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Practical Information

• All material available on indico (https://indico.cern.ch/event/1215362/timetable/)  

• Don’t hesitate to contact me in case you have questions (Victoria.wagner@tum.de) 
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Outline 

• Part 1 - Principles of neutrino detection  
• Neutrino interactions 
• Discovery of the neutrino 
• Principles of particle detectors: heat, ionization, scintillation

• Part 2 – Neutrino Experiments
• Neutrino Oscillations with JUNO – large mass scintillator experiment
• CEvNS detection – COHERENT and NUCLEUS
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Part I – Principles of Neutrino Detection
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How do we detect 
neutrinos? 

How was the neutrino 
discovered? 

Which techniques are used 
to detect particles? 



Low-energy* neutrino physics
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mean free path of tens of light years in dense materials 

By Bruno Gilli/ESO - http://www.eso.org/public/images/milkyway/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=11657991

How can we detect such a 
weakly interacting particle 
like a neutrino with 
experiments? 

* here: MeV neutrinos

Wishlist: 
• High statistics -> mass
• Precise measurement of parameters 

(rate, energy, direction, etc.) -> recoils of 
(charged) secondaries 



Inverse Beta-decay (IBD)

Inverse b- decay 

• Capture of electron neutrino

• Threshold for nµ (nt) is 110 MeV (3.5 GeV)
• Used for e.g. for solar neutrino detection 
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adapted from S. Mertens

Inverse b+ decay 

• Capture of electron anti-neutrino

• Threshold energy of 1.8 MeV for ne

• Most important channel for reactor neutrinos

* quasi-elastic neutrino-nucleon scattering 



Elastic Scattering on Electrons

Charged – current 

• Neutrino scattering via the exchange of W-
boson 

• Energy threshold for muon/ tau production

Neutral – current

• Neutrino scattering via the exchange of Z-
boson

• Flavor-independent
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adapted from S. Mertens



Coherent Elastic Neutrino-Nucleus Scattering 
(CEvNS)
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ne,µ,t
ER

Z0

Dominant scattering process for Ev < 50 MeV

• Neutrino scattering via the exchange of Z-boson

• Flavor-independent 

• No energy threshold

• Large cross-section:  ! ≈
G!
"N#

4&
E$"



Neutrino Scattering in Matter
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Neutrino Interaction in Matter
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detector

detector

e--ne & n-nucleus - scattering 

IBD 

e-/ nucleus

nucleus

e+

What are our 
observables? 



Neutrino Interaction in Matter
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detector

detector

e--ne & n-nucleus - scattering 
• Continuous recoil spectrum with 

IBD 
• Proton recoil small O(few keV) compared to the 

kinetic energy of positron (Ekin) 
• Reconstruction of neutrino energy 

e-/ nucleus

nucleus

Tmax =
2E$"

M+ 2E$

En / Tmax e- - ne CEvNS (A = 100) 

10 MeV 9.8 MeV 2.1 keV

1 MeV 0.8 MeV 0.02 keV 

e+

E% = E&$ + m' −m( = E)*(,, + 1.804 MeV



Neutrino Interaction in Matter

CEvNS School, March 2023 Neutrino Detection (V. Wagner, TUM) 12

detector

detector

e-/ nucleus

nucleus

e+

• Measure the recoiling particles produced in the 
n-interaction with matter 

• Number of neutrino events:                                                     
!/ = ! ∗ ∫% &/ ' &/ (&/

≈ 34
-
./0 in a 1t water detector, 

f = 1012 cm-2 s-1, and s = 10-44 cm

Number 
of targets

Neutrino 
flux

Interaction 
cross-section



Neutrino Interaction in Matter
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detector

detector

e-/ nucleus

nucleus

e+

• Measure the recoiling particles produced in the 
n-interaction with matter 

• Distinguish n-signal from                        
background

• Study:
• Rate (sinteraction, En,) 
• Dynamics of interactions                         

(s(En, Erecoil, ascattering))

• Identification of charged leptons 
• High energy/ directional resolution
• High mass



Part I – Principles of Neutrino Detection
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• Neutrinos interact via the 
weak force only

• We measure the (charged) 
particles produced in the 
neutrino interaction with 
matter  

• Count the number of 
neutrino events given by 
&# = & ∗ ∫2 '# ! '# 3'#

How do we detect 
neutrinos? 

How was the neutrino 
discovered? 

Which techniques are used 
to detect particles? 



Project Poltergeist – the discovery of the neutrino
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Nobel Prize (1995), Frederick Reines (Clyde Cowen died 
1974)
“for pioneering experimental contributions to lepton 

physics […] for the detection of the neutrino“  

• 1953: Hanford reactor site
• 1956: Savannah river reactor site 



Project Poltergeist – IBD signature
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e+

n

g (511 keV)

g (511 keV)

• 5, + 6 → 8 + 91

• Scintillation light detected by PMTs 
• Scintillator acts as neutron moderator 

• Moderation takes a few µsec (delayed-
coincidence) 

• Neutron captured on 113Cd which has a cross-
section 4 orders of magnitude larger than the 
one on H.

_

91 + 92 → : + :

;, = + 8 → ; + 1, = + :

Photomultiplier 
tube (PMT)

Cd

g (<9.2 MeV)

Cd-doped 
scintillator 

ne



Herr Auge 
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Hanford, USA 

• 300 l of scintillator 
• 90 PMTs
• Boron-paraffin & lead to shield 

detector against reactor g’s and 
neutrons 

• Expected rate of delayed 
coincidences 0.1-0.3 counts/ minute

• Measured: ~5 counts/ minute

• What could this be?  

e+

n



Herr Auge 
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Hanford, USA 

• 300 l of scintillator 
• 90 PMTs
• Boron-paraffin & lead to shield 

detector against reactor g’s and 
neutrons 

• Expected rate of delayed 
coincidences 0.1-0.3 counts/ minute

• Measured: ~5 counts/ minute
• Identified cosmic rays as the 

dominant background

e+

n



Improved Design – The Savannah River Experiment 
• More powerful reactor 

• 2 x 200 l Cd-doped water target &  3 x 1400 l liquid scintillator detector with 110 PMTs 

• Add energy and spatial information of signals
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Neutrino Signals

• Positron: 
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• Energy cut: 0.2 < E < 0.6 MeV 
• Prompt coincidence (200 ns) 

• Neutron:
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• E > 0.2 MeV with 3 < Etot < 11 MeV 
• Delayed coincidence with positron signal 

(<30 µsec)  

CEvNS School, March 2023 Neutrino Detection (V. Wagner, TUM) 20

I

II

III

A

B



Neutrino Signals

• Positron: 
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• Energy cut: 0.2 < E < 0.6 MeV 
• Prompt coincidence (200 ns) 

• Neutron:
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• E > 0.2 MeV with 3 < Etot < 11 MeV 
• Delayed coincidence with positron signal 

(<30 µsec)  
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What would a muon 
signature look like?



Neutrino Signals

• Positron: 
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• Energy cut: 0.2 < E < 0.6 MeV 
• Prompt coincidence (200 ns) 

• Neutron:
• Energy deposition in I/II or II/III
• No energy deposition in third detector
• E > 0.2 MeV with 3 < Etot < 11 MeV 
• Delayed coincidence with positron signal 

(<30 µsec)  
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Part I – Principles of Neutrino Detection
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• Neutrinos interact via the 
weak force only

• We measure the (charged) 
particles produced in the 
neutrino interaction with 
matter  

• Count the number of 
neutrino events given by 
&# = & ∗ ∫2 '# ! '# 3'#

How do we detect 
neutrinos? 

Which techniques are used 
to detect particles? 

• In 1956 by Cowen and 
Reines, Project 
Poltergeist

• The neutrino was 
detected via inverse 
beta decay 

• Unique signature: 
coincident signal of 
positron and neutron 
capture

How was the neutrino 
discovered? 



• What makes a good neutrino detector?

Challenges for Neutrino Detectors
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detector

detector

e-/ nucleus

nucleus

e+



Challenges for Neutrino Detectors

• Large detector mass – scalability 

• Stable performance of O(years)

• Low background 
• High energy resolution & low threshold 

• Understanding of detector response
• Particle identification 

• Use of different target materials  
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exposure}

detector

detector

e-/ nucleus

nucleus

e+

-> How well can we measure the recoil of the 
secondary particles? 



Energy Dissipation in Detectors
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Electronic recoil Nuclear recoil 

high energy electrons

secondary 

recoil

secondary 

recoil

Ionization Lattice displacement Ionization (few 10%)Scintillation 
(few %)

Scintilla
tion 

(few %)
Phonons Phonons



Measuring the recoiling particles 
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Phonons/ Heat Light

Ionization

nucleus

e+

• Signal strength
4 : eV/ quanta

• Resolution 
Δ' ~ &

+ detector noise 
+ read-out noise 

• Gas: O(10 eV)
• Semiconductor: O(eV) 

Scintillator: 
• O(100 eV) need to 

produce O(eV) photon • O(meV)



Phonon Signals

• Measure DT = DE/C 

• C: heat capacity  C ~T3 (dielectric)

C ~T (metal) 

• Temperatures of O(<100 mK) 

• Example (24 g Al2O3) 

DT/DE ~120 µK/ keV
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n

Thermal bath
weak thermal link

absorber 
crystal
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Phonon Signals

Particle interaction: 

• High-frequency optical phonons 

• Decay to acoustic phonons

• Phonons decay ~w5 

• Ballistic streaming of phonons 

• Thermalization via inelastic scattering at the 

surface
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Phonon Signals

CEvNS School, March 2023 Neutrino Detection (V. Wagner, TUM) 34

Thermometer: DT -> electrical signal

• Transition edge sensor (TES)
• Fast O(µs-ms) response 
• Limited dynamic range
• SQUID read-out  

• Neutron transmutation doped (NTD)
• Slow response (ms) - thermal measurement
• Wide dynamic range 
• Simple read-out 

• Magnetic Calorimeter (MMC) 

• Microwave kinetic inductance detectors (MKIDs)

R = R(T)
M = M(T)

DR = O(100 mW)

DT = O(100 µK)

TES

2−10 1−10 1T [K]

210

410

610

810

1010

]
Ω

R 
[

DR = O(8 MW)

DT = O(100 µK)

NTD



Phonon Detectors

üCan reach eV energy thresholds & resolution 

üMeasure full energy, independent of particle type

üWide range of target materials 
üLarge synergy of CEvNS and light Dark Matter 

❗Limited in mass (<kg) 
❗Multiplexing of channel read-out 
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DE ≈ kBT2C(T)



Ionization/ Charge Read-Out

• Ionization produces charges 

• e-/h+ pairs in semiconductors 

• e-/ion pairs in gases

• Apply E-field to separate charges

• Signal: induce charges/ current on electrodes

• The signal produced by the motion of charges 

in the detector medium   
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q±
e-

h+

E-field

Electrode

Electrode



Signal produced by moving charges 

a) A positive charge q approaches an isolated 
electroscope 

b) The closer q gets, the more charges are 
induced 

c) What happens if we ground the 
electroscope? 
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Signal produced by moving charges 

a) A positive charge q approaches an isolated 
electroscope 

b) The closer q gets, the more charges are 
induced 

c) If the electroscope is grounded a current 
flows which continues as long as q keeps 
moving 
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Semiconductor (HPGe) 
• Only a fraction of energy converted to ionization

• Need to be operated at low temperatures (LN) 
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Element Egap [eV] Ee/h [eV] F

Si 1.12 3.65 0.115

Ge 0.66 2.96 0.13



Semiconductor (HPGe) 
• Only a fraction of energy converted to ionization

• Need to be operated at low temperatures (LN) 
• Detectors based on p-n junction to deplete sensitive 

volume from free charges 

• Reverse bias to increase depletion zone: 

• High-purity germanium (HPGe) with N O(1010 atoms/cm3)
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Element Egap [eV] Ee/h [eV] F

Si 1.12 3.65 0.115

Ge 0.66 2.96 0.13

d ~
V

eN

1/2



Charge Detectors

üExcellent energy resolution DE ≈ F ϵ E

üPosition sensitive

üDirectionality for gas detectors 

❗Low mass/ low density 

❗Response particle type dependent (dE/dx)
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Element Egap [eV] Ee/h [eV] F

Si 1.12 3.65 0.115

Ge 0.66 2.96 0.13



Light/ Scintillation 

• Scintillation = creation of luminescence by absorption 
of ionization radiation 

• Subsequent de-excitation releases scintillation 
photons 

• Materials: 
• Inorganic crystals 
• Organic scintillators (liquid, plastic) 
• Noble gas liquids 

• Typically only 1-10 % of recoil 
converted to light 
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Inorganic Scintillators 
• Band structure of the lattice changed by activation centers 
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Inorganic Scintillators 
• Band structure of the lattice changed by activation centers 
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• AC: Absorption 
• CB: thermalization 
• BD: luminescence 
• F: quenching (radiationless)



Inorganic Scintillators 
• Band structure of the lattice changed by activation centers 

• Materials (examples): 
• Doped alkali metal halides: NaI(Tl) and CsI(Tl) 
• Oxides: CaWO4 or BGO (Bi4Ge3O12)

• Typically 10% scintillation efficiency -> good energy 
resolution 

• Crystals -> low mass 
• Commercially available 

• Detector response energy and particle dependent 
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Organic Scintillators 
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Energy levels of “free” valence electrons of the 
molecule • Transition from T1 to S0 forbidden 

• Phosphorescence (ms) 
• Delayed fluorescence (µs-ms) 

aromatic hydrocarbon compounds, (C-H) 



Organic Scintillators 
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Energy levels of “free” valence electrons of the 
molecule • Transition from T1 to S0 forbidden 

• Phosphorescence (ms) 
• Delayed fluorescence (µs-ms) 

• The population of S or T depends on dE/dX
-> used for PSD 

aromatic hydrocarbon compounds, (C-H) 



Organic Scintillators 
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Energy levels of “free” valence electrons of the 
molecule • Transition from T1 to S0 forbidden 

• Phosphorescence (ms) 
• Delayed fluorescence (µs-ms) 

• The population of S or T depends on dE/dX
-> used for PSD 



Liquid Noble Gases

• Excimer in two states: 
• short-lived singlet (ts)
• long-lived triplet (tl)

• Population of states depends on dE/dx -> PSD 

• For LAr ts = 6ns and tl = 1.6µs

• For LXe ts = 4ns and tl = 22ns
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Ar
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LAr: 125nm
LXe: 175nm

Collision with 

other atoms

De-excitation and 

dissociation



Some Examples for Scintillators
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Organic Scintillators Inorganic Crystals Liquid Noble Gases

BC-408 NaI(Tl) LAr

Density r = 1 g/cm3 r = 3.7 g/cm3 r = 1.4 g/cm3

Decay time 2.1 ns 0.25 µs 5 ns / 1.6 µs

Photons/ MeV 2 x 102 4 x 104 4 x 104

Wavelength maximum [nm] 423 410 125

Advantages 

• Very fast
• Easily shaped
• PSD 
• Cheap 

• High light yield & good 
energy resolution

• High density

• High light yield
• Fast 
• PSD (LAr) 

Disadvantages • Lower light yield • Crystals (expensive) 
• T-dependence 

• Expensive 
• LAr intrinsic background
• VUV light 

Wishlist: 

• High efficiency

• Transparency

• Emission in spectral range of PMTs
• Fast response 



Photosensors in a Nutshell 
Photomultiplier Tube (PMT) 

+ Semiconductor devices 

• E.g. (Avalanche) photodiodes, SiPMs
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Signal output:
• Quantum efficiency O(25%)
• Coverage 

from Wikipedia



Light-Based Detectors 

üScalability for liquids 

üPrize (some) 

üParticle ID 

❗Response particle dependent
❗Energy resolution: light yield low 
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Phonons/ Heat Scintillation/ Light

Ionization/ Charge

nucleus

e+

ü Excellent resolution 
ü Fast response (ns)
- Scalability 
- Response depends of particle type

ü Excellent resolution
ü Response (nearly) 

independent of particle 
type 

- Slow response (us-ms)
- Scalability 

ü Large masses possible
ü Pulse shape discrimination
- Relatively poor energy 

resolution
- Response depends on 

particle type

The Observables – (some) Pro’s and Con’s 



Combing channels yields background discrimination
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Phonons/ Heat

nucleus

e+

Phonons measure full 

energy, (nearly) independent 

of particle type

Ionization and scintillation typically 
depend on dE/dx, i.e. they are 
§ energy and 
§ particle 
dependent 

Cryogenic 
semiconductor

Cryogenic scintillating crystal

Drift charges in liquid 
noble gas detector

Ionization/ Charge

Scintillation/ Light



Combing channels yields background discrimination
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Different Detector Types
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Phonons/ Heat

HPGe, Si CCDs Directional 
detectors (TPCs)

Cryogenic 
calorimeters

Superheated 
liquids

Scintillating 
crystals

Liquid noble gas 
detectors

Scintillating cryogenic 
calorimeters

Cryogenic calorimeters 
with charge read-out

Liquid noble dual-
phase TPC  

nucleus

e+

Water Cherenkov 
detectors

Ionization/ Charge

Scintillation/ Light

Liquid 
scintillators



Part I – Principles of Neutrino Detection
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• Neutrinos interact via the 
weak force only

• We measure the (charged) 
particles produced in the 
neutrino interaction with 
matter  

• Count the number of 
neutrino events given by 
&# = & ∗ ∫2 '# ! '# 3'#

How do we detect 
neutrinos? 

Which techniques are used 
to detect particles? 

• Heat/phonon measure full 
recoil energy with excellent 
energy resolution/ 
threshold

• Ionization gives very good 
energy resolution

• Liquid scintillation detectors 
build large neutrino 
detectors

• Combination of channels 
provides background 
discrimination  

• In 1956 by Cowen and 
Reines, Project 
Poltergeist

• The neutrino was 
detected via inverse 
beta decay 

• Unique signature: 
coincident signal of 
positron and neutron 
capture

How was the neutrino 
discovered? 



Outline 

• Part 1 - Principles of neutrino detection  
• Neutrino interactions 
• Detection of charged particles 
• Discovery of the neutrino 
• Principles of particle detectors: heat, ionization, scintillation

• Part 2 – Neutrino Experiments
• Neutrino Oscillations with JUNO – large mass scintillator experiment
• CEvNS detection – COHERENT and NUCLEUS
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