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Key messages from QSNET lecture 1 (Nathaniel Sherrill)

✓QSNET project is using atomic clocks to search for variations in 
fundamental constants

✓Can use Effective Field Theory to describe New Physics through 
interactions with known Low Energy physics

✓Model-independent approaches allow the study of a wide variety of 
well-motivated New Physics signals, e.g.

o Ultralight Dark Matter

o Fundamental symmetry violations
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Learning objectives for QSNET lecture 2

• Understand the basic principles of atomic clocks 

o how they work

o characterisation in terms of inaccuracy / instability

• Meet some practicalities of ion clocks vs lattice clocks

• Understand why certain clocks are good for measuring variations of α and µ

o slow drifts / oscillations / transients

• Meet the clocks in the QSNET consortium
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Components of an atomic clock

Oscillator                 +                    Atom

Electromagnetic 
radiation

atomic transition 
frequency, f0

feedback

e

E=hf0

g

The output from the clock is 
an electromagnetic wave at a 
fixed frequency 

Strictly speaking, this is a 
frequency standard, not a clock
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Clocks can operate at many different frequencies

Optical 
radiation

e

f0

g

optical 
frequency

Microwave 
radiation

e
f0g

microwave 
frequency

few GHz ~ 109 Hz

few hundred THz ~ 1014 Hz
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Can any atomic transition be used to form a clock? 
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• Need an atomic transition with a narrow linewidth

• It is then a good discriminator for tuning the electromagnetic radiation 
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Fourier transform limit

time

Probe

time

Probe

Fourier 
transform

frequency

frequency
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Probe Atom

frequency

Spectroscopy
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SpectroscopyProbe
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• In practice, you therefore want:

• Probe time to be as long as possible

• Atomic transition to be narrow enough not to limit the spectral signal
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Summary so far

Oscillator                +               Atom

• Long probe times 

• Narrow linewidths

✓Understand the basic principles of optical atomic clocks

o how they work

QSNET – optical atomic clocksQTFP Winter School



Summary so far

Oscillator                +               Atom

• Long probe times 

• Narrow linewidths

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability
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Systematic frequency shifts

• In practice, the atomic transition is disturbed by external fields

• Changes in the atomic energy levels cause changes in the clock frequency

Unperturbed atomic 
transition frequency

Perturbed frequency that is seen 
by the probe

e

f0

g

e

f’

g

The goal is to have the clock 
output at the unperturbed
atomic  frequency
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Systematic frequency shifts – sources of disturbance

e

f0

g

e

f’

g

Magnetic fields Electric fields Motion of atom Gravitational fields

Zeeman shift Stark shift Gravitational red-shiftDoppler shift

10-16 fractional frequency change for every 
1 m change in height at Earth’s surface

• Need to characterise the size of all shifts, and subtract them from the clock’s output frequency

• There is an associated uncertainty with this correction, which gives the clock an inaccuracy
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Inaccuracy in clock frequency

• The clock’s inaccuracy is the uncertainty with which the clock’s output frequency matches the 
unperturbed transition frequency

foutput = f’ – (Δf ± u)  

e

f’

g

Δf ± u

Deduce systematic 
frequency shift, Δf with 

uncertainty, u 

Correct the clock’s 
output frequency

foutput =  f0 ± u  

Clock’s output frequency is 
f0 with an inaccuracy of u

f0
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Inaccuracy in clock frequency – uncertainty budgets

• Example uncertainty budget

Brewer et al., Phys. Rev. Lett. 123, 033201 (2019)

Size of total shift doesn’t matter – it will 
be subtracted.
It’s the total uncertainty (i.e. inaccuracy) 
that must be minimised

Inaccuracy is an important figure 
of merit when assessing a clock’s 
performance
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Inaccuracy expressed as fraction of f0

• Frequencies can be readily multiplied or divided

• Example

• Note how this is significantly better than operating a microwave 
clock with 1 Hz uncertainty 

optical clock operates at (1015 ± 1) Hz, with fractional inaccuracy of 10-15

→ microwave frequency of (1010 ± 10-5) Hz

Generally better to operate 
clocks at higher frequencies 
to have smaller fractional 
inaccuracies.

divide down to 
microwave frequency

e

f0

g

optical 
frequency

e
f0g

microwave 
frequency

± 1 Hz

± 1 Hz
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Progress in atomic clock measurements
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The best Cs fountain 
clocks are reaching 

inaccuracies of 10-16



Progress in atomic clock measurements

Optical clocks have now 
demonstrated inaccuracies 
two orders of magnitude 
beyond those of Cs
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Instability – another important figure of merit

• Inaccuracy is the level of uncertainty associated with how well the clock can be corrected back to f0 

(uncertainty in systematic shift)

• Instability is the level of frequency fluctuations over time (statistical uncertainty)

Fr
eq

u
en

cy

Time

f'

f0

Instability determines the 
required averaging time to 
reach a particular level of 
uncertainty

Example: white frequency noise
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Instability - Allan deviation

• Standard variance is the mean square deviation from the mean frequency value

• Mean frequency not always constant over time

• Use Allan deviation, 𝜎𝑦(𝜏) to characterise instability

• Allan variance is the mean square deviation between adjacent frequency values

Non-stationary noiseStationary noise

time time time

F. Riehle, “Frequency Standards,” Wiley-VCH
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Instability - Allan deviation

• Standard variance is the mean square deviation from the mean frequency value

• Mean frequency not always constant over time

• Use Allan deviation, 𝜎𝑦(𝜏) to characterise instability

• Allan variance is the mean square deviation between adjacent frequency values

Allan variance,  𝜎𝑦
2(𝜏) =

1

2
ത𝑦𝑖+1 − ത𝑦𝑖

2

Non-stationary noiseStationary noise

time time time

ത𝑦1

ത𝑦2

ത𝑦3
ത𝑦4

𝜏𝜏 𝜏𝜏

F. Riehle, “Frequency Standards,” Wiley-VCH
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Instability in clock frequency – Allan deviation plots

• Example instability, shown on Allan deviation plot

e

𝜎 𝜏 ~
Δ𝑓

𝑓0

1

(SNR)

𝑇

𝜏

Fractional 
instability

𝜎 𝜏 ~
1

𝑓0

1

(SNR)

1

𝑇𝜏

Fractional 
instability

Δ𝑓~
1

𝑇
Assuming Fourier-transform 
limited probing

f0

g

Linewidth = Δf
Probe time = T

Averaging time = t

Operate clocks with high 𝑓0 and long 
probe time T to minimise instability
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short averaging 
times, τ



Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of instability / inaccuracy

• Meet some practicalities of ion clocks vs lattice clocks
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Trapped-ion optical clocks

• In pursuit of the lowest instability, want to probe atoms 
with high 𝑓0, high SNR and long T

• Need to trap atoms while avoiding disturbances from 
external fields

• Dehmelt and Paul proposed and developed single-ion 
traps

o Charges can be trapped in a weak electric field

o Single ion in vacuum system

o Close to ideal of isolated reference

Hans Dehmelt1989

𝜎(𝜏) =
1

𝑓0

𝜂

(S𝑁𝑅)

1

𝑇𝜏

Fractional 
instability

Wolfgang Paul
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Ion clocks allow sympathetic cooling

• Can create multi-ion traps

• This can help improve signal-to-noise ratio (SNR), and reduce instability

• Can also trap different species together and use sympathetic cooling for ions that don’t have a 
readily accessible cooling transition

• Allows a greater variety of clock species to be used, e.g. molecular ions, highly-charged ions

1000
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7600

cooling

transition
Narrow reference 

(“clock”) transition

t 10 ns

t 1 s
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Optical lattice clocks – clouds of neutral atoms

• Trapped neutral atoms could allow long probe times and good (SNR)

• Optical dipole trapping in standing wave of light provides tight 
confinement

• Number of atoms ~ 10,000, so instability is greatly reduced

𝜎(𝜏) =
1

𝑓0

𝜂

(SNR)

1

𝑇𝜏

Fractional 
instability

Optical lattice trap
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Optical lattice clocks – clouds of neutral atoms

• BUT … optical dipole trapping works by shifting internal energy levels 
→ increases inaccuracy

• Standing wave at ‘magic’ wavelength produces same shift on ground 
and excited states, so clock transition is still at f0 … to first order

• Disadvantage of lattice traps: need to reload atoms after every probe, 
which introduces dead time and increases instability

‘magic’ wavelength

ac Stark shift from 
standing wave

(credit: Katori, 2001)
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

• Understand why certain clocks are good for measuring variations of α and µ
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Clocks for measuring variations in fundamental constants

• Atomic transitions can be sensitive to changes in 
• fine structure constant (α) 
• proton-to-electron mass ratio (µ)

K depends on relativistic many-body 
corrections, so is different for different atoms
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Atomic energy Scaling with  and µ

Gross structure ~𝑅∞

Fine structure ~𝑅∞𝛼
𝐾

Hyperfine structure ~𝑅∞𝛼
2+𝐾μ−1

Molecular rotation ~𝑅∞μ
−1

Molecular vibration ~𝑅∞μ
−0.5
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Different sensitivities in different atoms

• Take frequency ratios between clocks with different sensitivities 𝑟 =
𝑓1
𝑓2

𝑟
•

𝑟
= 𝐴1 − 𝐴2

𝛼
•

𝛼
+ 𝐵1 − 𝐵2

𝜇
•

𝜇

Measure fractional change in 
frequency ratio

Deduce fractional 
change in constants

171Yb+

Species Wavelength Kα Kμ

171Yb+ 467 nm (E3) -5.95
171Yb+ 436 nm (E2) 1.00

87Sr 698 nm 0.06
133Cs 32.6 mm 2.83 -1
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

✓Understand why certain clocks are good for measuring variations of α and µ
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

✓Understand why certain clocks are good for measuring variations of α and µ

o slow drifts / oscillations / transients

QSNET – optical atomic clocksQTFP Winter School



Variations over different timescales

33

Slow drifts

Oscillations

Fast transients

Aside:
Some astrophysical 
measurements revealed 
α few ppm different 10 
billion yrs ago at 4σ level

Webb et al. 
PRL 87 091301 (2001) 

Could be a signature of 
dark matter interacting 
non-gravitationally with 
SM fields

Derevianko et al. 
Nat. Phys. 10 933 (2014) 

𝑓1
𝑓2

Time
Year 1 Year 2 Year 3

𝑓1
𝑓2

Time
minutes / hours / days

𝑓1
𝑓2

Time
minutes / hours / days
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• Drift of α is consistent with zero
• Yb+ clocks enable constraint on present-day drift in α at 10−18 / year  

1

𝛼

Δ𝛼

Δ𝑡
= −0.6 1.9 × 10−18 / year 

R. Lange et. al. PRL 126, 011102 (2021)

1

𝛼

Δ𝛼

Δ𝑡
= 1.0 1.1 × 10−18 / year 
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Yb+(E3) / Sr

Slow-drift constraint on changes in α
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SrYb+

Sr

Transient changes in α:
Topological defect dark matter

Topological
defect

d ~ ħ / (mφc)
vg = 300 km/s

Δ𝛼

𝛼

Time

τint ~ d / vg

Yb+

B.M. Roberts et al., 
New J. Phys. 22, 093010 (2020)
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Constraints on transients in α

36

τint ~ d / vg

Topological
defect

d ~ ħ / (mφc)

B.M. Roberts et al., 
New J. Phys. 22, 093010 (2020)
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

✓Understand why certain clocks are good for measuring variations of α and µ

o slow drifts / oscillations / transients
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Summary so far

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

✓Understand why certain clocks are good for measuring variations of α and µ

o slow drifts / oscillations / transients

• Meet the clocks in the QSNET consortium
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How to reach new levels of sensitivity

39

National 
Physical 

Laboratory

Imperial 
College 
London

University 
of Sussex

University of 
Birmingham

(Giovanni Barontini)

Species Wavelength Kα Kμ

171Yb+ 467 nm (E3) -5.95
171Yb+ 436 nm (E2) 1.00

87Sr 698 nm 0.06
133Cs 32.6 mm 2.83 -1

251Cf17+ 485 nm -43.5
251Cf15+ 618 nm 47.0

CaF 17 μm -0.5

N2
+ 2.31 μm -0.5

“A network of optical clocks for measuring the 
stability of fundamental constants”
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UK network of clocks – QSNET project

Phase 1

• Investigate measurement & theory 
with the existing clocks at NPL

• Build the new clocks

Phase 2

• Connect the clocks with optical fibre 
links

• Begin measuring frequency ratios 
with new clocks to achieve greater 
sensitivities

40

𝛼 𝜇

Birmingham

Sussex

NPL Imperial

Cf15+, Cf17+

CaF

N2
+

Yb+, Sr, Cs

To 
European 
network

G. Barontini et. al. EPJ Quantum Technology 9, 12 (2022)
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Exclusion plot examples – oscillating scalar dark matter fields

41
G. Barontini et. al. EPJ Quantum Technology 9, 12 (2022)

• Clocks with increased sensitivities to α, µ variation are expected to improve constraints in many theories

• One example is couplings between oscillating scalar dark-matter fields interacting linearly with (a) the 
electromagnetic field and (b) the electron:

QSNET – optical atomic clocksQTFP Winter School



Conclusion

✓Understand the basic principles of optical atomic clocks

o how they work

o characterisation in terms of inaccuracy / instability

✓Meet some practicalities of ion clocks vs lattice clocks

✓Understand why certain clocks are good for measuring variations of α and µ

o slow drifts / oscillations / transients

✓Meet the clocks in the QSNET consortium
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With thanks to…

QSNET – optical atomic clocksQTFP Winter School

We have vacancies!

Contact: 
Rachel.Godun@npl.co.uk


