



### **QSimFP** - lecture II

### Ultracold atoms as analogue quantum simulators

### Sebastian Erne

Atominstitut, Technische Universität Wien

sebastian.erne@tuwien.ac.at

QTFP PhD school

10-01-2023 @Cambridge

### Quantum field simulators with ultracold atoms

#### **Analogue gravity**

Small perturbations in (quantum) fluids are described by an effective relativistic field theory in curved spacetime

QFT in curved spacetime, black hole physics, ...

#### **Emergent QFTs**

Build model QFTs as the coarse grained low-energy description of many-body systems

Bose-Hubbard model, sine-Gordon model, Hydrodynamics, ...

#### Continuous local observers

Study the observer(s) response dependent on its motion / position / etc

Unruh effect, entanglement

Quantum many-body systems

#### Hamiltonian engineering

Techniques like e.g. Floquet engineering realize inaccessible model systems

FVD, artificial gauge fields, ...

#### Analogue cosmology

Time-dependent effective spacetimes enable the study of analogues for cosmological scenarios

Dynamical casimir effect, Inflation, pre-/re-heating, ...

#### Universality

Study universal properties independent of the microscopic details of the system

Equilibrium universality classes, Non-thermal fixed points, topology,

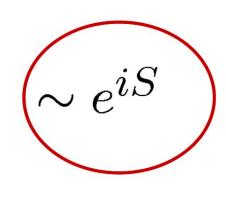
...

### In a nutshell: What's hard in real-time QFT?

All information about non-equilibrium evolution is in the generating functional

$$Z[J,R;\rho_D] = \int \mathscr{D}\varphi e^{i\left(S[\varphi] + \int_x J(x)\varphi(x) + \frac{1}{2}\int_{xy}R(x,y)\varphi(x)\varphi(y) + \frac{1}{3!}\int_{xyz}\alpha_3(x,y,z)\varphi(x)\varphi(y)\varphi(z) + \dots\right)}$$

#### The problem about real time



#### *non-positive definite probability measure!*

→ Preempts the use of standard importance sampling techniques

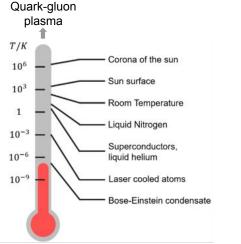
← numerical simulations

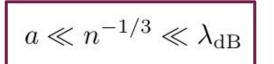


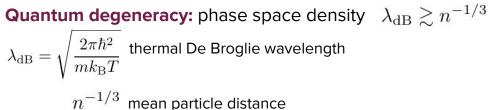
→ A quantum simulator using cold atoms would not have this problem

←→ experiments ¿

### Ultracold atoms - a brief overview

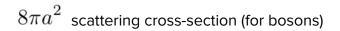


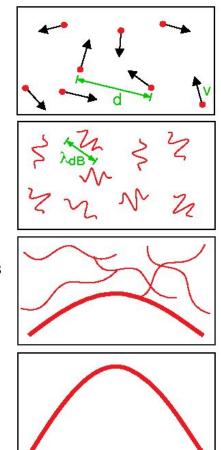




#### Interacting atoms but dilute gas: $na^3 \ll 1$

a scattering length for s-wave interactions





High **Temperature T:** thermal velocity v density d<sup>-3</sup> "Billiard balls" Low Temperature T: De Broglie wavelength  $\lambda_{dB}=h/mv \propto T^{-1/2}$ "Wave packets" T=T<sub>crit</sub>: **Bose-Einstein** Condensation

λ<sub>dB</sub> ≈ d "Matter wave overlap"

T=0: Pure Bose condensate "Giant matter wave"

### **Discovering new phases of matter**

#### **Preparation:**

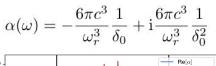
- → Catch atoms in magneto-optical trap (MOT)
- → Laser-cooling to  $\Box$  50  $\mu$ K
- → Transfer to conservative trap (non-res. light)
- $\rightarrow$  Evaporative cooling

#### **Dynamics:**

 $\rightarrow$  E.g. quench of Hamiltonian to initiate non-equilibrium dynamics

#### Ultracold atoms as model systems for quantum many body physics

- → Dilute but *interacting* gases
- → Tunability
- → Microscopic properties well characterized (atomic physics)
- → Energies & timescales in experimentally accessible range
- $\rightarrow$  Well isolated from the environment



ed detuned

blue detuned

 $10^{-20}$ 

 $10^{-22}$ 

 $10^{-24}$ 

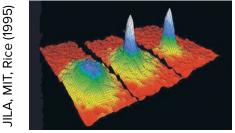
 $10^{-26}$ 

 $10^{-28}$ 

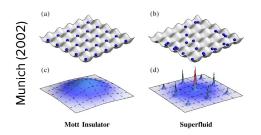
 $10^{-30}$  $10^{-32}$ 

2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52

#### Superfluid gas



#### superfluid Mott insulator



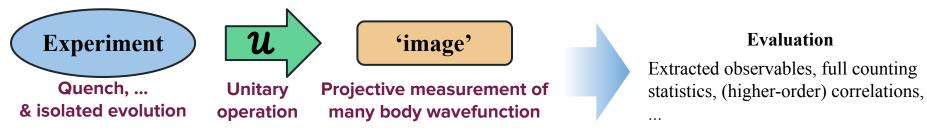
**BEC-BCS** crossover



JILA, MIT, ENS (2003/4)

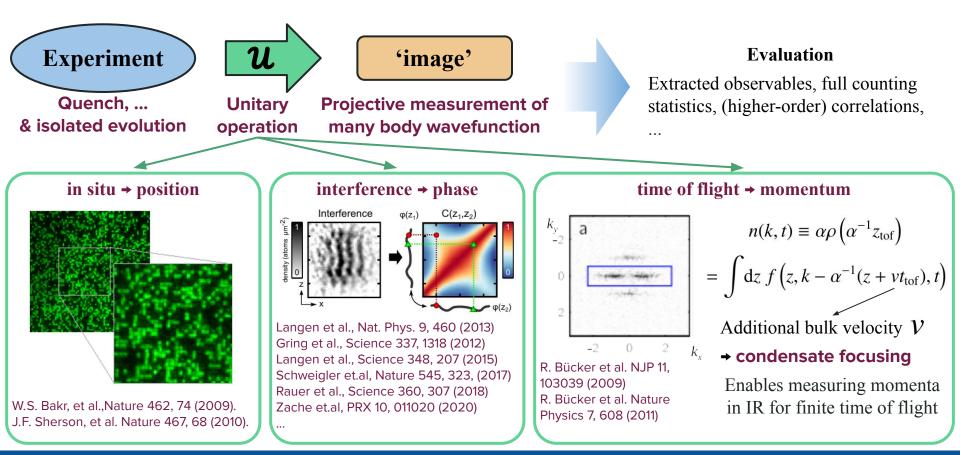
### Measuring quantum many-body systems (QMBS)

**Commonly:** Destructive measurements 
The best we can measure is every constituent (and internal states)



### Measuring quantum many-body systems (QMBS)

**Commonly:** Destructive measurements 
The best we can measure is every constituent (and internal states)



#### The single component Bose gas - from atoms to fields

$$\hat{H} = \int d\mathbf{r} \,\hat{\Psi}^{\dagger}(\mathbf{r},t) \left( -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) - \mu \right) \hat{\Psi}(\mathbf{r},t) \qquad \text{Bosonic commutation relations} \\ + \iint d\mathbf{r} \, d\mathbf{r}' \, \hat{\Psi}^{\dagger}(\mathbf{r},t) \hat{\Psi}^{\dagger}(\mathbf{r}',t) U_{\text{eff}}(\mathbf{r}-\mathbf{r}') \hat{\Psi}(\mathbf{r}',t) \hat{\Psi}(\mathbf{r},t) \qquad [\hat{\Psi}(\mathbf{r}), \hat{\Psi}^{\dagger}(\mathbf{r})] = \delta(\mathbf{r}-\mathbf{r}') \\ + \iint d\mathbf{r} \, d\mathbf{r}' \, \hat{\Psi}^{\dagger}(\mathbf{r},t) \hat{\Psi}^{\dagger}(\mathbf{r}',t) U_{\text{eff}}(\mathbf{r}-\mathbf{r}') \hat{\Psi}(\mathbf{r}',t) \hat{\Psi}(\mathbf{r},t) \qquad (1.5)$$

Pseudopotential approximation (s-wave):  $U_{\rm eff}(\mathbf{r} - \mathbf{r}') \simeq g_{\rm 3D} \delta(\mathbf{r} - \mathbf{r}')$   $g_{\rm 3D} = \frac{4\pi\hbar^2}{m}a_{\rm s}$ 

Madelung representation (quantum hydrodynamics):  $\hat{\psi}^{\dagger}(z,t) = \sqrt{\hat{\rho}(z,t)} e^{-i\hat{\theta}(z,t)} \left[\hat{\rho}(z), \hat{\theta}(z')\right] = i\delta(z-z')$ 

Expand to second order in *small density perturbations*  $\hat{\rho}(z) = \rho_0(z) + \delta \hat{\rho}(z)$  and *phase gradients* 

$$\begin{split} \hbar\partial_t \delta\rho &= -\frac{\hbar^2}{m} \rho_0 \nabla^2 \theta \\ \hbar\partial_t \theta &= \frac{\hbar^2}{4m\rho_0} \nabla^2 \delta\rho - g \delta\rho \end{split} \qquad \begin{array}{c} \text{for general back-}\\ \text{ground flow } \mathbf{v} \end{array} \qquad \begin{array}{c} \partial_a \left( \sqrt{-g} g^{ab} \partial_b \phi \right) = 0 \\ g_{ab} \propto \left[ \begin{array}{c} -(c^2 - v^2) & -v_j \\ -v_i & \delta_{ij} \end{array} \right] \end{split}$$

#### **Bogoliubov transformation**

Introducing the operators  $B=\delta\hat
ho/2\sqrt{
ho_0}+{
m i}\sqrt{
ho_0}\hat heta$  mapps the problem to the usual Bogoliubov equations

$$i\hbar\partial_t \begin{pmatrix} B\\B^{\dagger} \end{pmatrix} = \begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + \mu & \mu\\ -\mu & \frac{\hbar^2}{2m}\nabla^2 - \mu \end{pmatrix} \begin{pmatrix} B\\B^{\dagger} \end{pmatrix} \qquad \qquad \begin{pmatrix} B\\B^{\dagger} \end{pmatrix} = \sum_m \left[ \begin{pmatrix} u_m\\v_m \end{pmatrix} e^{-i\omega_m t} b_m + \begin{pmatrix} \bar{v}_m\\\bar{u}_m \end{pmatrix} e^{i\omega_m t} b_m^{\dagger} \right]$$
$$\int dz \left[ |u_m|^2 - |v_m|^2 \right] = 1$$
$$\Rightarrow f_m^{\pm} = u_m \pm v_m \quad \frac{1}{2} \int dz \left[ \bar{f}_m^+ f_m^- + f_m^+ \bar{f}_m^- \right] = 1$$

Diagonalizing the quadratic Hamiltonian results in the modal expansion of fluctuations in the quasiparticle basis

$$\hat{\theta}(t, \boldsymbol{r}) = \frac{1}{2\sqrt{V\rho_0}} \sum_k \sqrt{\frac{\epsilon_k}{E_k}} \left( \hat{b}_k \,\mathrm{e}^{-\mathrm{i}(\epsilon_k t/\hbar - \boldsymbol{k}\boldsymbol{r})} + \mathrm{H.c.} \right)$$
$$\delta\hat{\rho}(t, \boldsymbol{r}) = \frac{\rho_0}{V} \sum_k \sqrt{\frac{E_k}{\epsilon_k}} \left( \hat{b}_k \,\mathrm{e}^{-\mathrm{i}(\epsilon_k t/\hbar - \boldsymbol{k}\boldsymbol{r})} + \mathrm{H.c.} \right)$$

→ phononic excitations in the long wavelength limit
 → effective relativistic scalar field with "speed of light" C<sub>s</sub>

| Chemical potential:               | $\mu = \rho_0 g$                |
|-----------------------------------|---------------------------------|
| Speed of sound:                   | $c_s = \sqrt{\mu/m}$            |
| Healing length:                   | $\xi = \hbar/\sqrt{2 \; \mu m}$ |
| Dispersion relation: $\epsilon_k$ | $= \sqrt{E_k(E_k + 2\mu)}$      |
| with:                             | $E_k = \hbar^2 k^2 / 2m$        |

### **Designing QFT simulators**

Basic cold atom primitives enable to tune the effective parameters of simulated QFTs

Dimensionality

- Local density
- □ Microscopic interaction properties

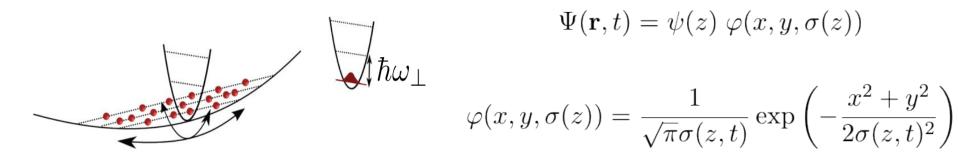
Dispersion relation, boundary conditions, ...

□ Internal states, multi-component systems

New possibilities arise when considering **time-dependent systems** 

**G** Floquet engineering, Artificial gauge fields, ...

### Dimensional reduction (the physicist's way)



Integrating out the radial directions leads to effective lower-dimensional systems.

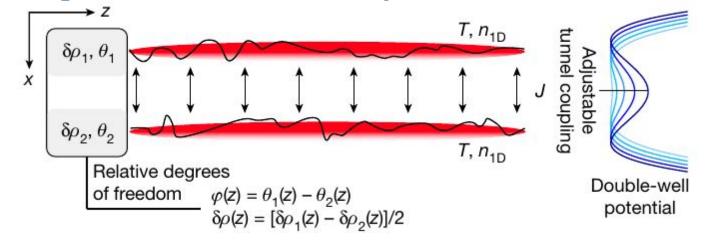
Simplest approximation (single-particle ground state) leads to the Lieb-Liniger model

$$\hat{H}_{LL} = \int dz \,\hat{\psi}^{\dagger}(z,t) \left( -\frac{\hbar^2}{2m} \partial_z^2 + V(z) - \mu + \frac{g_{1D}}{2} \hat{\psi}^{\dagger}(z,t) \hat{\psi}(z,t) \right) \hat{\psi}(z,t)$$

with an effective interaction constant  $g_{1D} = 2\hbar a_s \omega_{\perp} \left(1 - C \frac{\alpha_s}{l_{\perp}}\right) \stackrel{a_s \ll \iota_{\perp}}{\simeq} 2\hbar a_s \omega_{\perp}$ 

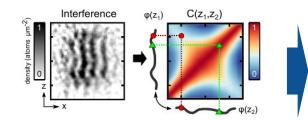
Adiabatic approximation with radial width as variational parameter leads to Non-polynomial Schrödinger Equation

#### Spinor Bose gases and double well system



$$H = \sum_{j=1}^{2} \int dz \left[ \frac{\hbar^2}{2m} \frac{\partial \psi_j^{\dagger}}{\partial z} \frac{\partial \psi_j}{\partial z} + \frac{g_{1\mathrm{D}}}{2} \psi_j^{\dagger} \psi_j^{\dagger} \psi_j \psi_j + U(z) \psi_j^{\dagger} \psi_j - \mu \psi_j^{\dagger} \psi_j \right] - \hbar J \int dz \left[ \psi_1^{\dagger} \psi_2 + \psi_2^{\dagger} \psi_1 \right]$$

**Measurement of the relative phase** through matterwave interference

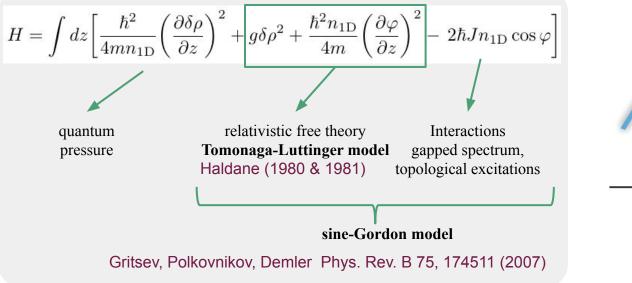


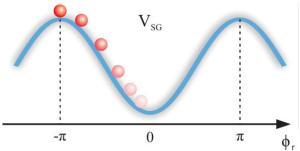
Measures single shot realization of the simulated quantum field

### Perturbation theory and the sine-Gordon model

Low-energy effective field theory through **bosonization** Coleman, Mandelstam, Mattis, Luther, Tomonaga, Gogolin, Giamarchi, ...

$$\hat{\psi}^{\dagger}(z,t) = \sqrt{\hat{\rho}(z,t)} e^{-i\hat{\theta}(z,t)}$$
  $\hat{\rho}(z) = \rho_0(z) + \delta\hat{\rho}(z)$ 



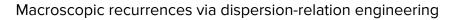


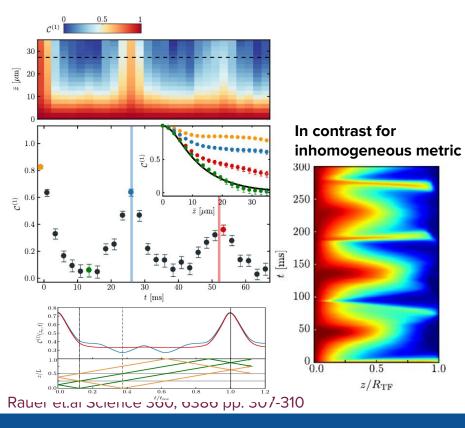
Quadratic approximation expected to be valid for large J:



### **Experiments in the linear regime**

#### **Quantum recurrences**



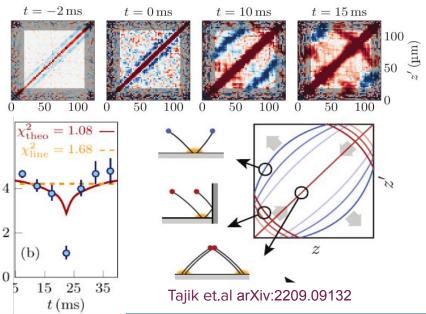


#### **Curved light-cone propagation**

 $\left| v_{\mathrm{F}}(t) \right| (\mathrm{\mu m}/\mathrm{ms})$ 

Curved light-cone propagation in inhomogeneous background

$$S[\phi] \sim \int dz dt \sqrt{-g} K(z) \left[ g^{\mu\nu} (\partial_{\mu}\phi) (\partial_{\nu}\phi) + \frac{1}{2} M^2 \phi^2 \right]$$
$$\hat{u}(z) = (\hbar/m) \partial_z \hat{\phi}(z)$$
$$C_u(z, z') = \langle \hat{u}(z) \hat{u}(z') \rangle$$



### **Analogue cosmology - Inflation**

Engineer a time-dependent analogue metric

$$c_s = \sqrt{\mu/m}$$

$$\mu = \rho_0 g$$

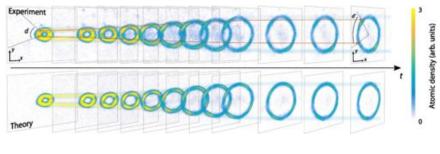
$$\epsilon_k = \sqrt{E_k(E_k + 2\mu)}$$

#### Expanding ring system

Time-dependent speed of sound through changing background density

 $g_{ab} \propto \left| egin{array}{cc} -(c^2-v^2) & -v_j \ -v_i & \delta_{ii} \end{array} 
ight|$ 

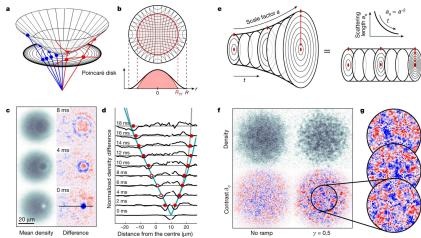
#### Eckel et.al Phys. Rev. X 8, 021021



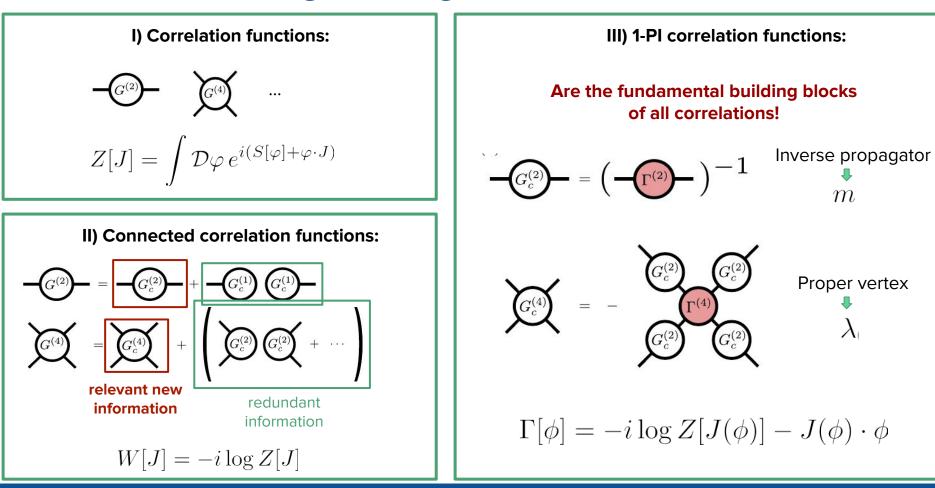
#### **Effective expansion**

Time-dependent speed of sound through Feshbach resonance

Vierman et.al Nature volume 611, p. 260-264



### From correlations to generating functionals



#### **Renormalization group and emergent QFTs**

$$\Gamma \left[\Phi\right] = \sum_{n=2}^{\infty} \frac{1}{n!} \underline{\Gamma_{\mathbf{x}_1,\dots,\mathbf{x}_n}^{(n)}} \prod_{j=1}^n \left(\Phi_{\mathbf{x}_j} - \bar{\Phi}_{\mathbf{x}_j}\right)$$

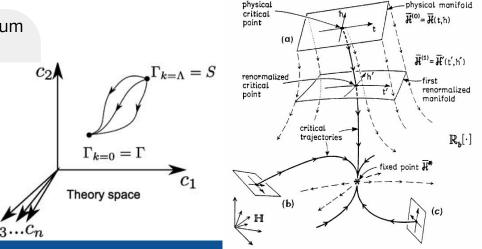
- Expansion coefficients are the proper vertices of **n-body interactions**
- Note that all **higher-order couplings are dynamically created** (even if bare action only has two-body interactions)
- They are the momentum dependent, running couplings

**However:** So far only shifted the problem, since  $\Gamma[\phi]$  in general not solvable / calculable

**Renormalization Group** enables to calculate momentum dependence of coupling beyond perturbation theory Kadanoff, Wilson, Fisher, Polchinski, Morris, Wetterich, ...

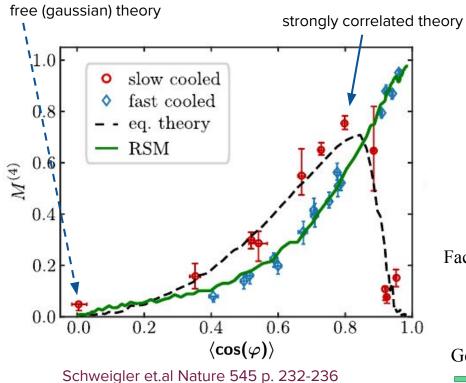
E.g.: Exact flow equation for the effective action (Functional Renormalization Group)

$$k\,\partial_k\Gamma_k=rac{1}{2}{
m STr}\,k\,\partial_kR_k\,(\Gamma_k^{(1,1)}+R_k)^{-1}$$

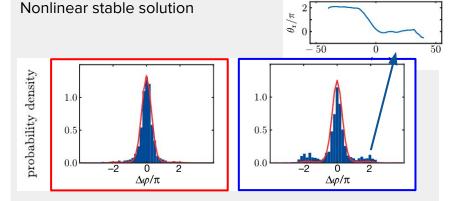


### **Testing nonlinear field theories I**

$$M^{(N)} = \frac{\sum_{z} |G_{\text{con}}^{(N)}(z,0)|}{\sum_{z} |G^{(N)}(z,0)|}$$



# sine-Gordon solitons



$$\mathcal{G}^{(N)}(\mathbf{z},\mathbf{z}') = \left\langle \varphi(z_1,z_1') \dots \varphi(z_N,z_N') \right\rangle$$

Factorization in connected and disconnected parts:

$$\mathcal{G}^{(N)}(\mathbf{z},\mathbf{z}') = \mathcal{G}^{(N)}_{\text{con}}(\mathbf{z},\mathbf{z}') + \mathcal{G}^{(N)}_{\text{dis}}(\mathbf{z},\mathbf{z}')$$

Genuine new information particle interactions Fully determined by lower order correlations

### **Testing nonlinear field theories I**

Analysis can be extended to 1PI correlations

→ direct measurement of the momentum dependent effective field theory parameters!

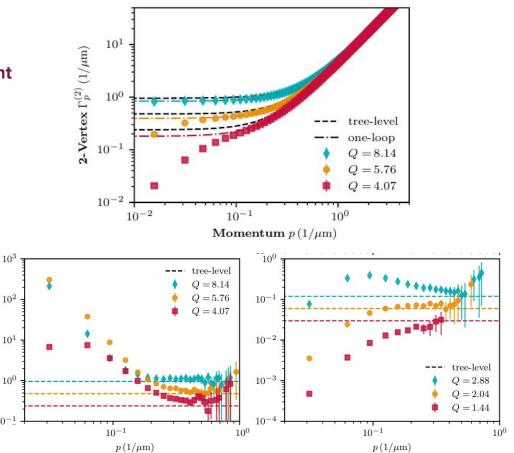
Rescaling to canonical form leads to two expansion parameters  $\epsilon_{\rm q} = \sqrt{4\gamma}$  $\epsilon_{\rm th} =$  $\epsilon_{\rm q} \ll \min[1, \epsilon_{\rm th}]$  $\epsilon_q \ll \epsilon_{\rm th} \ll 1$ tree-level classical approximation valid approximation valid **1PI** correlations = Hamiltonian parameter!

10

10

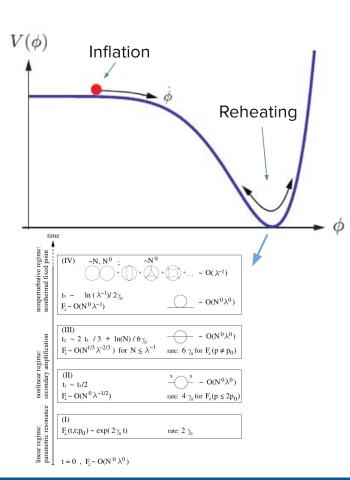
 $10^{-1}$ 

 $-\Gamma_{p}^{(4)}\left(1/\mu\mathrm{m}\right)$ 

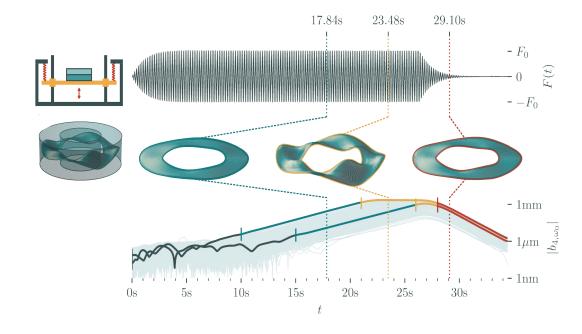


Zache et.al PRX 10, 011020 (2020)

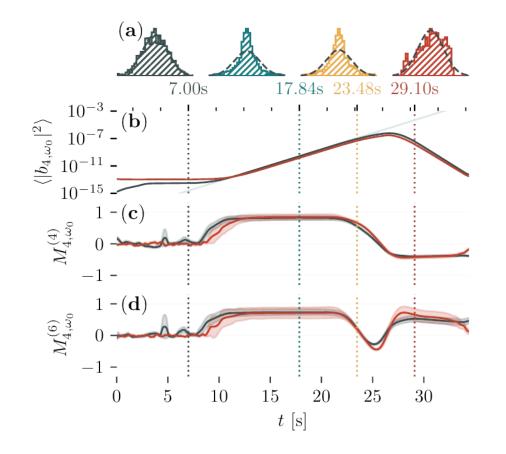
### **Testing nonlinear field theories II**



Analogy to parametrically driven two-fluid interfaces (Silke's lecture)



### **Testing nonlinear field theories II**







## Thank you for your attention!

Realizing and probing quantum fields with ultra-cold Atoms

QuFT-Lab



