

Calibration of nuclear recoils at the 100 eV scale in cryogenic detectors using neutron capture

G. Soum-Sidikov¹ on behalf of the **CRAB collaboration**¹IRFU, CEA, Université Paris-Saclay

Magnificent CEvNS – 23 March 2023 Munich

100eV nuclear recoils

Maximal recoil energies for various processes

Sub-keV nuclear recoils are the expected signal for:

- CEvNS with MeV neutrinos
- Direct detection of low-mass O(GeV) DM

Understanding the sub-keV nuclear recoil signal is crucial for upcoming experiments searching for new physics

Calibrated sub-keV nuclear recoils from:

- Elastic scattering of keV neutrons
- Nuclear recoils following MeV γ emission

CRAB calibration method

- 1 Thermal neutron capture
- **2** Emission of a single- γ with energy $S_n \sim 5-8 \text{MeV}$ Leaves the cm-size detector without energy deposition
- 3 Well-defined recoil energy (two-body kinematics)

$$\frac{E_{\gamma}^2}{2Mc^2} \sim 100$$
eV-1keV

High-precision & all specifications of physics:

- Pure nuclear recoils
- In the bulk of the detector
- In the sub-keV region

CRAB targets

Cryo-det	Target	Nuclear	F.O.M.
crystal	Isotope	Recoil (eV)	(Ab*σ*I) -
Ge	⁷⁰ Ge	416.2	122
	⁷⁴ Ge	303.2	54
Si	²⁸ Si	1330	36
	²⁸ Si	989.9	118
Al ₂ O ₃	²⁷ AI	1145	616
CaWO ₄	¹⁸² W	112.5	7506
	¹⁸³ W	160.3	823
	¹⁸⁶ W	85.8	281

Suitable candidates have

- High natural abundance
- Large neutron capture cross-section
- High branching ratio for single-γ transition

The four main cryodetectors used in the community could be calibrated via CRAB

CRAB in CaWO₄

Recoil energy spectra for a NUCLEUS CaWO₄ detector in a thermal neutron beam from GEANT4+FIFRELIN simulations

Without energy resolution

Energy resolution: $\sigma = 5eV$

Calibration peak @112eV prominent enough for a proof of concept measurement with less favorable background conditions

Proof of concept: experimental setup

27-30 Jul 2022, TUM

Background data: 18.9h

Source data: 40.2h

- 0.75g **NUCLEUS** CaWO₄ crystal + TES
- Baseline resolution: ~6.5eV
- 55Fe source for electronic recoil calibration @6keV

Portable neutron source near a dry cryostat (<7mK) @ TUM

3MBq ²⁵²Cf source

- MeV fission neutrons thermalized by PE
- Fission **y** attenuated by lead

Proof of concept: blind peak search

NUCLEUS/CRAB joined publication arXiv:2211.03631, 2022

Delta chi2-test with binned likelihood fits

Two exponentials

- steep rise @low energy
- Fast neutron scattering

+1 gaussian for the expected peak

Significance: 3σ (2-sided)

Peak at 106.7 ± 2eV Std deviation: 6.0 ± 1.5eV

Proof of concept: data vs model

NUCLEUS/CRAB joined publication arXiv:2211.03631

 Two binned likelihood fits of the model on the data, with/without the capture signal

Significance: 6σ (2-sided)

- With the capture signal:
 - Parameter values fully compatible with blind peak search
 - $chi^2/ndf = 58.06/58$

= **1st observation** of neutron-capture-induced peak at 100eV scale, with CaWO₄
Demonstration of an **in-situ non-intrusive calibration** for DM and CEvNS

CRAB with pure thermal neutron beam

250kW TRIGA Mark-II nuclear reactor, TU-Wien

- No fast neutrons background
- Counting rate dominated by the CRAB process

--> high-precision and full use of the method potential

research reactor

Foreseen experimental setup

Beamline being prepared by TU-Wien 10-1000 n/s/cm²

γ-cryodetector coincidence

Detailed description of γ cascades using FIFRELIN [O. Litaize et al., Eur. Phys. J. A (2015) 51:177] Rejection of multi-γ continuum

γ-detection solution under study:

- BGO detectors in cryostat
- Larger segmented γ-detectors outside the cryostat

With coincidence

 $E_{\gamma} = 5.47 \pm 0.20 \text{ MeV}$

Third calibration peak @85eV

Extend the method:

- Directionality studies (welldefined recoil direction)
- Additional calibration features
 - Linearity studies with the three W peaks
 - Other materials

Germanium cryo-detector

No resolution effect

With 20eV resolution

With resolution and γ-tagging

EDELWEISS (2cm length cube) cryodetector

E. Armengaud et al. Phys. Rev. D, 99:082003, 4 2019

- Calibration peak @416eV
- Ionization should still be accessible --> could provide a NR/ER quenching measurement in a high-quenching region
- Further calibration perspectives using timing...

CRAB 2: timing effects

$$E_{recoil} = \left(\sum_{\gamma} \vec{p}_{\gamma}\right)^2 / 2M_{nucleus}$$

Continuum of possible recoil energies

FIFRELIN coupled to IRADINA (Binary Collision Approximation code) to simulate in-flight γ emission

- Timing changes the energy deposited in the bolometer
- Single-γ calibration peaks are not affected

C. Borschel, C. Ronning/Nucl. Instrum. Methods B 269 (2011) 2133

Timing effects in Silicon

Recoil energy spectra in a Si cryodetector

Probable 2**γ**-cascade involving a metastable nuclear level

Typical recoil durations: 10⁻¹⁴-10⁻¹²s

Calibration feature

- Present only when in-flight γ -emission is considered
- Detector with larger mass (and lower E resolution) can compensate for the low $\sigma_{capture}$

Conclusion

- CRAB: unique accurate calibration method for the nuclear recoil response of cryodetectors
- Proof of concept with portable thermal neutron source and NUCLEUS CaWO₄
 - 3σ significance for 112eV peak from single- γ de-excitation of $n + ^{182}W$
 - 6 σ significance for the contribution of CRAB events
 - In-situ calibration for cryodetectors

- pure thermal neutron beam
- γ-tagging and timing effects: additional calibration features
 - extension to Ge, Si, Al₂O₃
 - Linearity, directionality studies, ...

Back-up slides

CRAB targets

Cryo-det crystal	Target Isotope	F.O.M. (Ab*σ*I)	E _γ (keV)	Nuclear Recoil (eV)	
Ge	70 Ge 74 Ge	122 54	7416 6506	416.2 303.2	
Si	²⁸ Si ²⁸ Si	36 118	8473 7199+1273	1330 989.9	
Al ₂ O ₃	²⁷ Al	616	7725	1145	
CaWO ₄	183W 186W	7506 823 281	6191 7411 5467	112.5 160.3 85.8	

Suitable candidates have

- High natural abundance
- Large neutron capture cross-section
- High branching ratio for single-γ transition

Within reach of ionization channel Quenching studies

Interesting cases of 2y transitions

Strongest single-y transition

The four main cryodetectors used in the community could be calibrated via CRAB

Large F.O.M
3 peaks -> Linearity study

CRAB simulations: FIFRELIN

O. Litaize et al., Eur. Phys. J. A 51, 1 (2015)

- Developed to model the de-excitation of fission fragments
- FIFRELIN builds the level scheme
 - From evaluated nuclear data
 - Completed with theoretical level density models
 - Following neutron capture, compound nucleus is in a state close to Sn
 - 2. Then de-excitates towards ground state emitting **γ**
 - **3. FIFRELIN** generates **γ** cascades with a Monte Carlo process from Sn to G.S.

Accurate description of the recoil spectrum

- 1γ de-excitations : calibration peak
- Multi γ de-excitations: recoil energy depends on γ energies and relative directions
 - --> recoil energy continuum
- **FIFRELIN:** fine predictions of de-excitation cascades [O. Litaize et al., Eur. Phys. J. A (2015) 51: 177]
- Lower energy γ and conversion electrons can saturate the detector with energy deposition above 1keV
 - --> limit the acceptable neutron flux
 - --> no direct impact on calibration peaks

Timing effects in Germanium

Timing effects in Germanium

Prompt hypothesis: $\tau_{\gamma} << \tau_{recoil}$

In-flight γ-emission

Recoil studies with Iradina

- W recoils with 112eV in CaWO₄
 - W looses less energy in collisions with light elements Ca and O than with W
- Ge recoils with 416eV in Ge
 - Collides only with similar mass targets

Evolution of the kinetic energy of the PKA, collision after collision
Renormalization to initial recoil energy

Characteristic duration between two collisions: few 10⁻¹⁴s

To be compared to half-lives of nuclear energy levels (next slide)

Nuclear level half-lives

Half-lives of excited nuclear levels

Low-energy transitions (≤1 MeV) are likely to happen "in-flight", while the nucleus is still recoiling

