neutrino observatory*

RICOCHET is a **France, USA and Russia** wide collaboration accounting for about 60 physicists, engineers, and technicians, aiming at building a **low-energy neutrino observatory**

Northwestern University

UMASS AMHERST स

UNIVERSITY OF

TORONTO

RICOCHET: *A future low-energy neutrino observatory*

RICOCHET is a **France, USA and Russia** wide collaboration accounting for about 60 physicists, engineers, and technicians, aiming at building a **low-energy neutrino observatory**

RICOCHET: ILL-H7 nuclear reactor site

- 58 MW nominal thermal power
- ~11 evts/day/kg (50 eV threshold)
 - Evaluation using STEREO measurement [Nature 2023]
- 3 to 4 cycles per year: *excellent ON/OFF modulation to subtract uncorrelated backgrounds*
- Ricochet @ ILL design finalised
- Fast and thermal neutron flux characterised *Ricochet coll., Eur. Phys. J. C* 83 (2023) 1, 20
- Significant overburden (~15 m.w.e) to reduce cosmics
- Ricochet integration started !
 - First neutrino data mid-2024

Inner shielding:

PE/Cu: 30 cm

Pb/Cu: 15 cm

- Outer shielding:
- PE: 35 cm
 - Pb: 20 cm
- Cryogenic Muon Veto •
- Mu-Metal

Muon veto Soft iron

RICOCHET: *Expected backgrounds and monitoring*

Background model

- Targeted neutron background levels achievable to reach $S/B \sim 1$
- Muon veto under commissioning
- Reactogenic neutrons negligible (~ 10%)
- Reactogenic + cosmogenic gamma around 30 DRU but radiogenic not yet accounted for (screening ongoing)
- In-situ neutron detectors for accurate background subtraction: ³He, H, and cryogenic LMO

Magnificent CENNS - Billard

See G. Chemin's talk

RICOCHET: Blank assembly at IP2I (Lyon)

- Goal: Validation of the Ricochet setup and detectors' sensitivity from a 3 m.w.e low-background installation
- Validation of the Ricochet cryostat: cryogenic and vibration performances (done)
- Validation of the cold inner shielding: Pb, PE, and Cu layers + cryogenic muon veto (ongoing)
- Integration of the cold cabling, electronics and cryogenic detectors (upcoming)
- Validation of the DAQ readout, database and processing/analysis pipeline (see J. Colas' poster)
- Getting ready for ILL deployment by end-2023

Ricochet: Detector technology innovation

Technological key features of RICOCHET: Particle Identification down to sub-100 eV

Germanium semiconductor

Particle ID based on **Ionization / heat** ratio Magnificent CENNS - Billard

Zinc superconducting metal

Array of 9 32-g Zn detectors

Particle ID based on Prompt / delayed heat signals

Ricochet: Detector technology innovation

Technological key features of RICOCHET: Particle Identification down to sub-100 eV

Germanium semiconductor

Particle ID based on **Ionization / heat** ratio Magnificent CENNS - Billard

Array of 9 S. detector detector See D. Pinckney talk Nuclear-recoil equivalent energy [keVn] 0 0.05 0.1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Zinc superconducting metal

Particle ID based on Prompt / delayed heat signals

Ricochet: Detector technology innovation (CryoCube)

CryoCube specifications:	 Heat energy resolution: Ionization resolution: 	10 eV (RMS) 20 eVec (PMS)
	3) Optimized electrodes:	fid. V >70% + surf. rej. ?
	4) Timing resolution:5) Detector payload:	~100 us @ 100 eV 1 kg —> 750 g

<u>*Key feature</u>: Achieve Particle Identification* down to O(10) eV with a ER rejection > 10³</u>

CRYOCUBE: Scaling up to the kg-scale payload

- Mini-CryoCube: 3 bolometers @ 10 mK with their HEMT preamplifiers @ 1 K only 5 cm above
- Total heat load budget of the CryoCube array 1Kto-10mK stages of 4 uW
- First 3x MiniCryoCube assembly tests to begin in Ricochet cryostat @ Lyon summer 2023
- Validation of the full CryoCube array planned over the fall of 2023

CRYOCUBE: Individual detector design

- Total of 16 Ge detectors (PL and FID) already produced, validation ongoing...
- The results presented here are from using the 100K JFET-based EDELWEISS electronics
- First results with Ricochet-CryoCube HEMT-based electronics upcoming...

Magnificent CENNS - Billard

11

FID 38

 d_{lat}

 d_{eq}

 w_{al}

CRYOCUBE: *Heat channel optimization*

• Achieved an averaged 25 eV resolution on 10 Ge detectors with JFET electronics

- Among the best resolution-to-mass ratio from above ground operation
- Exhibit the largest CENNS signal strength per crystal of about 0.3 evt/day
 Goal: 0.6 evt/day 8.8m away from the ILL reactor.
- Targeted 10 eV resolution expected with *new CryoCube JFET-based electronics*.

NTD Heat sensor

Magnificent CENNS - Billard

Julien Billard

CRYOCUBE: *HEMT-based ionisation preamplifiers*

Ricochet coll., paper in preparation (2023)

• 30 eVee ionisation resolution achieved on all three detectors operated in a MiniCryoCube in R&D cryostat

• Factor of 7 and 11 improvement w.r.t to previously achieved resolution in EDW/CDMS and similar to best HPGe @ 77K

Reaching over the Heat Only wall ! (see F. Reindl LEE talk)

Rejection of 10⁵ HO while keeping ~10/20% CENNS signal Need a precise NR ionisation yield measurement at 10 mK => *Ricochet's DT in-situ calibration source*

Coming soon: dual heat-ionisation measurement !

Conclusion

Design phase: done

Commisioning: ongoing

Ricochet @ ILL: in construction

Data Vs Monte Carlo studies suggest a signal-to-noise ratio ~1, provided that the gamma and heat only backgrounds can be efficiently rejected with PID

The CryoCube Ge detector technology is nearing its targeted performance and will be ready for its deployment in the Ricochet experiment at ILL by early-2024

Exciting new updates from the Ricochet Q-Array Zn detector technology (see D. Pinckney's talk)

First neutrino data to begin over the summer 2024

Backup

Ricochet: *searching for new physics*

Technological key features of RICOCHET: Particle Identification down to sub-100 eV

11 CENNS events/day and a 10³ CENNS-spectrum averaged ER rejection ~4-to-20 sigma CENNS detection after one reactor cycle including LEE or not (not shown)

Magnificent CENNS - Billard

Julien Billard

CRYOCUBE: Expected CENNS sensitivity at ILL

Baseline scenario

- CENNS sensitivity estimation considering:
 - The Ricochet at ILL background model
 - An outer muon veto with a time coincidence window of 350 us
 - The CryoCube anticipated performance (PL38)
 - 7 reactor cycles (~ 2 years)
 - Lindhard Ge ionization yield model

Worst case scenario

- Similar condition as baseline scenario but with the addition of a strong Heat Only background inducing a low-energy excess as observed in all low-threshold cryogenic experiments:
 - EDELWEISS-Surf: 1e6 DRU at 50 eV
 - CRESST/NuCLEUS: 1e8 DRU at 20 eV
 - CDMS/Si-PD: 1e9 DRU at 20 eV

CRYOCUBE: Expected CENNS sensitivity at ILL

Nuclear-recoil equivalent energy [eVnr] 1200 200 400 600 800 1000 Number of counts With NR selection Gammas Witout NR selection Neutron Back. w. NR selec. (Z = 45.71) Heat Only 10⁴ CENNS Back. w/o NR selec. (Z = 34.17) Opt. Int.: [46, 898] eVnr & Ion > -150 eVee 10^{3} 10^{2} 10 200 1000 1200 1400 Heat energy [eV]

Baseline scenario

CENNS signal significance (after one cycle): **17.3 sigma** Final CENNS precision measurement: **<2% (stat.)** Effective CENNS threshold: **50 eV**

Full accomplishment of Ricochet's scientific goals, orders of magnitude improved sensitivity w.r.t current constraints

Worst case scenario

CENNS signal significance (after one cycle): **4.2 sigma** Final CENNS precision measurement: **<8% (stat.)** Effective CENNS threshold: **250 eV**

Partial accomplishment of Ricochet's scientific goals:

- Full sensitivity to: NSI, heavy bosons, and sterile-v
- Reduced sensitivity to light bosons

Particle identification is key to mitigate efficiently this yet-to-be-understood overwhelming background

RICOCHET: Controlling the signal systematics

We anticipate our final CENNS measurement to be limited by the following dominating systematics:

1. The anti-neutrino reactor predictions:

Expected to be at the level of 3% despite of the large unknown below the IBD threshold

2. The neutron background in the CENNS region of interest:

Considering the use of lithiated, He3 and H proportional counters to monitor the in-situ fast neutron flux to subtract it from Ge and Zn data with reduced systematics

3. Low-energy nuclear recoil calibrations:

Dedicated low-energy, mono-energetic (24.4 keV), and pulsed neutron source from a DT generator

Ricochet: Appreciating the CENNS challenge

Neutrino-WIMP equivalent model independent of target material CENNS signal from reactor neutrino is similar to a 2.7 GeV WIMP with a cross section depending on the flux Ricochet needs to be as sensitive as DM experiments but from above ground !

