
GPUs at CMS

Sam Harper (STFC-RAL)

SWIFTHEP Meeting

GridPP/SwiftHEP Joint Meeting

March 29nd 2023

1

Introduction

• CMS has deployed a heterogenous HLT farm for 2022 data taking

• this talk is to give an account of that experience, current status
and plans

• note: timing is good as CMS discussed much of this at ACAT 2022
(https://indico.cern.ch/event/1106990/)
– GPU commissioning: https://indico.cern.ch/event/1106990/contributions/4991283/

– remote GPUs: https://indico.cern.ch/event/1106990/contributions/5011939/

– Alpaka: https://indico.cern.ch/event/1106990/contributions/5011939/

disclaimer: I was CMS trigger coordinator during the initial proposal and
deployment and I have followed this topic closely but have not personally written a
single line of GPU code for this project. The views here are also my own and do not
necessarily represent those of CMS

2

https://indico.cern.ch/event/1106990/
https://indico.cern.ch/event/1106990/contributions/4991283/
https://indico.cern.ch/event/1106990/contributions/5011939/
https://indico.cern.ch/event/1106990/contributions/5011939/

CMS Heterogenous Strategy

• it is commonly recognised that
CPUs alone will not allow us to
meet computing requirements
for HL-LHC

3

• CMS decided in 2019 to add GPUs to HLT farm to gain experience
running in an heterogenous environment
– target was to be “break even”, ie that the cost of the GPU is offset by the

reduction in CPU required, which is ~30%

– deliberately simple setup

– the experience gained would be used to guide our Run4 computing strategy

• the HLT is the ideal test bed as HLT farm is 100% controlled by CMS

CMS GPU strategy

• focus on three key areas: ECAL , HCAL and pixel track reconstruction
– ECAL and HCAL reconstruction is very similar

– these three areas contribute about ~30% of the CPU time, represent large
bang for buck at the HLT

• chosen technology: CUDA
– only realistic choice at the time

– ECAL/HCAL and pixel tracking algos re-written to be CUDA based

• support must be maintained for systems without GPUs
– HLT will always be run at P5 on a GPU but also needs to be run for MC

production on normal grid sites

– so both CPU and GPU need to be supported

4

CMS HLT Farm

• 200 nodes, each node:

– 2x AMD EPYC 7763 “Milan” 64 core
processors
• 128 physical cores, 256 threads

– 2x Nividia T4 GPUs
• 1.6 Ghz, 16GB

– deployed since Run3 start (July 4th)

• GPU code runs at 90kHz

– pixel : 88% of events

– ECAL : 70% of events

– HCAL : 65% of events

5

CMSSW: Key points
• CMSSW is the CMS software framework which

runs all CMS workflows

• it consists of a series of independent c++ modules
configured by a python config
– modules communicate solely via reading/writing products to the

event object

– once is a product is written to the event, it immutable

• at construction each module registers
– the products it consumes

– the products it produces

• products have a unique name:
– c++type_moduleLabel_instanceLabel_processLabel

– a process label is the label of the job, ie HLT, RECO etc and
the same process label can not be used in a later job

– instance label is there incase a module writes more than
one product of the same c++ type

• the scheduler only runs modules whose products
are consumed

6

Event

barProd

fooProd

writes: recoFoo_fooProd_foo1_RECO
writes: recoFoo_fooProd_foo2_RECO

reads: recoFoo_fooProd_foo1_RECO
writes: recoBar_barProd__RECO

by requesting the
recoBar_barProd product,
you force both the barProd
and fooProd to run

CMSSW: Key points (II)

• HLT and RECO share the same release and share
the same code wherever possible

• usually local reco modules (eg all ECAL, HCAL and
Pixel local reco) are ~identical between HLT and
RECO (or some minor config differences)
– everything ported for GPU so far for the HLT can in theory

be used in reconstruction jobs as well

• higher level reco modules differ but try and reuse
algo code as much as possible
– eg Electrons are built variable by variable to reject early at

the HLT while RECO builds the entire electron in one go

7

Event

barProd

fooProd

writes: recoFoo_fooProd_foo1_RECO
writes: recoFoo_fooProd_foo2_RECO

reads: recoFoo_fooProd_foo1_RECO
writes: recoBar_barProd__RECO

by requesting the
recoBar_barProd product,
you force both the barProd
and fooProd to run

Handing CPU and GPU modules

• CMSSW has GPU modules and CPU
modules

– a GPU module can only run on GPU, will
crash if one not present

• to allow the same cfg file to run on
CPU+GPU and CPU, the concept of a
SwitchProducer was introduced
– has two modules nested in it, a module to run

when there is a GPU present and a module to run
when no GPU is present

– can be extended to other devices

• only the end product needs a switch
producer, intermediate dependences are
handled by on demand execution

• single HLT config file: device availability on
node will determine if it runs the GPU or
CPU modules

8

ECAL DIGIS GPU

ECAL UNCALIB
RECHITS GPU

ECAL UNCALIB
RECHITS CPU

ECAL DIGIS CPU

ECAL UNCALIB
RECHITS

run if GPU
present

run if CPU
present

run as
dependency

run as
dependency

switch producer, decides which
module to run based on available
devices

RAW Data

Performance

• 42% reduction in CPU processing time from offloading
ECAL, HCAL, and Pixels
– copy and conversion to legacy CPU formats is a significant fraction of

remaining time

9

CPU only CPU+ GPU

recent run at 55 PU

from ATAC 2022
https://indico.cern.ch/event/1106990/contributions/4991283/attachment
s/2533710/4360071/HLT_GPU_Poster_MH_final.pdf

GPU vs CPU comparisons

10

• for a small fraction of events,
HLT runs both the CPU and GPU
reco algos and compares result

• the next few plots are taken
from a pp run in Oct 22

results

• identical number of pixel rec-
hits

from ATAC 2022
https://indico.cern.ch/event/1106990/contributions/4991283/attachment
s/2533710/4360071/HLT_GPU_Poster_MH_final.pdf

GPU vs CPU comparisons

11

• small mismatch in number of
tracks and track eta

• thought to be differences due
to float (GPU) vs double (CPU)

from ATAC 2022
https://indico.cern.ch/event/1106990/contributions/4991283/attachment
s/2533710/4360071/HLT_GPU_Poster_MH_final.pdf

GPU vs CPU comparisons

12

• ECAL amplitude: differ in 1 / 106

ecal rec hits

• also tiny difference in HCAL
energy deposits

• disagreement is thought to be
due to double vs float issues

from ATAC 2022
https://indico.cern.ch/event/1106990/contributions/4991283/attachment
s/2533710/4360071/HLT_GPU_Poster_MH_final.pdf

next steps:

• CMS is rapidly iterating on its GPU models

– we are getting better at defining common tasks
• eg SoA formats now much easier to produce and have wrappers which

make it more developer friendly

• CMS is actively trying to port new things algorithms to
GPU

– E/gamma algorithms, Particle flow

• improving infrastructure support

– now can submit jobs via crab (cms grid software) to run on GPU
nodes

13

next steps : performance portability
• the current approach of having separate CPU and CUDA code does not scale well

– support for additional device types likely will be also needed, thus further adding to
maintenance burden

• eg effort on FPGAs already underway

• solution : portability/abstraction layers -> write once, run anywhere

• many options on the market: SYCL, Kokkos, alpaka…

• CMS HLT is moving to alpaka (https://github.com/alpaka-group/alpaca)

– group is actively collaborating with CMS developers, infact many CMS developers are
now listed as authors of Alpaka

– very close to being deployed in production for patatrack code
• PRs are either there or very close

• ECAL code is coming along

– note: it has been much less painful moving CUDA to alpaka than it was re-writing the
CPU code base for CUDA as they share the same concepts

• note: the final approach for Phase-II is not decided, however alpaka now has first
mover advantage in CMS

– in my opinion, other approaches will need to demonstrate considerable advantages
over alpaka if CMS would switch to them

14

https://github.com/alpaka-group/alpaca

More on Alpaka

• header only c++17 library

• https://github.com/alpaka-
group/alpaka

15

Alpaka Performance

• orange is “default” alpaca

• red is CMSSW extensions
adding caching and run time
improvements
– caches and reuses queues and

events to avoid expensive
construction and destruction of
underlying objects

• can see CMSSW alpaka
implementation close to
native CUDA performance

16

A. Bocci, ACAT22
https://indico.cern.ch/event/11069
90/contributions/4991273/

other areas of R&D
• ML inference on GPU

– so far there has been interest but nothing has run in production

– closest to production is the SONIC project (mostly US based) which provides ML
inference as a service
• Services for Optimized Network Inference on Coprocessors

• https://iopscience.iop.org/article/10.1088/2632-2153/abec21

• https://www.computer.org/csdl/proceedings-article/h2rc/2020/235400a038/1pVHdDr0PzG

• extension to other accelerators

– eg FPGAs , AMD cards etc

– ExternalWorker which CMS uses for GPU in theory can be anything external…

• in fact I just got it to run a calculation on a FPGA…

• GPU/FPGA as a service

– currently CMS farm each node has a GPU

– in the future this may not be the optimum solution and there may be a dedicated
GPU server which nodes can submit jobs to

• offline, it is certain some farms will be setup this way

– SONIC natively has this capability; other approaches are being researched too

17

https://iopscience.iop.org/article/10.1088/2632-2153/abec21
https://www.computer.org/csdl/proceedings-article/h2rc/2020/235400a038/1pVHdDr0PzG

Deployment Outside the HLT

• offline reco and online reco (HLT) share the same code wherever possible at CMS

• in particular calorimeter reco and clustering is identical

– nothing is stopping us using the GPU versions of this code in offline reco but we don’t
currently use them

– I suspect its because the modules we have ported are a significant fraction of the HLT
CPU budget but not as significant for offline budget (offline always run expensive
algos while HLT rarely runs them)

• there is a growing push to have GPU enabled reco code “available” and there is
work going forward to this

– E/gamma pixel seeding is a natural candidate we want to move

– I suspect by the end of Run3 we will be opportunistically using GPU resources in our
offline jobs

• also note: for the HLT, same config is used for data and MC so for MC jobs,
a small part can already be run on the GPU if a GPU is available

18

Summary

• CMS has deployed a heterogenous farm for Run3
– three areas ported (ECAL, HCAL, pixel reco)

– further areas are being worked on (E/gamma algos, Particle Flow)

– currently at 42% reduction of CPU, beating original 30% target

• system is performing well
– some teething problems but to be expected with new code base

– good CPU-GPU algorithm agreement

• infrastructure to support this in place
– GPU dev machines, GPU-CPU validation workflows, tool upgrades,

framework support all done

• next step: port GPU algos to Alpaka
– patatrack pixel tracks ready / close to ready on this

19

CMSSW code

• framework for heterogenous code

– https://github.com/cms-
sw/cmssw/tree/master/HeterogeneousCore

• ECAL uncalibrated rechit producer (example of GPU
module)

– https://github.com/cms-
sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/
plugins/EcalUncalibRecHitProducerGPU.cc

– https://github.com/cms-
sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/
plugins/EcalUncalibRecHitMultiFitAlgoGPU.cu

20

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore
https://github.com/cms-sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/plugins/EcalUncalibRecHitProducerGPU.cc
https://github.com/cms-sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/plugins/EcalUncalibRecHitMultiFitAlgoGPU.cu

Bibliography

• talk on CMSSW for non CMS folks (C. Jones)
– https://indico.cern.ch/event/1038551/contributions/4390441/attach

ments/2256302/3828631/CMSSW%20for%20DUNE%20Framework%2
0Workshop.pdf

• M Huwiler poster ACAT 2022
– https://indico.cern.ch/event/1106990/contributions/4991283/

• M. Kortelainen HSF WLCG Workshop, May 2022
– https://indico.cern.ch/event/908146/contributions/3826757/subcontr

ibutions/305916/attachments/2035394/3410634/20200512-
HSF_Workshop_Heterogeneous_CMSSW.pdf

• patatrack project:
– https://patatrack.web.cern.ch/patatrack/index.html

– https://github.com/cms-patatrack

21

https://indico.cern.ch/event/1038551/contributions/4390441/attachments/2256302/3828631/CMSSW%20for%20DUNE%20Framework%20Workshop.pdf
https://indico.cern.ch/event/908146/contributions/3826757/subcontributions/305916/attachments/2035394/3410634/20200512-HSF_Workshop_Heterogeneous_CMSSW.pdf
https://patatrack.web.cern.ch/patatrack/index.html

22

CPU & GPU running

• try and keep data on the
device as much as possible
– copies back and forth kill

performance

• data formats have to be
adjusted for GPU
– struct of arrays (SoA) rather

array of structures (AoS),
traditionally used in HEP

– must be converted back to
traditional object approach
to be consumed by CPU code

23

Personal Observations on GPU
commissioning
• we have had more crashes with GPU code enabled, there has been a long line of

bug fixes

– note, “more” is still negligible, in Run2 the CMS HLT crashed very rarely

• most crashes involve data that is in some way bad

– I suspect its just teething problems which you would get with any new code rather
anything fundamental about GPU coding style

• there has been a lot of work to try and get the GPU and CPU algorithms in
agreement (and keep them that way)

– this is continuously monitored both at P5 and and in offline validation

– sometimes it trying to reproduce somewhat arbitrary decisions by the original code

• MC validation was often not sufficient to catch issues

– many issues were data only

• in general this was harder than the Run2 multithreading migration and has been a
major focus of the CMS HLT group

– although that migration was pretty easy from a CMS users perspective

• but has been easier than commissioning a new detector (eg new pixels in 2017)

– still a huge amount of work has been done for this, it has been a massive project

24

Experience of Alpaka
RAL (through Thomas Reis) is currently porting ECAL local reconstruction from CUDA
to Alpaka

pros:

• very similar to CUDA, easy migration path

• easy to copy data/back forth on the GPU

– cmssw has introduced “portable collections” where you can write things in an AoS way
which is then converted to SoA using alpaca

• case study: a masters student starting from ~zero managed to port the ECAL
weights algo to Alpaka

cons:

• alpaka still under development and has bugs (which are promptly fixed when
pointed out, situation is rapidly improving

• being a templated library, c++ error messages are “not fun”
– a missing const on a function spat out a lot of test and took some time to actually pinpoint

in general, highly positive experience

25

