Profiling ATLAS CPU architectures

Jyoti Prakash Biswal Rutherford Appleton Laboratory

GridPP49 & SWIFT-HEP05

The Cosener's House, Abingdon

29 March 2023

- Since 2007, the CPUs on the grid have some baseline set of features.
- Anything newer is not used except via a special library, *e.g.*, **Intel Math Library function multi-versioning**.
- Therefore, the ability to run vectorised codes are passed over, not recognising the speed boost from the latest features.

 \Rightarrow Familiarity with the CPU architectures on the grid should pave the way for more effective use of computing resources.

• This study aims to gather specifics on CPU architectures via CPU flags using information from the jobs running on the grid.

- By and large, ATLAS codes are dominated by basic maths, C++ STL operations, and memory allocation/deallocation.
- These codes are compiled for this baseline because if compiled at a higher level and the CPU feature is unavailable, then athena will crash with "illegal instruction."
- The compiler can do auto-vectorisation on appropriate loops if the relevant architecture is enabled.
 - The baseline compiler can do some auto-vectorisation, but the more recent CPUs allow more parallel operations.
- Some codes will figure out at runtime what is available!
- In reality, there is no information on how much of the grid is which kind of CPU architecture either in terms of which grid sites have them or how important they are.
- There are potentially significant benefits that could be gained with compiler optimisation if they are allowed to use more vectorisation.

- CPU features:
 - Define a number of different processor attributes, *e.g.*, the presence of a floating-point unit (FPU).
 - Reflect on CPU operations at the current time; architecture dependent.
 - Description of CPU features: <u>link-1</u>; <u>link-2</u>.
- CPU instructions:
 - Patterns of bits, digits, or characters that correspond to machine commands.
 - The instruction set is specific to a class of processors using (mostly) the same architecture.
 - Successor or derivative processor designs often include instructions of a predecessor and may add new additional instructions.
- CPU architectures:
 - System design: physical computer system all hardware parts of a computer.
 - Instruction set architecture (ISA): the functions and capabilities of the CPU; what programming it can perform or process.
 - *Microarchitecture*: computer organisation; defines the data processing and storage element and how they should be implemented into the ISA.
 - Four variations: x86-64-v1, x86-64-v2, x86-64-v3, and x86-64-v4.

CPU: features, instructions, and architectures

• References: <u>Wiki</u>; Application Binary Interface (ABI).

CP	CPU microarchitecture levels					
Architecture	Features	Example				
		instructions				
	CMOV	cmov				
	CX8	cmpxchg8b				
	FPU	fld				
	FXSR	fxsave				
x86-64-v1	MMX	emms				
	OSFXSR	fxsave				
	SCE	syscall				
	SSE	cvtss2si				
	SSE2	cvtpi2pd				
	CMPXCHG16B	cmpxchg16b				
	LAHF-SAHF	lahf				
	POPCNT	popcnt				
x86-64-v2	SSE3	addsubpd				
	SSE4_1	blendpd				
	SSE4_2	pcmpestri				
	SSSE3	phaddd				
	AVX	vzeroall				
	AVX2	vpermd				
	BMI1	andn				
	BMI2	bzhi				
x86-64-v3	F16C	vcvtph2ps				
	FMA	vfmadd132pd				
	LZCNT	lzcnt				
	MOVBE	movbe				
	OSXSAVE	×getbv				
	AVX512F	kmovw				
	AVX512BW	vdbpsadbw				
x86-64-v4	AVX512CD	vplzcntd				
	AVX512DQ	vpmullq				
	AVX512VL					

A case in point: vectorisation

- A key tool to improve performance on modern CPUs.
- Converts an algorithm from operating on a single value at a time to operating on a set of values simultaneously.
- Modern CPUs provide direct support for vector operations where a single instruction is applied to multiple data (SIMD).
- Advantages:
 - A 512-bit CPU could hold 16 32-bit single precision doubles and do a single calculation.
 - \Rightarrow 16 times faster than executing a single instruction at a time.
 - \Rightarrow Combination with threading and multi-core CPUs leads to enormous performance gains.
 - The individual vector (array) elements are added in sequence in a serial calculation.

[Scalar mode: unused additional spaces in CPU.]

[Vector mode]

Vectorisation means optimising the algorithm to utilise SIMD instructions in the processors.

Instruction: **SSE4** (*Streaming SIMD Extensions 4*)

- Architecture: x86-64-v2
- Processor: 128-bit
- Simultaneous operations on: four 32-bit single-precision floating point numbers / two 64-bit double-precision floating point numbers.

Instruction: AVX2 (Advanced Vector Extensions 2)

- Architecture: x86-64-v3
- Processor: 256-bit
- Simultaneous operations on: eight 32-bit single-precision floating point numbers / four 64-bit double-precision floating point numbers.

Instruction: AVX512 (Advanced Vector Extensions 512)

- Architecture: x86-64-v4
- Processor: 512-bit
- Simultaneous operations on: sixteen 32-bit single-precision floating point numbers / eight 64-bit double-precision floating point numbers.

AVX512 \sim 2×AVX2; AVX2 \sim 2×SSE4.

Impact of newer CPU features (a recent study)

- Speeding up Madgraph5_aMC@NLO through data parallelism: CPU vectorisation (A. Valassi's talk).
- On CPUs, in vectorised C++, the maximum x8/x16 (double/float) SIMD speedup is reached for Matrix Elements (MEs) alone.
 - The speedups achieved for the overall workflow are slightly lower due to Amdahl's law, but not much.
 - e.g., current overall speedup is x6/x10 (double/float) for $gg \rightarrow t\bar{t}gg$ on one CPU core.

			ACAT2022	madevent		standalone
	$gg \rightarrow t\bar{t}gg$	MEs	$t_{\text{TOT}} = t_{\text{Mad}} + t_{\text{MEs}}$ [sec]	$N_{\text{events}}/t_{\text{TOT}}$ [events/sec]	N _{events} / [MEs/s	
	Fortran(scalar)	double	37.3 = 1.7 + 35.6	2.20E3 (=1.0)	2.30E3 (=1.0)	_
	C++/none(scalar)	double	37.8 = 1.7 + 36.0	2.17E3 (x1.0)	2.28E3 (x1.0)	2.37E3
	C++/sse4(128-bit)	double	19.4 = 1.7 + 17.8	4.22E3 (x1.9)	4.62E3 (x2.0)	4.75E3
	C++/avx2(256-bit)	double	9.5 = 1.7 + 7.8	8.63E3 (x3.9)	1.05E4 (x4.6)	1.09E4
512y = AVX512, ymm registers	C++/512y(256-bit)	double	8.9 = 1.8 + 7.1	9.29E3 (x4.2)	1.16E4 (x5.0)	1.20E4
512z = AVX512, zmm registers	C++/512z(512-bit)	double	6.1 = 1.8 + 4.3	1.35E4 (x6.1)	1.91E4 (x8.3)	2.06E4
The latter is only better on nodes with 2 FMA units	C++/none(scalar)	float	36.6 = 1.8 + 34.9	2.24E3 (x1.0)	2.35E3 (x1.0)	2.45E3
(here an Intel Gold 6148)	C++/sse4(128-bit)	float	10.6 = 1.7 + 8.9	7.76E3 (x3.6)	9.28E3 (x4.1)	9.21E3
	C++/avx2(256-bit)	float	5.7 = 1.8 + 3.9	1.44E4 (x6.6)	2.09E4 (x9.1)	2.13E4
	C++/512y (256-bit)	float	5.3 = 1.8 + 3.6	1.54E4 (x7.0)	2.30E4 x10.0)	2.43E4
FLOAT	C++/512z 512-bit)	float	3.9 = 1.8 + 2.1	2.10E4 (x9.6)	3.92E4 x17.1)	3.77E4
Scalar DOUBLE						
SSE4 FLOAT FLOAT FLOAT FLOAT			edup ~ x8 (doub		· · · · · · · · · · · · · · · · · · ·	
DOUBLE DOUBLE FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT			ngine reaches th			
AVX2 DOUBLE DOUBLE DOUBLE	DOUBLE	rall spee	dup so far~ x6 (· · ·	r scalar Fortrai
AVX512 FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT	DAT FLOAT FLOAT FLOAT FLOAT	FLOAT FLOAT FL	UAT FLUAT FLUAT FLUAT	Amdahl's law	0	
DOUBLE DOUBLE DOUBLE	DOUBLE DOUBLE	DOUBLE	DOUBLE DOUBLE			

Jyoti Prakash Biswal (RAL)

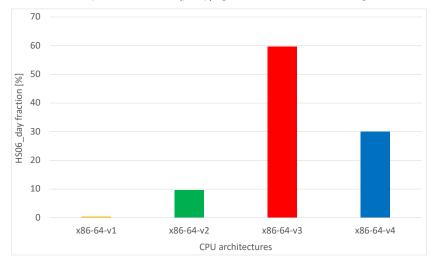
ATLAS CPUs

- CPU flags: CPU features + CPU instructions.
 - Utilised in this study for making the decision on CPU architectures.
- The flags are obtained via -
 - /proc/cpuinfo →

e.g., flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd rsb_ctxsw ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xaveopt arat md clear spec ctrl intel stibp

- The same info is also stored in the pilot logs.
- The pilot logs for all jobs are accessible via Big PanDA as well as apfmon Cloud.
 - There is a specific period through which the pilot logs are available on <u>Big PanDA</u>; the best approach is to download those.
- Also, kibana has quite some statistics available (sans CPU flags as of now).
- Historical data obtained from Big PanDA and kibana are made use of for this work.
- A Python script is designed for the purpose.

Procedure to decide on CPU architectures


- Deciding on the definition of CPU architectures based on CPU flags is not trivial.
- The following recommendations on CPU flags were considered before making a decision:
 - Naive/simplified:
 - SSE4_2.* \rightarrow x86-64-v2.
 - AVX2.* \rightarrow x86-64-v3.
 - AVX512.* \rightarrow x86-64-v4.
 - GNU Compiler Collection (GCC): <u>x86-64-v2</u>, <u>x86-64-v3</u>, <u>x86-64-v4</u>.

• The finalised one:

- Modified GCC lists *i.e.*, LAHF_SAHF \longrightarrow LAHF_LM; LZCNT \longrightarrow ABM; removal of SSE3. *i.e.*,
 - x86-64-v2 = [MMX, SSE, SSE2, LAHF_LM, POPCNT, SSE4_1, SSE4_2, SSSE3]
 - x86-64-v3 = [MMX, SSE, SSE2, LAHF LM, POPCNT, SSE4_1, SSE4_2, SSSE3, AVX, AVX2, F16C, FMA, ABM, MOVBE, XSAVE]
 - x86-64-v4 = [MMX, SSE, SSE2, LAHF LM, POPCNT, SSE4 1, SSE4 2, SSSE3, AVX, AVX2, F16C, FMA, ABM, MOVBE, XSAVE, AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL]
- AMD CPUs do not qualify for x86-64-v4 under the above criteria!
- CPUs w/ ARM, High Performance Computing (HPC) are NOT examined.
- Presently, the results are the same as that of naive/simplified criteria.

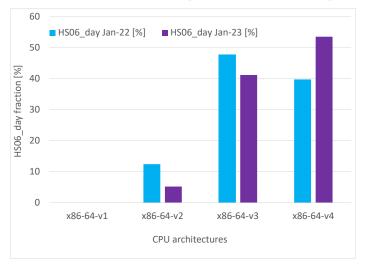
CPU popularity architecture-wise (all grid sites)

 Metric: ∑(HS06_day) ⇒ sum of HEP-SPEC06 per day. HEP-SPEC06: the HEP-wide benchmark for measuring CPU performance. Duration: January-December 2022 (yearly). [Numbers are in the backup]

The order of dominance: x86-64-v3, x86-64-v4, x86-64-v2, x86-64-v1.

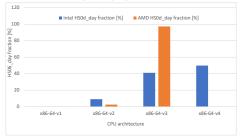
Jyoti Prakash Biswal (RAL)	ATLAS CPUs	29 March 2023	11 / 24

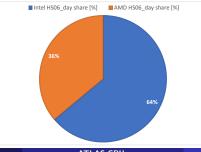
CPU popularity architecture-wise (all grid sites)


Metric: ∑(HS06_day).
Duration: January-December 2022 (monthly). [Numbers are in the backup]

A clear and steady trend of \times 86-64-v3 dominance followed by \times 86-64-v4, \times 86-64-v2, and \times 86-64-v1.

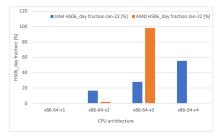
CPU popularity architecture-wise (UKI sites only)

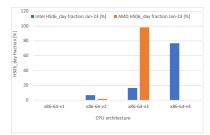

 Metric: ∑(HS06_day). Durations: January 2022 and January 2023. [Numbers are in the backup]

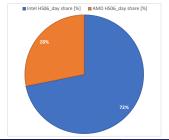


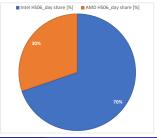
In January 2022, the dominant one is x86-64-v3, but during January 2023, it's x86-64-v4.

Intel and AMD CPUs (all grid sites)


• Metric: \sum (HS06_day) [top] and \sum (HS06_day) share [bottom]. Duration: January-December 2022 (yearly). [Numbers are in the backup]






Intel and AMD CPUs (UKI sites only)

 Metric: \(\L2164(HS06_day)\) [top] and \(\L2164(HS06_day)\) share [bottom]. Durations: January 2022 (top/bottom-left) and January 2023 (top/bottom-right). [Numbers are in the backup]

Jyoti Prakash Biswal (RAL)

ATLAS CPUs

29 March 2023 15 / 24

CPU popularity over one year (kibana tree map)

- Metric: \sum (HS06_day).
- Duration: January-December 2022 (yearly).
- Search link; top 200 CPUs.

s+AMD EPYC 7452 32-Core Processor 512 KB+AVX2 6.29%	s+Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz 39936 KB+AVX2 3.66%	s+AMD EP\ 7702P 64-C Processor 5 KB+AVX2 3	ore 12 . 12%	7402		2 F	HAMD EF 351 16-C Processor B+AVX2 2.46%	ore	s+Inte Xeon(6148 (2.40G KB+A 2.38%	Ř) Ġo CPU (Hz 28 VX2	old 2 @ E 8160 2	E5-26	(Ř) ČPU 80 v3 @ Hz 3072 VX2	20 2 20 3 K	+Inteli eon(F 5-268 .40GH 5840 B+AV .11%	i) CPU 0 v4 @ Iz
	s+Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz 25600	s+Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 14080 KB+AVX2 2.2027	s+Intel(F Xeon(R) E5-2683 2.10GHz KB+AVX	CPU v4 @ 40960	s+Intel(R) Xeon(R) Go 6130 CPU @ 2.10GHz 22 KB+AVX2 1.59%	ld ⊮ 528	s+Intel Xeon Processor (Skylake, IBRS) 16384 KB+AVX2 1.52%	Xe E5 2.6	Intel(R) on(R) C -2650 v 0GHz 480 KB 480 KB	PU X 2@ 2	+Intel(R) 5-2640 v 60GHz 2 8+AVX2 .46%	3@ 20480	s+Intel(R) Xeon(R) i E5-2697 2.30GHz KB+AVX2 1.45%	CPU v4 @ 46080	CPU 7	((R) Phi(TM) /250 @ Hz 1024 VX2
s+AMD EPYC 7302 16-Core Processor 512 KB+AVX2 4.99%	KB+AVX2 3.52%	s+Intel(R) E5-2695 Xeon(R) Gold 6252 CPU @ 2.10GHz 36608 KB+AVX2 Xeon(R) 1.92% 6150 CF 2.70GHz 5-1616 (R) 5+Intel(R) KB+AVX	s+Intel(R) Xeon(R) (E5-2695 2.10GHz KB+AVX2 1.41%	/4 @ 46080		7443 2	D EPYC 24-Core ssor 512 /X2									
	s+AMD EPYC 7702 64-Core Processor 512 KB+AVX2 3.37%		s+Intel(R) Xeon(R) 0 6150 CPU 2.70GHz KB+AVX2 1.34%	Gold J @ 25344												
s+Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz	s+AMD EPYC 7742 64-Core	Xeon(R) CPU X5650 @ 2.67GHz 12288 KB 1.79%	s+Intel(R) Xeon(R) E5-2630 2.20GHz KB+AVX2	CPU v4 @ 25600												
33792 KB+AVX2 4.58%	Processor 512 KB+AVX2 3.37%	s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 KB+AVX2 1.69%	1.31%													

AMD usage is concentrated over fewer different models.

Wrap-up

- On the grid, x86-64-v3 (\sim 60%) is the most popular CPU architecture, followed by x86-64-v4 (\sim 30%).
 - x86-64-v1's presence is negligible (< 0.5%).
 - x86-64-v2 (\sim 10%) is somewhere in the middle!
- UKI sites seem to be shifting towards x86-64-v4 (starting 2023)!
- Among the Intel CPUs, x86-64-v4 is beginning to dominate.
- > 90% of AMD CPUs are x86-64-v3.
 - Had there been a list of flags from AMD corresponding to x86-64-v4, it would be conducive in re-defining the architectures.
- HS06_day share is Intel-dominated $\sim \frac{2}{3}$ rd.
- Ways to improve this study further:
 - Individual site-wise analysis.
 - National grid-wise analysis.
 - A catalogue of different Intel and AMD models.

Record of architectures and flags will be obtainable for all future jobs on kibana!

- What happens if a certain architecture, e.g., x86-64-v1 is completely dropped from the grid?
- Is it viable to have architecture-specific sites? *E.g.*, X site has at least x86-64-v3 CPUs.
- GPUs on the grid may face similar challenges.
- Is there a way to match types of jobs to particular architectures?
- Next steps:
 - Investigation on non-x86-64 architectures, e.g., ARM CPUs.
 - The Python script will eventually be made available on CernVM-File System.
- There is enough data to discuss and propose the architectures ATLAS could require on the grid.

Backup

All grid sites; January-December 2022 (yearly)					
CPU architecture	HS06_day fraction [%]				
×86-64-v1	0.44				
×86-64-v2	9.76				
×86-64-v3	59.77				
×86-64-v4	30.03				

All grid sites; January-December 2022 (monthly); HS06_day fraction [%]						
Month-Year	×86-64-v1	x86-64-v2	x86-64-v3	×86-64-v4		
January-2022	0.90	14.06	57.34	27.70		
February-2022	0.77	12.50	57.23	29.50		
March-2022	0.70	12.65	53.82	32.83		
April-2022	0.74	10.14	58.78	30.34		
May-2022	0.49	10.15	58.75	30.61		
June-2022	0.53	10.18	59.88	29.41		
July-2022	0.30	9.26	61.00	29.44		
August-2022	0.32	9.81	61.38	28.49		
September-2022	0.37	8.58	61.82	29.23		
October-2022	0.29	8.14	60.37	31.20		
November-2022	0.10	7.14	62.79	29.97		
December-2022	0.09	6.66	61.47	31.78		

UKI sites; the same month after one year; HS06_day fraction [%]						
CPU architecture	January 2022	January 2023				
×86-64-v1	0.04	0.0				
×86-64-v2	12.44	5.23				
×86-64-v3	47.75	41.20				
×86-64-v4	39.77	53.57				

All grid sites; January-December 2022; HS06_day fraction [%]						
CPU architecture I Intel AMD						
×86-64-v1	0.06	0.14				
×86-64-v2	9.03	2.50				
×86-64-v3	41.03	97.36				
×86-64-v4	49.88	0.0				

Intel and AMD CPUs (UKI sites only)

UKI sites; January 2022; HS06_day fraction [%]							
CPU architecture	Intel	AMD					
×86-64-v1	0.05	0.0					
×86-64-v2	16.58	1.90					
×86-64-v3	28.00	98.10					
×86-64-v4	55.37	0.0					

UKI sites; January 2023; HS06_day fraction [%]							
CPU architecture	Intel	AMD					
×86-64-v1	0.0	0.0					
×86-64-v2	6.74	1.73					
×86-64-v3	16.46	98.27					
×86-64-v4	76.80	0.0					