

QSNET lecture 2: Optical atomic clocks in search of new physics

QTFP School 2023

Dr Rachel Godun 13th January 2023, Cambridge

Key messages from QSNET lecture 1 (Nathaniel Sherrill)

QSNET project is using atomic clocks to search for variations in fundamental constants

Can use Effective Field Theory to describe New Physics through interactions with known Low Energy physics

$$\mathscr{L}_{\mathrm{NP}}(F) = \underbrace{F}_{\mathcal{F}} \cdot \mathscr{O}_{\mathrm{LE}} \Rightarrow$$

$$\Rightarrow \qquad \mathscr{L}_{\rm EFT} = \mathscr{L}_{\rm LE} + \sum_{F} \mathscr{L}_{\rm NP}(\mathcal{L})$$

= (coupling strength, new field)

Model-independent approaches allow the study of a wide variety of well-motivated New Physics signals, e.g.

- Ultralight Dark Matter
- Fundamental symmetry violations

 $\alpha = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c}$

Learning objectives for QSNET lecture 2

- Understand the basic principles of atomic clocks
 - how they work
 - o characterisation in terms of inaccuracy / instability
- Meet some practicalities of ion clocks vs lattice clocks
- Understand why certain clocks are good for measuring variations of α and μ
 - o slow drifts / oscillations / transients
- Meet the clocks in the QSNET consortium

Components of an atomic clock

NPL O

Oscillator + Atom

The output from the clock is an electromagnetic wave at a fixed frequency

Strictly speaking, this is a **frequency standard**, not a clock

QTFP Winter School QSNET – optical atomic clocks

Clocks can operate at many different frequencies

few GHz $\sim 10^9$ Hz

few hundred THz $\sim 10^{14}$ Hz

Can any atomic transition be used to form a clock?

- Need an atomic transition with a narrow linewidth
- It is then a good discriminator for tuning the electromagnetic radiation

Fourier transform limit

- In practice, you therefore want:
 - Probe time to be as long as possible
 - Atomic transition to be narrow enough not to limit the spectral signal

Summary so far

✓ Understand the basic principles of optical atomic clocks

• how they work

- Long probe times
- Narrow linewidths

QTFP Winter School QSNET – optical atomic clocks

Atom

Summary so far

- ✓ Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Oscillator

- Long probe times
- Narrow linewidths

•

+

Systematic frequency shifts

- In practice, the atomic transition is disturbed by external fields
- Changes in the atomic energy levels cause changes in the clock frequency

Systematic frequency shifts – sources of disturbance

- Need to characterise the size of all shifts, and subtract them from the clock's output frequency
- There is an associated uncertainty with this correction, which gives the clock an inaccuracy

Inaccuracy in clock frequency

$$f_{\text{output}} = f' - (\Delta f \pm \mathbf{u})$$

 $f_{\text{output}} = f_0 \pm u$

Deduce systematic frequency shift, Δf with uncertainty, u Correct the clock's output frequency

Clock's output frequency is f_0 with an inaccuracy of u

• The clock's inaccuracy is the uncertainty with which the clock's output frequency matches the unperturbed transition frequency

Inaccuracy in clock frequency – uncertainty budgets

• Example uncertainty budget

TABLE I. Fractional frequency shifts $(\Delta \nu / \nu)$ and associated systematic uncertainties for the ²⁷ Al ⁺ quantum-logic clock.					
Effect	Shift (10^{-19})	Uncertainty (10 ⁻¹⁹)			
Excess micromotion	-45.8	5.9			
Blackbody radiation	-30.5	4.2			
Quadratic Zeeman	-9241.8	3.7			
Secular motion	-17.3	2.9			
Background gas collisions	-0.6	2.4			
First-order Doppler	0	2.2			
Clock laser Stark	0	2.0			
AOM phase chirp	0	<1			
Electric quadrupole	0	<1			
Total	-9336.0	9.4			

Brewer et al., Phys. Rev. Lett. 123, 033201 (2019)

Size of total shift doesn't matter – it will be subtracted. It's the total uncertainty (i.e. inaccuracy) that must be minimised

> Inaccuracy is an important figure of merit when assessing a clock's performance

Inaccuracy expressed as fraction of f₀

- Frequencies can be readily multiplied or divided
- <u>Example</u>

optical clock operates at $(10^{15} \pm 1)$ Hz, with fractional inaccuracy of 10^{-15}

divide down to microwave frequency

 \rightarrow microwave frequency of (10¹⁰ ± 10⁻⁵) Hz

• Note how this is significantly better than operating a microwave clock with 1 Hz uncertainty

Generally better to operate clocks at higher frequencies to have smaller fractional inaccuracies.

NATIONAL Physical Laboratory

Progress in atomic clock measurements

The best Cs fountain clocks are reaching inaccuracies of 10^{-16}

Progress in atomic clock measurements

NPL O

Optical clocks have now demonstrated inaccuracies two orders of magnitude beyond those of Cs

Instability – another important figure of merit

- Inaccuracy is the level of uncertainty associated with how well the clock can be corrected back to f₀ (uncertainty in systematic shift)
- Instability is the level of frequency fluctuations over time (statistical uncertainty)

Instability determines the required averaging time to reach a particular level of uncertainty

Time

Instability - Allan deviation

- Standard variance is the mean square deviation from the mean frequency value
- Mean frequency not always constant over time

- Use Allan deviation, $\sigma_y(\tau)$ to characterise instability
- Allan variance is the mean square deviation between adjacent frequency values

Instability - Allan deviation

- Standard variance is the mean square deviation from the mean frequency value
- Mean frequency not always constant over time

- Use Allan deviation, $\sigma_y(\tau)$ to characterise instability
- Allan variance is the mean square deviation between adjacent frequency values

Allan variance,
$$\sigma_y^2(\tau) = \frac{1}{2} \langle (\bar{y}_{i+1} - \bar{y}_i)^2 \rangle$$

Instability in clock frequency – Allan deviation plots

Operate clocks with high f_0 and long probe time T to minimise instability

• Example instability, shown on Allan deviation plot

Summary so far

✓ Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

systematic uncertainties for the ²⁷ Al ⁺ quantum-logic clock.					
Effect	Shift (10^{-19})	Uncertainty (10 ⁻¹⁹)			
Excess micromotion	-45.8	5.9			
Blackbody radiation	-30.5	4.2			
Quadratic Zeeman	-9241.8	3.7			
Secular motion	-17.3	2.9			
Background gas collisions	-0.6	2.4			
First-order Doppler	0	2.2			
Clock laser Stark	0	2.0			
AOM phase chirp	0	<1			
Electric quadrupole	0	<1			
Total	-9336.0	9.4			

TABLE I. Fractional frequency shifts $(\Delta \nu / \nu)$ and associated

Brewer et al., Phys. Rev. Lett. 123, 033201 (2019)

NPL OR National Physical Laboratory

Summary so far

Understand the basic principles of optical atomic clocks

- o how they work
- o characterisation in terms of instability / inaccuracy
- Meet some practicalities of ion clocks vs lattice clocks

Trapped-ion optical clocks

- In pursuit of the lowest instability, want to probe atoms with high f_0 , high SNR and long T
- Need to trap atoms while avoiding disturbances from external fields
- Dehmelt and Paul proposed and developed single-ion traps
 - Charges can be trapped in a weak electric field
 - Single ion in vacuum system
 - Close to ideal of isolated reference

1989 Hans Dehmelt

Ion clocks allow sympathetic cooling

• Can create multi-ion traps

National Physical Laboratory

- This can help improve signal-to-noise ratio (SNR), and reduce instability
- Can also trap different species together and use sympathetic cooling for ions that don't have a readily accessible cooling transition

• Allows a greater variety of clock species to be used, e.g. molecular ions, highly-charged ions

Optical lattice clocks – clouds of neutral atoms

• Trapped neutral atoms could allow long probe times **and** good (SNR)

• Optical dipole trapping in standing wave of light provides tight confinement

Number of atoms ~ 10,000, so instability is greatly reduced

Optical lattice trap

Optical lattice clocks – clouds of neutral atoms

BUT ... optical dipole trapping works by shifting internal energy levels
→ increases inaccuracy

- Standing wave at 'magic' wavelength produces same shift on ground and excited states, so clock transition is still at f₀ ... to first order
- Disadvantage of lattice traps: need to reload atoms after every probe, which introduces dead time and increases instability

(credit: Katori, 2001)

Summary so far

Understand the basic principles of optical atomic clocks

- o how they work
- o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

NATIONAL Physical Laboratory

Summary so far

- ✓ Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

• Understand why certain clocks are good for measuring variations of α and μ

Clocks for measuring variations in fundamental constants

- Atomic transitions can be sensitive to changes in
 - fine structure constant (α)
 - proton-to-electron mass ratio (μ)

K depends on relativistic many-body corrections, so is different for different atoms

Different sensitivities in different atoms

Species	Wavelength	K _α	K _μ
¹⁷¹ Yb ⁺	467 nm (E3)	-5.95	
¹⁷¹ Yb+	436 nm (E2)	1.00	
⁸⁷ Sr	698 nm	0.06	
¹³³ Cs	32.6 mm	2.83	-1

• Take frequency ratios between clocks with different sensitivities

$$r = \frac{f_1}{f_2}$$

$$\frac{\dot{r}}{r} = [A_1 - A_2] \frac{\dot{\alpha}}{\alpha} + [B_1 - B_2] \frac{\dot{\mu}}{\mu}$$

Measure fractional change in frequency ratio Deduce fractional change in constants

Summary so far

✓ Understand the basic principles of optical atomic clocks

- o how they work
- o characterisation in terms of inaccuracy / instability

✓ Meet some practicalities of ion clocks vs lattice clocks

 \checkmark Understand why certain clocks are good for measuring variations of α and μ

$$\frac{\dot{r}}{r} = \begin{bmatrix} A_1 - A_2 \end{bmatrix} \frac{\dot{\alpha}}{\alpha} + \begin{bmatrix} B_1 - B_2 \end{bmatrix} \frac{\dot{\mu}}{\mu}$$

Summary so far

- ✓ Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

V Understand why certain clocks are good for measuring variations of α and μ

o slow drifts / oscillations / transients

$$\frac{\dot{r}}{r} = \begin{bmatrix} A_1 - A_2 \end{bmatrix} \frac{\dot{\alpha}}{\alpha} + \begin{bmatrix} B_1 - B_2 \end{bmatrix} \frac{\dot{\mu}}{\mu}$$

Variations over different timescales

Aside:

Some astrophysical measurements revealed α few ppm different 10 billion yrs ago at 4σ level

Webb *et al.* PRL 87 091301 (2001)

Could be a signature of dark matter interacting non-gravitationally with SM fields

Derevianko *et al.* Nat. Phys. 10 933 (2014)

Slow-drift constraint on changes in $\boldsymbol{\alpha}$

$$\frac{1}{\alpha} \frac{\Delta \alpha}{\Delta t} = 1.0(1.1) \times 10^{-18}$$
 / year

R. Lange et. al. PRL 126, 011102 (2021)

- Drift of α is consistent with zero
- Yb⁺ clocks enable constraint on present-day drift in α at 10^{-18} / year

Transient changes in α: Topological defect dark matter

Time

Constraints on transients in α

Summary so far

- Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

V Understand why certain clocks are good for measuring variations of α and μ

o slow drifts / oscillations / transients

Summary so far

- Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

Understand why certain clocks are good for measuring variations of α and μ

- o slow drifts / oscillations / transients
- Meet the clocks in the QSNET consortium

How to reach new levels of sensitivity

"A network of optical clocks for measuring the stability of fundamental constants"

University of Birmingham College (Giovanni Barontini) London

Imperial University

of Sussex

National **Physical** Laboratory

	Species	Wavelength	K _α	K _μ
	¹⁷¹ Yb ⁺	467 nm (E3)	-5.95	
	¹⁷¹ Yb ⁺	436 nm (E2)	1.00	
	⁸⁷ Sr	698 nm	0.06	
	¹³³ Cs	32.6 mm	2.83	-1
	²⁵¹ Cf ¹⁷⁺	485 nm	-43.5	
	²⁵¹ Cf ¹⁵⁺	618 nm	47.0	
	CaF	17 µm		-0.5
	N_2^+	2.31 µm		-0.5

new

existing

UK network of clocks – QSNET project

Phase 1

- Investigate measurement & theory with the existing clocks at NPL
- Build the new clocks

Phase 2

- Connect the clocks with optical fibre links
- Begin measuring frequency ratios with new clocks to achieve greater sensitivities

G. Barontini *et. al.* EPJ Quantum Technology **9**, 12 (2022)

40

Exclusion plot examples – oscillating scalar dark matter fields

NPL O

- Clocks with increased sensitivities to α , μ variation are expected to improve constraints in many theories
- One example is couplings between oscillating scalar dark-matter fields interacting linearly with (a) the electromagnetic field and (b) the electron:

G. Barontini et. al. EPJ Quantum Technology 9, 12 (2022)

41

Conclusion

- Understand the basic principles of optical atomic clocks
 - o how they work
 - o characterisation in terms of inaccuracy / instability

Meet some practicalities of ion clocks vs lattice clocks

Understand why certain clocks are good for measuring variations of α and μ

o slow drifts / oscillations / transients

Meet the clocks in the QSNET consortium

With thanks to...

We have vacancies!

Contact: Rachel.Godun@npl.co.uk

QTFP Winter School QSNET – optical atomic clocks