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Tutorial questions

Exercise 1. Pulse fidelity, velocity selection and large-momentum transfer

(i) Consider a two-level atom initially prepared in its ground-state at time t = 0, and driven by a
quasi-resonant light field. Express the probability to find the atom in its excited-state as a function
of the light pulse duration, detuning and Rabi frequency. Sketch/ plot the result as a function of
pulse duration for different detunings, and identify the optimal pulse duration to realize a population
inversion (called π-time) and the transfer efficiency, referred to as the pulse fidelity. Compare your
sketch with other members of the group.

(ii) If the given atom has a non-zero velocity, what is the laser frequency that it sees due to the
Doppler effect?

(iii) Consider a thermal atomic cloud at temperature T described by a Maxwell-Boltzmann velocity
distribution. Qualitatively explain why a high temperature reduces the efficiency of the population
transfer at the cloud scale. By making an appropriate choice of pulse duration, compute the cloud-
averaged pulse fidelity. Hint: To simplify the evaluation of the integral, we will approximate the central
peak of the sinc function by a Gaussian of same RMS spread, namely π2/4× sinc2[π/2×

√
1 + u2] ≈

e−u2/2.

(iv) Which experimental parameters can be tuned to increase the pulse fidelity? Which other
physical effects not accounted for here could also reduce the pulse fidelity? Discuss your answers with
other members of the group.

(v) Bonus question: In a large-momentum transfer interferometer based on sequential π-pulses,
the large momentum separation is imparted by successively applying a large number of π pulses.
In practice, they need to come from alternating directions; discuss why. Considering the case of
strontium atoms interrogated via the intercombination line transition (wavelength λ = 689nm, mass
m = 1.44 × 10−25kg, electric dipole d = 7.35 × 10−31C.m), calculate which temperatures would be
required to maintain a fringe contrast above 5% for a momentum separation of 1000h̄k, assuming a
laser intensity of 100mW/cm2. Hint: You can assume that the interferometer fringe contrast can be
fairly estimated by the product of the individual pulse fidelities of the sequence.

Exercise 2. Interferometer sensitivity

Consider a Mach-Zehnder interferometer where atoms are subjected to a uniform gravitational
acceleration, g. The atomic trajectories of the ground and excited state are shown in blue and red
respectively.

(i) If the phase shift of the interferometer to an acceleration g is given by

∆ϕ = kgT 2, (1)
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where k is the wavevector of the laser, find an expression for the relative sensitivity to gravitational
accelerations, δg/g.

Hint: In this shot noise limited regime, assume δϕ = 1/
√
N where N is the number of atoms per

shot.

(ii) Calculate the sensitivity achievable with an interferometer measuring 106 atoms with T = 1.2 s,
operating at λ = 689 nm. How could this sensitivity be enhanced in an experiment? Discuss your
answer with other members of the group.
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Tutorial solutions

Exercise 1.

(i) Refer to AION lecture 1 notes A5 (pg. 7 of the pdf file.)

The population in the excited states is given by P = |C2|2.

P (Ω, δ, t) =
Ω2

Ω2 + δ2
sin2(

√
Ω2 + δ2t/2). (2)

The π-time is at the peak of the sine wave, such that

tπ(Ω, δ) = π/
√
Ω2 + δ2. (3)

The maximum population occurs when the sin2 term in Eq. 2 goes to 1, giving

Pmax =
Ω2

Ω2 + δ2
. (4)

The population of the excited state vs. time for some example detunings is shown in Fig. 1.

Figure 1: Rabi oscillations for multiple detunings.

(ii) The atoms will see a frequency
ω = ωL − k.v (5)

with ωL the laser frequency and k the laser wavevector.

(iii) A high temperature means a higher range of velocities, hence detunings, within the cloud. In
particular, there will be fast atoms which experience a large Doppler shift which leads to a low pulse
fidelity. Moreover, the Rabi oscillations of individual atoms oscillate at different frequencies, resulting
in dephasings between them which lead to an overall reduction of the oscillation amplitude after cloud
averaging.
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The zero velocity class has the highest pulse fidelity and is also the most populated, so it is optimal
to choose tπ(Ω, 0) = π/Ω as the pulse duration. With such pulse duration, the fidelity for a detuned
atom is given by

P (Ω, δ, tπ(Ω, 0)) =
Ω2

Ω2 + δ2
sin2(π

√
Ω2 + δ2/2Ω) =

π2

4
sinc2(

π

2

√
1 + δ2/Ω2) (6)

Averaging this pulse fidelity over the cloud velocity distribution f(v) =
1

σ3
v(2π)

3/2
e−v2/2σ2

v (with

σv =
√
kBT/m) yields

F =

∫
v

π2

4
sinc2(

π

2

√
1 + (kvz)2/Ω2)f(v)d3v. (7)

Integrals over vx, vy are trivial, and for the integral over vz, approximating the central peak of the sinc
by a Gaussian gives

F =

∫ ∞

−∞

π2

4
sinc2(

π

2

√
1 + (kvz)2/Ω2)

1

σv

√
2π

e−v2
z/2σ

2
vdvz

≈ 1

σv

√
2π

∫ ∞

−∞
e−(kvz)

2/2Ω2

e−v2
z/2σ

2
vdvz

≈ 1√
1 + (σvk/Ω)2

(8)

(iv) From the above result, increasing the fidelity can involve reducing the temperature (hence σv)
or increasing the laser intensity (hence Rabi frequency) by e.g. increasing the total power or reducing
the beam waist.

Other effects neglected here:
- spontaneous emission (loss of atoms);
- finite cloud size and laser spatial intensity distribution: due to this, different atoms in the cloud see
different Rabi frequencies, producing dephasings between their Rabi oscillations reducing the efficiency
of the population transfer.

(v) Alternating directions allows momentum kicks to accumulate and not cancel each other out.
Assuming a first π-pulse gives the atom a momentum kick of h̄k through absorption of a photon, if
the next π pulse was coming from the same direction, it would bring back the atom into the ground
state through stimulated emission of a photon k, conferring the momentum −h̄k to the atom (and thus
cancelling out the effect of the first pulse). Alternating directions allows the successive absorptions
and stimulated emissions to all impart +h̄k onto the atoms, overall driving large momentum transfer.

In order to calculate the fidelity of an M pulse sequence, we can assume that Ftotal = FM . Let’s
denote w = σvkL/Ω. If M is the LMT order, we want (1 + w2)−M/2 > 0.05. This gives 1 + w2 <
(0.05)−2/M , i.e. T < [(0.05)−2/M − 1]mΩ2/kBk

2. [Note: For large M , this gives T < 6mΩ2/MkBk
2:

all the more stringent that M is large, and the intensity is small].

To get a value for the temperature, we use Ω = d/h̄×
√

2I/cϵ0. This gives T < 27µK

Approximations made here: we neglected other contrast loss sources; we neglected accumulated
Doppler shifts due to the increased momentum splitting; we neglected the fidelity of the π/2 pulses
and simply assumed that M pulses were needed to reach Mh̄k of LMT (with no consideration about
closing the interferometer).
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Exercise 2.

(i)

δg

g
=

δϕ

∆ϕ
(9)

δg

g
=

1√
N

1

kgT 2
(10)

The phase noise, δϕ, is set by the signal-to-noise ratio (SNR) of the detected atom population,

δϕ =
1

SNR
=

1√
N

. (11)

(Given that the standard deviation of the noise goes as
√
N and the signal is N , we therefore have the

SNR = N/
√
N =

√
N .)

(ii) For 106 atoms with a flight time of 1.2 s, operating at λ = 689 nm,

δg

g
=

1√
N

1

kgT 2
(12)

= 7.8× 10−12. (13)

The interferometer sensitivity could be increased by extending the flight time or by transferring
more momentum to the atoms using a large momentum transfer (LMT) sequence.
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