QTFP Winter School 2023 - QSimFP Tutorial

Sam Patrick, Sebastian Erne, Silke Weinfurtner

January 2023

1. The equations of motion for a shallow fluid flow are,

$$
\partial_{t} \phi+\frac{1}{2} \mathbf{v}^{2}+g h=0, \quad \partial_{t} h+\nabla \cdot(h \mathbf{v})=0
$$

where $\mathbf{v}=\nabla \phi$ is a d-dimensional velocity field, $g \simeq 9.81 \mathrm{~ms}^{-2}$ is the gravitational accleration and h is the height of the fluid. By perturbing $\phi \rightarrow \phi+\delta \phi$ and $h \rightarrow h+\delta h$, show that velocity potential fluctuations obey,

$$
\begin{equation*}
\left(\partial_{t}+\nabla \cdot \mathbf{v}\right)\left(\partial_{t}+\mathbf{v} \cdot \nabla\right) \delta \phi-g \nabla \cdot(h \nabla \delta \phi)=0 \tag{1}
\end{equation*}
$$

2. Using (1), find a dispersion relation for $\delta \phi$ in a homogeneous fluid, i.e. when \mathbf{v} and h are constant. Give an expression for the wave speed c in a frame co-moving with the fluid.
3. Show that (1) can be written in the form,

$$
\begin{equation*}
\partial_{\mu}\left(f^{\mu \nu} \partial_{\nu} \delta \phi\right)=0, \quad \partial_{\mu}=\binom{\partial_{t}}{\partial_{i}} \tag{2}
\end{equation*}
$$

where $i=1 \ldots d$, and find the components of $f^{\mu \nu}$. Hint: it will help to write,

$$
f^{\mu \nu}=\left(\begin{array}{cc}
f^{t t} & f^{t j} \\
f^{i t} & f^{i j}
\end{array}\right)
$$

4. Write the form of the metric tensor $g^{\mu \nu}$ such that $f^{\mu \nu}=\sqrt{-g} g^{\mu \nu}$, where g is the determinant of the metric. Find a condition for which the identification above is valid.

You may find the following facts helpful. A matrix M of the form,

$$
M=C\left(\begin{array}{cc}
a^{2}-b^{i} b^{i} & -b^{i} \\
-b^{j} & \delta^{i j}
\end{array}\right)
$$

has inverse and determinant,

$$
M^{-1}=\frac{1}{a^{2} C}\left(\begin{array}{cc}
-1 & -b^{j} \\
-b^{i} & a^{2} \delta^{i j}-b^{i} b^{j}
\end{array}\right), \quad \operatorname{det}(M)=-a^{2} C^{d+1},
$$

where C is a conformal factor, a is a scalar and b is a $1 \times d$ vector.

